JPS62178916A - Attachment lens for correcting paraxial chromatic aberration - Google Patents

Attachment lens for correcting paraxial chromatic aberration

Info

Publication number
JPS62178916A
JPS62178916A JP2178086A JP2178086A JPS62178916A JP S62178916 A JPS62178916 A JP S62178916A JP 2178086 A JP2178086 A JP 2178086A JP 2178086 A JP2178086 A JP 2178086A JP S62178916 A JPS62178916 A JP S62178916A
Authority
JP
Japan
Prior art keywords
lens
line
chromatic aberration
attachment
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2178086A
Other languages
Japanese (ja)
Inventor
Katsuhiro Otake
大竹 勝博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fuji Photo Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Optical Co Ltd filed Critical Fuji Photo Optical Co Ltd
Priority to JP2178086A priority Critical patent/JPS62178916A/en
Publication of JPS62178916A publication Critical patent/JPS62178916A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a residual paraxial chromatic aberration of this lens by installing it to a photographic lens, by containing at lest one piece of concave lens and convex lens, and forming an incident surface and an emitting surface roughly to a plane. CONSTITUTION:This attachment lens for correcting a paraxial chromatic aberration is attached before and behind an existing lens system, constituted of one piece each of concave lens and convex lens, consists of a cemented lens whose incident surface and emitting surface are roughly a plane, and satisfies conditions shown by equations (1)-(3). Also, it is formed by combining at least two pieces of concavo-convex lenses so that it has a refracting power against a wavelength before and after it and works as a lens. In this way, a residual chromatic aberration of a photographic lens is reduced, and a color shift on a photography can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は写真撮影用レンズに装着してこのレンズの残存
近軸色収差を軽減するようになした近軸色収差補正用ア
タッチメントレンズに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an attachment lens for paraxial chromatic aberration correction that is attached to a photographic lens to reduce residual paraxial chromatic aberration of the lens.

〔従来の技術〕[Conventional technology]

一般の写真撮影用レンズで適当な間隔の格子又は市松模
様等を傾けて撮影した場合に、フィルムに写った格子に
色ズレを生じることがある。
When photographing a lattice pattern or checkerboard pattern at an appropriate interval using a general photographic lens, color shift may occur in the lattice image captured on the film.

これはフィルムの特性上焦点の会った所と焦点の外れた
所とで濃度差を生じ、これにレンズ元軸附近の色収差(
光の波長により焦点位置が異なる)が加わり色