JPS6217943A - Manufacture of lamp bulb - Google Patents

Manufacture of lamp bulb

Info

Publication number
JPS6217943A
JPS6217943A JP15593085A JP15593085A JPS6217943A JP S6217943 A JPS6217943 A JP S6217943A JP 15593085 A JP15593085 A JP 15593085A JP 15593085 A JP15593085 A JP 15593085A JP S6217943 A JPS6217943 A JP S6217943A
Authority
JP
Japan
Prior art keywords
glass tube
tube
pore
glass
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15593085A
Other languages
Japanese (ja)
Inventor
神崎 義隆
河野 晶二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP15593085A priority Critical patent/JPS6217943A/en
Publication of JPS6217943A publication Critical patent/JPS6217943A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電球の製造方法に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a method of manufacturing a light bulb.

〔従来の技術〕[Conventional technology]

一般に電球は、複写機の露光用光源或いは定着用熱源、
その他照明用光源として広く用いられている。
In general, a light bulb is used as a light source for exposure in a copying machine or as a heat source for fixing.
It is also widely used as a light source for other lighting purposes.

従来の電球の製造方法の一例においては、第10図に示
すように、例えば発光部Rと非発光部Nとが交互に配列
されてなるフィラメントFの両端に内部リード棒11.
11を接続し、この内部リード棒11、11にモリブデ
ンなどの金属箔12.12の一端を接続し、この金属箔
12.12の他端に外部リード棒13、13を接続して
給電部材であるフィラメント組立体1を形成し、第11
図に示すように、中央部に排気及び封入物質導入用の突
出管21を設けてなる筒状ガラス管2を保持具3により
垂直に保持せしめ、このガラス管2の内部に、当該ガラ
ス管2の管軸に沿って伸びかつ外部リード棒13.13
がそれぞれガラス管2の端部22,22から突出した状
態になるようフィラメント組立体1を位置せしめる。
In an example of a conventional light bulb manufacturing method, as shown in FIG. 10, internal lead rods 11.
11, one end of a metal foil 12.12 made of molybdenum or the like is connected to the internal lead rods 11, 11, external lead rods 13, 13 are connected to the other end of this metal foil 12.12, and the power supply member is connected. One filament assembly 1 is formed, and the 11th filament assembly 1 is formed.
As shown in the figure, a cylindrical glass tube 2 having a protruding tube 21 for evacuation and introduction of sealed substances in the center is held vertically by a holder 3, and the glass tube 2 is held vertically by a holder 3. Extending along the tube axis and external lead rod 13.13
The filament assembly 1 is positioned so that it projects from the ends 22, 22 of the glass tube 2, respectively.

4は上方の外部リード棒13を挟圧保持する保持具であ
り、5は下方の外部リード棒13を支持する支持台であ
る。
4 is a holder that holds the upper external lead rod 13 under pressure, and 5 is a support base that supports the lower external lead rod 13.

この状態においてガラス管2の突出管21から当該ガラ
ス管2の内部に窒素、アルゴンなどよりなる保護ガスを
、例えば0.5〜27!/minの流量で流しながら、
ガラス管2の下方の端部22をその外側からガスバーナ
などの加熱器6により加熱して溶融させ、この状態で第
12図に示すように、当該端部22の外壁面からピンチ
ャ−80の押圧面で押圧して当該端部22内に位置する
金属箔12を端部22のガラス部分で気密に溶着して一
方の封止部を形成する。次にこのようにして一端が封止
されたガラス管2を逆向きに保持させて上述と同様にし
て他方の封止部を形成する。そして突出管21を介して
ガラス管2の内部の排気を行い、次にこの突出管21を
介してガラス管2の内部に必要な封入物質の導入を行う
。その後突出管21を加熱して気密に塞いで第11図に
示すように電球を得る。21Aは突出管21の残部であ
る突出部分を示す。
In this state, a protective gas made of nitrogen, argon, etc. is injected from the protruding tube 21 of the glass tube 2 into the interior of the glass tube 2, for example, at a rate of 0.5 to 27 cm. While flowing at a flow rate of /min,
The lower end 22 of the glass tube 2 is heated from the outside with a heater 6 such as a gas burner to melt it, and in this state, as shown in FIG. The metal foil 12 located within the end portion 22 is hermetically welded to the glass portion of the end portion 22 by pressing with the surface to form one sealing portion. Next, the glass tube 2 with one end sealed in this manner is held in the opposite direction, and the other sealed portion is formed in the same manner as described above. Then, the inside of the glass tube 2 is evacuated through the protruding tube 21, and then a necessary sealed substance is introduced into the inside of the glass tube 2 via the protruding tube 21. Thereafter, the protruding tube 21 is heated and hermetically closed to obtain a light bulb as shown in FIG. 21A indicates the remaining protruding portion of the protruding tube 21. As shown in FIG.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、このような方法では、突出管21を最終
的に気密に塞いで突出部分21Aをできるだけ短くなる
ように除去するとしても突出管21の周辺のガラス部分
に何ら悪影響を与えずに突出部分21Aを完全に除去す
ることは相当に困難であり、実際には2〜5fi程度の
突出部分21Aが生してしまう。従って上述の方法によ
って得られる電球のガラス管2の外壁には突出管21の
ガラス部分が原因となって突出部分21Aが必ず生じ、
このため電球の他の機器への取付は作業において突出部
分21Aが障害となって悪影響を及ぼす場合があり、例
えば複写機の定着用熱源として用いる場合には通常定着
ローラの内部に電球が取付けられ、定着ローラの側部に
設けられた電球挿入口を介して電球の取付け、取り外し
が行われるが、この電球挿入口の大きさは定着ローラの
熱逃散を防止するうえからできるだけ小さい方がよいが
、電球に突出部分21Aがあるため電球の管外径に突出
部分21Aの長さを加えた大きさの電球挿入口が必要と
され、定着ローラの熱逃散の防止という観点からは極め
て大きな欠点となっている。一方上述の方法によって得
られる電球を複写機の露光用光源として用いる場合には
、当該電球により所定の配光分布が得られることが必要
であるが、電球の外壁に突出部分21Aがあるため、こ
れにより光の方向が乱されて所定の配光分布が得られな
い場合があり大きな問題点となっている。そして突出管
21の大部分は除去されて最終的に不要となるため、こ
の不要となるガラス部分の材料経費が無視できない程大
きく、これが製造コストを高くしている原因ともなって
いる。
However, in such a method, even if the protrusion tube 21 is finally sealed airtight and the protrusion portion 21A is removed to be as short as possible, the protrusion portion 21A can be removed without any adverse effect on the glass portion around the protrusion tube 21. It is quite difficult to completely remove the protruding portion 21A of about 2 to 5 fi. Therefore, a protruding portion 21A is inevitably formed on the outer wall of the glass tube 2 of the light bulb obtained by the above method due to the glass portion of the protruding tube 21.
For this reason, the protruding portion 21A may become an obstacle when attaching the light bulb to other equipment and may have an adverse effect. For example, when used as a heat source for fusing in a copying machine, the light bulb is usually attached inside the fixing roller. The light bulb is installed and removed through the light bulb insertion slot provided on the side of the fixing roller, but it is better to keep the size of this light bulb insertion slot as small as possible in order to prevent heat loss from the fixing roller. Since the light bulb has a protruding portion 21A, a light bulb insertion slot is required that is the size of the outer diameter of the bulb plus the length of the protruding portion 21A, which is an extremely large drawback from the perspective of preventing heat loss from the fixing roller. It has become. On the other hand, when the light bulb obtained by the above-mentioned method is used as an exposure light source for a copying machine, it is necessary that the light bulb obtains a predetermined light distribution. As a result, the direction of light is disturbed and a predetermined light distribution may not be obtained, which is a major problem. Since most of the protruding tube 21 is removed and ultimately becomes unnecessary, the cost of materials for this unnecessary glass portion is so large that it cannot be ignored, and this is also a cause of high manufacturing costs.

〔発明の目的〕[Purpose of the invention]

本発明は以上の如き事情に基いてなされたものであって
、その目的は、ガラス管の外壁に排気或いは封入物質導
入用の突出管を設けることなく排気及び封入物質の導入
を行うことができて経済的に電球を製造することができ
、しかもガラス管の気密封止を容易にしかも確実に行う
ことができる電球の製造方法を提供することにある。
The present invention has been made based on the above-mentioned circumstances, and an object of the present invention is to enable evacuation and introduction of a sealed substance without providing a protruding tube for exhausting or introducing a sealed substance on the outer wall of a glass tube. To provide a method for manufacturing a light bulb, which can economically produce the light bulb, and furthermore, can easily and reliably hermetically seal a glass tube.

〔問題点を解決するための手段〕[Means for solving problems]

本発明電球の製造方法は、発光部囲繞用管部及び封止部
用管部を有するガラス管を用い、このガラス管の封止部
用管部内に給電部材をその一部が当該封止部用管部から
突出するよう位置させ、前記ガラス管の封止部用管部を
加熱押圧して、その一部にガラス管の内外に連通ずる細
孔が残るよう前記給電部材を気密に溶着し、前記細孔を
介してガラス管内の排気及び封入物質の導入を行った後
当該細孔の周囲ガラスを振動的に微小変位するレーザー
光線により加熱して当該細孔を塞ぐ工程を含むことを特
徴とする。
The method for manufacturing the light bulb of the present invention uses a glass tube having a tube section for surrounding a light emitting section and a tube section for a sealing section, and a power supply member is placed inside the tube section for the sealing section of the glass tube, with a part of the power supply member being connected to the sealing section. The power supply member is positioned so as to protrude from the glass tube portion, and the power supply member is hermetically welded by heating and pressing the sealing tube portion of the glass tube so that a pore communicating with the inside and outside of the glass tube remains in a part thereof. , comprising the step of evacuating the glass tube and introducing the enclosed substance through the pore, and then heating the glass surrounding the pore with a laser beam that vibrably slightly displaces the pore to close the pore. do.

〔作用〕[Effect]

斯かる方法によれば、給電部材をガラス管の封止部用管
部内に気密に溶着するときにはその一部にガラス管の内
外に連通ずる細孔を残し、この細孔を利用して排気及び
封入物質の導入を行うため、排気或いは封入物質導入の
ための突出管を設けることなく排気及び封入物質の導入
を行うことができる。しかも細孔を塞ぐための加熱源と
して振動的に微小変位するレーザー光線を用いるため、
レーザー光線が細孔の周囲ガラスの1個所に集中するこ
とがなく、従ってレーザー光線を振動的に微小変位させ
ずに1個所に集中させて気密封止を行う場合に比して歪
の少ない気密封止を達成することができる。
According to this method, when the power supply member is hermetically welded into the tube for the sealing part of the glass tube, a pore is left in a part thereof that communicates with the inside and outside of the glass tube, and this pore is used to perform exhaust and Since the encapsulated substance is introduced, the evacuation and introduction of the encapsulated substance can be carried out without providing a protruding pipe for evacuation or introduction of the encapsulated substance. Moreover, since a laser beam with small vibrational displacement is used as a heating source to close the pores,
The laser beam is not concentrated in one place on the glass surrounding the pore, and therefore hermetic sealing with less distortion is achieved compared to when the laser beam is concentrated in one place without causing minute vibrational displacement. can be achieved.

〔実施例〕〔Example〕

以下図面によって本発明の一実施例について詳細に説明
する。以下の実施例は、例えば露光用光源或いは定着用
熱源として用いられる長尺なダブルエンドタイプ即ち両
端封止型の電球を製造する場合の一例である。
An embodiment of the present invention will be described in detail below with reference to the drawings. The following embodiment is an example of manufacturing a long double-end type light bulb, that is, a type with both ends sealed, which is used, for example, as a light source for exposure or a heat source for fixing.

この実施例においては、第1図に示すように、中央を発
光部囲繞用管部とし両側部を封止部用管部とする、例え
ば長さ方向全体に亘って一様な断面形状の長尺な筒状ガ
ラス管7を用い、このガラス管7を、その一部にガス導
入管31を設けた保持具3により垂直に保持せしめ、こ
のガラス管7に対し全体が当該ガラス管7の管軸に沿っ
て伸びかつ両端の外部リード棒13.13がそれぞれガ
ラス管7の封止部用管部71A、71Bから突出すると
共に金属箔12.12がそれぞれ封止部用管部71A、
71B内に位置するよう、給電部材例えば第8図に示し
た構成と同一の構成のフィラメント組立体1を位置せし
める。4は上方の外部リード棒13を挟圧保持する保持
具であり、5は下方の外部リード棒13を支持する支持
台である。この状態において、ガラス管7の上方の封止
部用管部71Bの開口から当該ガラス管7の下方に向け
てガス導入管31より窒素。
In this embodiment, as shown in FIG. 1, the center part is a tube part for surrounding the light emitting part, and the both sides are pipe parts for a sealing part. A long cylindrical glass tube 7 is used, and this glass tube 7 is held vertically by a holder 3 in which a gas introduction tube 31 is provided in a part of the glass tube 7. External lead rods 13.13 extending along the axis and at both ends protrude from the sealing tube portions 71A, 71B of the glass tube 7, and metal foils 12.12 respectively extend from the sealing tube portions 71A, 71B.
A power supply member, for example, the filament assembly 1 having the same configuration as that shown in FIG. 8, is positioned within 71B. 4 is a holder that holds the upper external lead rod 13 under pressure, and 5 is a support base that supports the lower external lead rod 13. In this state, nitrogen is introduced from the gas introduction tube 31 toward the lower part of the glass tube 7 from the opening of the sealing tube section 71B above the glass tube 7.

アルゴンなどよりなる保護ガスを例えば0.5〜2j!
 /minの流量で流しながら、ガラス管7の下方の封
止部用管部71Aをその外側からガスバーナなどの加熱
器6により加熱して溶融させ、この状態で当該封止部用
管部71への外壁面から、第2図に示すように、押圧面
の水平方向の幅りがガラス管7の外径りよりは小さいピ
ンチャー81で封止部用管部71への中央部を押圧する
ことにより、第3図に示すように、フィラメント組立体
1の金属箔12の両側即ちピンチャ−81の押圧面が当
接していない垂直方向に伸びる側部73.73において
、それぞれガラス管7の内部から封止部用管部71Aの
外方に貫通する細孔74.74が残るよう扁平な気密溶
着部分72を形成する。次に第4図に示すように、ガラ
ス管7及びこれに一端が固定されたフィラメント組立体
1を逆向きにして、ガラス管7を保持具3により垂直に
保持せしめ、下方の外部リード棒13を支持台5により
支持して、フィラメント組立体1が管軸に沿って垂直に
伸び、下方の金属箔12が下方の封止部用管部71B内
に位置しかつ外部リード棒13が封止部用管部71Bか
ら突出した状態にする。この状態において上方の封止部
用管部71Aに形成された細孔74.74の開口にそれ
ぞれガス導入管31.31を接続してガラス管7の下方
に向けて窒素、アルゴンなどよりなる保護ガスを例えば
0.5〜217m1nの流量で流しながら、ガラス管7
の下方の封止部用管部71Bをその外側からガスバーナ
などの加熱器6により加熱して溶融させ、この状態で当
該封止部用管部71Bの外壁面から、第5図に示すよう
に、押圧面の水平方向の幅が例えばガラス管7の外径に
等しいかもしくはこれより大きいピンチャ−82で封止
部用管部71Bの全体を押圧して、当該封止部用管部7
1B内に位置する金属箔12を封止部用管部71Bのガ
ラス部分で気密に溶着すると共に当該ガラス部分全体を
気密に溶着して当該封止部用管部71Bを完全に気密封
止する。
Protective gas such as argon, for example, 0.5 to 2j!
While flowing at a flow rate of /min, the lower sealing tube section 71A of the glass tube 7 is heated from the outside with a heater 6 such as a gas burner to melt it, and in this state, the sealing tube section 71A is heated and melted. As shown in FIG. 2, from the outer wall surface of the glass tube 71, press the central part of the sealing tube part 71 with pinchers 81 whose horizontal width of the pressing surface is smaller than the outer diameter of the glass tube 7. As a result, as shown in FIG. 3, the metal foil 12 of the filament assembly 1 is exposed from the inside of the glass tube 7 on both sides 73 and 73 extending in the vertical direction, which are not in contact with the pressing surface of the pincher 81. A flat airtight welded portion 72 is formed so that pores 74 and 74 penetrating outward of the sealing tube portion 71A remain. Next, as shown in FIG. 4, the glass tube 7 and the filament assembly 1 with one end fixed thereto are reversed, the glass tube 7 is held vertically by the holder 3, and the external lead rod 13 is placed below. is supported by the support stand 5, the filament assembly 1 extends vertically along the tube axis, the lower metal foil 12 is located in the lower sealing tube section 71B, and the external lead rod 13 is sealed. 71B. In this state, the gas introduction tubes 31 and 31 are connected to the openings of the pores 74 and 74 formed in the upper sealing tube section 71A, respectively, and the glass tube 7 is protected with nitrogen, argon, etc. While flowing the gas at a flow rate of, for example, 0.5 to 217 m1, the glass tube 7
The lower sealing tube part 71B is heated from the outside with a heater 6 such as a gas burner to melt it, and in this state, from the outer wall surface of the sealing tube part 71B, as shown in FIG. , the entire sealing portion tube portion 71B is pressed with a pincher 82 whose pressing surface has a width in the horizontal direction that is equal to or larger than the outer diameter of the glass tube 7, and the sealing portion tube portion 7 is pressed.
The metal foil 12 located within 1B is hermetically welded to the glass portion of the sealing tube portion 71B, and the entire glass portion is hermetically welded to completely hermetically seal the sealing tube portion 71B. .

次に、このようにして一端が完全に気密封止されたガラ
ス管7の細孔74.74が形成されている封止部用管部
71Aを、第6図に示すように、細孔74゜74のそれ
ぞれにおいて少なくとも一部が外部がら透視できるよう
その途中まで覆った状態で排気及び封入物質導入用ヘッ
ド100に気密に保持する。
Next, as shown in FIG. At least a portion of each of the tubes 74 is covered halfway so that it can be seen through from the outside, and is airtightly held in the head 100 for evacuation and introduction of an encapsulated substance.

101は通電用電極を兼ねるストッパー、102は通気
孔の外枠、103はゴム製の角リング、104,105
はスペーサー、106は圧縮金具であり、ガラス管7の
封止部用管部71Aにおいて、外部リード棒13はスト
ッパー101内に挿入され、細孔74.74の開口は通
気孔107にそれぞれ連結され、角リング103は封止
部用管部71への周囲全体に当接し圧縮金具106によ
りガラス管7の軸方向に圧縮されて通気孔107と外部
空間との気密を保持している。この状態で、エアポンプ
(図示せず)などにより通気孔107及びガラス管7の
細孔74.74を介してガラス管7の内部の排気を行い
、その後、例えばハロゲン、或いは窒素、アルゴン、ク
リプトン、キセノンなどの不活性物質、また或いは金属
物質などの封入物質を前記細孔74 、74を介してガ
ラス管7内に導入する。
101 is a stopper that also serves as a current-carrying electrode, 102 is an outer frame of the ventilation hole, 103 is a rubber square ring, 104, 105
is a spacer, 106 is a compression fitting, the external lead rod 13 is inserted into the stopper 101 in the sealing tube section 71A of the glass tube 7, and the openings of the pores 74 and 74 are connected to the ventilation holes 107, respectively. The square ring 103 contacts the entire periphery of the sealing tube portion 71 and is compressed in the axial direction of the glass tube 7 by the compression fitting 106 to maintain airtightness between the ventilation hole 107 and the external space. In this state, the inside of the glass tube 7 is evacuated via the ventilation hole 107 and the pores 74, 74 of the glass tube 7 using an air pump (not shown) or the like, and then, for example, halogen, nitrogen, argon, krypton, An inert substance such as xenon or an encapsulating substance such as a metallic substance is introduced into the glass tube 7 through the pores 74, 74.

そして次に、加熱源として例えば出力が100〜500
W程度の炭酸ガスレーザーなどのレーザー光線を発生す
るレーザー発振器9を用い、このレーザー発振器9より
のレーザー光線をその直径が約0.3〜5.0 ml程
度の小径ビームとなるよう光学系90により集光し、そ
してこの小径ビームが、一方の細孔74の周囲ガラスの
被加熱領域内を振動的に微小変位するよう、例えば平面
反射鏡91を振動的に変位させながら、当該小径ビーム
を一方の細孔74の周囲ガラスの被加熱領域内に当てて
加熱溶融し、当該細孔74の少なくとも一部、例えば長
さが1.5〜5.0 +n程度の部分において空隙を完
全に塞ぎ、次いで他方の細孔74の周囲ガラスを例えば
排気及び封入物質導入用ヘッド100を180度回転さ
せることにより被照射位置にセットし、同様にして他方
の細孔74の空隙を塞ぎ、これにより当該封止部用管部
71Aを最終的に完全に気密封止し、以て第7図に示す
ように電球を得る。
Next, as a heating source, for example, the output is 100 to 500.
A laser oscillator 9 that generates a laser beam such as a carbon dioxide laser of about W is used, and the laser beam from the laser oscillator 9 is focused by an optical system 90 so that it becomes a small beam with a diameter of about 0.3 to 5.0 ml. For example, while vibratingly displacing the plane reflecting mirror 91, the small-diameter beam is moved to one side so that the small-diameter beam vibrably displaces minutely within the heated area of the glass surrounding the one pore 74. The heated area of the glass surrounding the pore 74 is heated and melted to completely close the void in at least a portion of the pore 74, for example, a portion with a length of about 1.5 to 5.0 +n, and then The surrounding glass of the other pore 74 is set at the irradiation position by, for example, rotating the head 100 for evacuation and inclusion substance introduction by 180 degrees, and the gap in the other pore 74 is similarly closed, thereby sealing the area. The tube section 71A is finally completely hermetically sealed to obtain a light bulb as shown in FIG.

第6図において、92はシャッター、93はシャッター
駆動機構、94は集光用レンズ、95は平面反射鏡91
を振動的に微小変位させるための駆動機構、96はガラ
ス管7の排気及び封入物質導入用へンド100に対する
位置を検出するための位置検出機構である。駆動機構9
5は、例えば電磁石または水晶発振器などによる電気的
振動もしくはカムを使用した機械的振動を生じさせる機
構などにより構成され、この駆動機構95により平面反
射鏡91の位置を高速で振動的に微小変位させることに
より、レーザー光線の小径ビームを、細孔74の周囲ガ
ラスの被加熱領域内において振動的に微小変位させるこ
とができる。この振動的な微小変位においては、レーザ
ー光線の小径ビームを、細孔74の周囲ガラスの被加熱
領域内において高速でむらなくかつ平均して移動させる
ことが好ましい。小径ビームの被加熱領域内における振
動的な微小変位の方向は特に限定されないが、例えば互
いに直交する縦方向と横方向における小径ビームの移動
速度をそれぞれ適宜選定することにより、多様な微小変
位を実現することができる。
In FIG. 6, 92 is a shutter, 93 is a shutter drive mechanism, 94 is a condensing lens, and 95 is a flat reflecting mirror 91.
A driving mechanism 96 is a position detection mechanism for detecting the position of the glass tube 7 with respect to the end 100 for evacuation and introduction of the enclosed substance. Drive mechanism 9
5 is constituted by a mechanism that generates electrical vibrations using an electromagnet or a crystal oscillator, or mechanical vibrations using a cam, for example, and this drive mechanism 95 causes the position of the flat reflecting mirror 91 to be minutely displaced in a vibrational manner at high speed. Thereby, the small diameter beam of the laser beam can be vibrated and minutely displaced within the heated region of the glass surrounding the pore 74. In this vibrational minute displacement, it is preferable that the small diameter beam of the laser beam is moved uniformly and evenly at high speed within the heated region of the glass surrounding the pore 74. The direction of the small diameter vibrational displacement within the heated region of the small diameter beam is not particularly limited, but for example, by appropriately selecting the moving speed of the small diameter beam in the vertical direction and the horizontal direction, which are perpendicular to each other, a variety of small displacements can be realized. can do.

以上において細孔74の内径は例えば0.5〜1.21
1程度とするのが好ましい。即ち細孔74を塞ぐ作業性
の点からは細孔74の内径は小さい程よいが、内径が0
.5 w未満の場合には排気及び封入物質の導入に時間
がかかりすぎるため好ましくなく、逆に内径が大きい場
合には排気及び封入物質の導入に要する時間は短くなる
が細孔74を塞ぐ作業が難しくなり場合によっては気密
封止ができない場合がある。
In the above, the inner diameter of the pore 74 is, for example, 0.5 to 1.21.
It is preferable to set it to about 1. That is, from the point of view of workability in closing the pores 74, the smaller the inner diameter of the pores 74, the better;
.. If the inner diameter is less than 5 W, it is undesirable because it takes too much time to exhaust and introduce the enclosed substance.On the other hand, if the inner diameter is large, the time required to exhaust and introduce the enclosed substance will be shortened, but the work of blocking the pores 74 will be required. In some cases, it may not be possible to achieve an airtight seal.

以上の実施例によれば、ガラス管7の封止部用管部71
Aに気密溶着部分72を形成するときにその一部に細孔
74.74を設け、後にこの細孔74.74を介して排
気及び封入物質の導入を行うので、排気及び封入物質の
導入用の突出管を設けることなく排気及び封入物質の導
入を行うことができ、従ってガラス管7として最終的に
不要となって除去される部分を必要としないので、材料
経費の節減を図ることができ、この結果長さ、管外径及
び肉厚が同等の従来の電球に比して製造コストを約5%
程度小さくすることができ、極めて経済的に電球を製造
することができる。
According to the above embodiment, the tube part 71 for the sealing part of the glass tube 7
When forming the airtight welded part 72 on A, a pore 74.74 is provided in a part of it, and later the exhaust and the introduction of the enclosed substance are carried out through this pore 74. Since the evacuation and the introduction of the sealed substance can be carried out without providing a protruding tube, there is no need for a portion that will eventually become unnecessary and be removed as the glass tube 7, so material costs can be reduced. As a result, manufacturing costs are reduced by approximately 5% compared to conventional light bulbs with the same length, tube outer diameter, and wall thickness.
It is possible to manufacture the light bulb extremely economically.

そして細孔74.74の気密封止をレーザー光線を用い
て行ううえ、このレーザー光線は、光学系によって集光
された小径ビーム状であって、しかもこの小径ビームを
、細孔74の周囲ガラスの被加熱領域内において振動的
に微小変位させながら当該周囲ガラスに当てるため、こ
のような小径ビームによればガスバーナーなどのような
炎の揺らぎ即ち不安定さが全くないうえ小さな出力で必
要な溶融エネルギーが得られ、従って特定の小さな領域
のみを正確にしかも簡単で迅速に溶融せしめることがで
きて効率的に気密封止を行うことができ、しかも小径ビ
ームが1個所に集中することがないので、仮に小径ビー
ムを振動的に微小変位させないで1個所に集中させて気
密封止を行う場合には当該個所の温度上昇が急激となる
ため歪が発生し易いところそのような歪の発生を小さく
抑制することができ、この結果細孔の気密封止部におけ
る早期クランクの発生を確実に防止することができ、細
孔の気密封止を極めて良好に行うことができる。
The pores 74, 74 are hermetically sealed using a laser beam, and this laser beam is in the form of a small diameter beam focused by an optical system, and this small diameter beam is transmitted to the glass surrounding the pore 74. Because the beam is applied to the surrounding glass while being vibrated and vibrated within the heating area, there is no flame fluctuation or instability that occurs with gas burners, and the required melting energy is reduced with a small output. Therefore, only a specific small area can be melted accurately, easily and quickly, and hermetic sealing can be performed efficiently. Moreover, since the small diameter beam is not concentrated in one place, If a small-diameter beam is concentrated in one place and hermetically sealed without causing minute vibrational displacement, the temperature at that point will rise rapidly, so distortion is likely to occur, and such distortion can be suppressed to a small level. As a result, it is possible to reliably prevent the occurrence of premature cranking in the hermetically sealed portion of the pore, and the pore can be hermetically sealed extremely well.

そしてガラス管7の外壁面には突出管に起因する突出部
分が全く生ずることがないので、電球の他の機器への取
付は作業において従来突出部分があるために問題となっ
ていた障害を除去することができ、例えば複写機の定着
ローラの内部に電球を取付ける場合に定着ローラの側部
の電球挿入口の大きさはガラス管7の外径程度にまで小
さくすることができて定着ローラの熱逃散の防止に大き
く貢献することができる。またガラス管7の外壁に突出
部分がないので配光分布が乱されることを防止すること
ができ、例えば複写機の露光用光源として用いる場合に
は確実に所要の配光分布を得ることが可能となる。
Furthermore, since there is no protruding part caused by the protruding tube on the outer wall surface of the glass tube 7, the installation of the light bulb into other equipment eliminates the problem that conventionally occurs due to the protruding part. For example, when installing a light bulb inside the fuser roller of a copying machine, the size of the light bulb insertion opening on the side of the fuser roller can be made as small as the outer diameter of the glass tube 7, and the fuser roller This can greatly contribute to preventing heat loss. Furthermore, since there is no protruding part on the outer wall of the glass tube 7, it is possible to prevent the light distribution from being disturbed. For example, when used as an exposure light source for a copying machine, it is possible to reliably obtain the required light distribution. It becomes possible.

そして上述の方法によれば、細孔74.74の形成は、
ピンチャ−81の押圧面の大きさ及び押圧時における押
圧面間の距離を定めることにより行うことができるので
、細孔74.74を形成するための他の特別な手段を必
要とせず極めて簡単に細孔74.74を形成することが
できる。
According to the method described above, the formation of pores 74.74 is
This can be done by determining the size of the pressing surface of the pincher 81 and the distance between the pressing surfaces during pressing, so there is no need for any other special means to form the pores 74, 74, and it is extremely simple. Pores 74.74 can be formed.

以上本発明を一実施例に基いて説明したが、本発明にお
いては上記実施例に限定されず適宜変更が可能である。
Although the present invention has been described above based on one embodiment, the present invention is not limited to the above embodiment and can be modified as appropriate.

例えば、細孔を2個形成することは必ずしも必要ではな
く、例えば1個或いは3個以上でもよい。また例えば細
孔は、ガラス管の一方の端部を完全に気密封止した後、
他方の端部に形成するようにしてもよい。
For example, it is not necessarily necessary to form two pores; for example, one or three or more pores may be formed. For example, the pores can be made after completely hermetically sealing one end of the glass tube.
It may be formed at the other end.

そして2個以上の細孔をレーザー光線により塞ぐ場合に
おいては、上述の実施例のように1個づつ順に気密封止
してもよいし、或いは上述の実施例と同様のレーザー発
振器9及び光学系90を細孔に対応する数だけ設けて全
ての細孔を同時に気密封止するようにしてもよい。また
或いは、光学系を適宜変更して1個のレーザー発振器9
のレーザー光線を2以上に分割し得るよう構成し、これ
ら分割されたレーザー光線の各々を上記の如く小径ビー
ム状とし、これらの小径ビームをそれぞれ細孔の周囲ガ
ラスに当てて全ての細孔を同時に気密封止するようにし
てもよく、この場合にはレーザー発振器を1台用いれば
よいので極めて経済的である。
If two or more pores are to be sealed with a laser beam, they may be hermetically sealed one by one as in the above-mentioned embodiment, or the laser oscillator 9 and optical system 90 may be used as in the above-described embodiment. It is also possible to provide a number corresponding to the number of pores so that all the pores are hermetically sealed at the same time. Alternatively, one laser oscillator 9 can be created by appropriately changing the optical system.
The laser beam is divided into two or more parts, and each of the divided laser beams is made into a small diameter beam as described above, and each of these small diameter beams is applied to the glass surrounding the pores to simultaneously aerate all the pores. It may be sealed, and in this case, only one laser oscillator is required, which is extremely economical.

また、細孔を形成するための具体的手段としては、上記
の例のほか、例えば別個のガラス製細管を用意し、この
ガラス製細管をガラス管の端部内において当該ガラス管
の内外に連通ずるよう位置させた状態で、ガラス製細管
の内部を塞ぐことのないようにガラス管の端部を気密に
溶着し、これによりガラス製細管による細孔を設けるよ
うにしてもよい。
In addition to the above-mentioned examples, specific means for forming pores include, for example, preparing a separate glass tube and communicating this glass tube inside and outside the glass tube within the end of the glass tube. In such a position, the end portion of the glass tube may be airtightly welded so as not to block the inside of the glass tube, thereby creating a pore formed by the glass tube.

そして本発明が適用できる電球の具体的構造は特に限定
されず、例えば、放電灯または白熱電球のいずれであっ
てもよいし、またシングルエンドタイプまたはダブルエ
ンドタイプのいずれであってもよいし、また或いは高圧
電球または低圧電球のいずれであってもよい。そして本
発明が適用できる電球の用途も特に限定されず、露光用
光源、定着用熱源、プロジェクタ−用光源などとして用
いられる電球を本発明によって製造することができる。
The specific structure of the light bulb to which the present invention can be applied is not particularly limited; for example, it may be either a discharge lamp or an incandescent light bulb, and may be either a single-end type or a double-end type, Alternatively, it may be either a high-voltage bulb or a low-voltage bulb. The use of the light bulb to which the present invention can be applied is not particularly limited, and light bulbs used as light sources for exposure, heat sources for fixing, light sources for projectors, etc. can be manufactured according to the present invention.

第12図及び第13図は本発明の他の実施例を示す説明
図であって、この例の電球は例えばプロジェクタ−用と
して用いられるものである。図において、200はガラ
ス管、201はプラナ−型と称されるフィラメント組立
体、202は金属箔、203は細孔であり、この例にお
いては、金属箔202,202の両側にそれぞれ細孔2
03,203を形成し、さらに金属箔202.202間
にも細孔203を形成した構成であり、気密溶着部分2
04をその途中まで覆った状態で排気及び封入物質導入
用ヘッド300に気密に保持し、排気及び封入物質の導
入を行った後、細孔203、203 、203の周囲ガ
ラスをそれぞれ振動的に微小変位するレーザー光線によ
り加熱して当該細孔203.203,203を塞いで気
密封止し、以てプロジェクタ−用の電球を得る。
FIGS. 12 and 13 are explanatory diagrams showing another embodiment of the present invention, and the light bulb of this example is used, for example, for a projector. In the figure, 200 is a glass tube, 201 is a filament assembly called a planar type, 202 is a metal foil, and 203 is a pore.
03, 203, and a pore 203 is also formed between the metal foils 202 and 202, and the airtight welded portion 2
04 is airtightly held in the head 300 for evacuation and introduction of an encapsulated substance in a state where it is covered halfway, and after exhausting the air and introducing the encapsulated substance, the glass surrounding the pores 203, 203, and 203 is vibrated minutely. The pores 203, 203, 203 are closed and hermetically sealed by heating with a displacing laser beam, thereby obtaining a light bulb for a projector.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、給電部材をガラス
管の封止部用管部内に気密に溶着するときにはその一部
にガラス管の内外に連通ずる細孔を残し、この細孔を利
用して排気及び封入物質の導入を行うため、排気或いは
封入物質導入のための突出管を設けることなく排気及び
封入物質の導入を行うことができ、従って経済的に電球
を製造することができ、また従来突出管に起因する突出
部分があるために問題となっていた障害を除去すること
ができ、しかも細孔を塞ぐための加熱源として振動的に
微小変位するレーザー光線を用いるため、レーザー光線
が1個所に集中することがなく、従ってレーザー光線を
1個所に集中させて気密封止を行う場合に比して歪の発
生が少ない気密封止を達成することができ、この結果細
孔の気密封止部における早期クランクの発生を確実に防
止することができる。
As explained above, according to the present invention, when the power supply member is hermetically welded into the tube for the sealing part of the glass tube, a pore is left in a part thereof that communicates with the inside and outside of the glass tube, and this pore is utilized. Since the evacuation and the introduction of the encapsulated substance are carried out through the process, the evacuation and the introduction of the encapsulated substance can be carried out without providing a protruding pipe for evacuation or the introduction of the encapsulated substance, and therefore, the light bulb can be manufactured economically. In addition, it is possible to eliminate the problems that conventionally occurred due to the protruding parts caused by protruding tubes, and since a laser beam with a small vibrational displacement is used as a heating source to close the pores, the laser beam is The laser beam is not concentrated in one place, and therefore it is possible to achieve hermetic sealing with less distortion than when performing hermetic sealing by concentrating the laser beam in one place, and as a result, hermetic sealing of the pores It is possible to reliably prevent the occurrence of premature cranking in the parts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第6図は本発明の一実施例を示す説明図、第
7図は本発明の方法によって得られる電球の説明図、第
8図は本発明の他の実施例を示す説明図、第9図は本発
明によって得られる電球の他の例を示す説明図、第10
図はフィラメント組立体の一例を示す説明図、第11図
及び第12図は従来の電球の製造方法を示す説明図、第
13図は従来の° 方法によって得られる電球の一例を
示す説明用断面図である。 F・・・フィラメント   12・・・金属箔13・・
・外部リード棒   1・・・フィラメント組立体21
・・・突出管      21^・・・突出部分2・・
・筒状ガラス管   22・・・端部6・・・加熱器 
     80・・・ピンチャ−7・・・ガラス管  
   31・・・ガス導入管71A、 71B・・・封
止部用管部 8L82・・・ピンチャ−72・・・気密溶着部分73
・・・側部       74・・・細孔100・・・
排気及び封入物質導入用ヘッド101・・・ストッパー
   102・・・外枠103・・・角リング    
106・・・圧縮金具107・・・通気孔     9
・・・レーザー発振器90・・・光学系      9
1・・・平面反射鏡92・・・シャッター    93
・・・シャッター駆動機構94・・・集光用レンズ  
 95・・・駆動機構96・・・位置検出機構 200・・・ガラス管 201・・・フィラメント組立体 202・・・金属箔     203・・・細孔204
・・・気密溶着部分
FIGS. 1 to 6 are explanatory diagrams showing one embodiment of the present invention, FIG. 7 is an explanatory diagram of a light bulb obtained by the method of the present invention, and FIG. 8 is an explanatory diagram showing another embodiment of the present invention. , FIG. 9 is an explanatory diagram showing another example of the light bulb obtained by the present invention, and FIG.
The figure is an explanatory diagram showing an example of a filament assembly, Figures 11 and 12 are explanatory diagrams showing a conventional method of manufacturing a light bulb, and Figure 13 is an explanatory cross-section showing an example of a light bulb obtained by the conventional method. It is a diagram. F...Filament 12...Metal foil 13...
・External lead rod 1... filament assembly 21
...Protruding pipe 21^...Protruding part 2...
・Cylindrical glass tube 22... End 6... Heater
80...Pincher-7...Glass tube
31...Gas introduction pipe 71A, 71B...Pipe section for sealing part 8L82...Pincher 72...Airtight welded part 73
... Side part 74 ... Pore 100 ...
Head for evacuation and introduction of sealed substances 101...Stopper 102...Outer frame 103...Square ring
106... Compression fitting 107... Ventilation hole 9
...Laser oscillator 90...Optical system 9
1...Flat reflecting mirror 92...Shutter 93
...Shutter drive mechanism 94...Lens for condensing light
95... Drive mechanism 96... Position detection mechanism 200... Glass tube 201... Filament assembly 202... Metal foil 203... Pore 204
・・・Airtight welded part

Claims (1)

【特許請求の範囲】 1)発光部囲繞用管部及び封止部用管部を有するガラス
管を用い、このガラス管の封止部用管部内に給電部材を
その一部が当該封止部用管部から突出するよう位置させ
、前記ガラス管の封止部用管部を加熱押圧して、その一
部にガラス管の内外に連通する細孔が残るよう前記給電
部材を気密に溶着し、前記細孔を介してガラス管内の排
気及び封入物質の導入を行った後当該細孔の周囲ガラス
を振動的に微小変位するレーザー光線により加熱して当
該細孔を塞ぐ工程を含むことを特徴とする電球の製造方
法。 2)レーザー光線は、光学系によって集光された小径ビ
ーム状であることを特徴とする特許請求の範囲第1項記
載の電球の製造方法。 3)平面反射鏡を有する光学系を用い、この平面反射鏡
を振動的に変位させることにより、振動的に微小変位す
るレーザー光線を得ることを特徴とする特許請求の範囲
第1項記載の電球の製造方法。
[Scope of Claims] 1) A glass tube having a tube portion for surrounding the light emitting portion and a tube portion for the sealing portion is used, and a power supply member is placed in the tube portion for the sealing portion of the glass tube, and a part of the power supply member is connected to the sealing portion. The power supply member is positioned so as to protrude from the glass tube portion, and the power supply member is hermetically welded by heating and pressing the sealing tube portion of the glass tube so that a pore communicating with the inside and outside of the glass tube remains in a part thereof. , comprising the step of evacuating the glass tube and introducing the enclosed substance through the pore, and then heating the glass surrounding the pore with a laser beam that vibrably slightly displaces the pore to close the pore. A method of manufacturing light bulbs. 2) The method for manufacturing a light bulb according to claim 1, wherein the laser beam is in the form of a small diameter beam focused by an optical system. 3) The light bulb according to claim 1, characterized in that an optical system having a flat reflecting mirror is used, and by vibratingly displacing the flat reflecting mirror, a laser beam with a small vibrational displacement is obtained. Production method.
JP15593085A 1985-07-17 1985-07-17 Manufacture of lamp bulb Pending JPS6217943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15593085A JPS6217943A (en) 1985-07-17 1985-07-17 Manufacture of lamp bulb

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15593085A JPS6217943A (en) 1985-07-17 1985-07-17 Manufacture of lamp bulb

Publications (1)

Publication Number Publication Date
JPS6217943A true JPS6217943A (en) 1987-01-26

Family

ID=15616618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15593085A Pending JPS6217943A (en) 1985-07-17 1985-07-17 Manufacture of lamp bulb

Country Status (1)

Country Link
JP (1) JPS6217943A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092401A (en) * 2005-09-29 2007-04-12 Sanwa Shutter Corp Cover for door scope and door body using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037650A (en) * 1983-08-10 1985-02-27 ウシオ電機株式会社 Method of producing tubular bulb

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037650A (en) * 1983-08-10 1985-02-27 ウシオ電機株式会社 Method of producing tubular bulb

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092401A (en) * 2005-09-29 2007-04-12 Sanwa Shutter Corp Cover for door scope and door body using the same

Similar Documents

Publication Publication Date Title
KR100334290B1 (en) High-pressure discharge lamp and manufacturing method thereof
JPH04229942A (en) Discharge lamp with enclosed part and manufacture thereof
JP5214445B2 (en) Ceramic lamp with molybdenum-rhenium end cap, and system and method comprising the lamp
JPS643028B2 (en)
JPS6217943A (en) Manufacture of lamp bulb
US3636398A (en) Subminiature electric lamp having a composite envelope
US6679746B2 (en) Method for producing discharge lamp and discharge lamp
JPS6217944A (en) Manufacture of lamp bulb
JPS6231940A (en) Manufacture of electric bulb
US6729925B2 (en) Method for manufacturing discharge tube and discharge lamp
JP3927136B2 (en) Manufacturing method of discharge lamp
JPS6151744A (en) Method of producing tubular bulb
US6612892B1 (en) High intensity discharge lamps, arc tubes and methods of manufacture
JP4027252B2 (en) Manufacturing method of discharge lamp
JPS6217942A (en) Manufacture of lamp bulb
JPS6151745A (en) Method of producing tubular bulb
JPS6151746A (en) Method of producing tubular bulb
EP1493169A1 (en) High intensity discharge lamps, arc tubes and methods of manufacture
JP4272458B2 (en) Method of removing devitrification of arc tube, method of manufacturing arc tube, and discharge lamp
US20030111958A1 (en) Single ended discharge light source
JP3204015B2 (en) Tube manufacturing method
JP3330592B2 (en) Discharge lamp manufacturing method and discharge lamp
JPH09245737A (en) Lamp and rare gas discharge lamp and manufacture thereof
JPS62145644A (en) Manufacture of electric lamp
JPH03261066A (en) Single tubular high-pressure metallic vapor discharge lamp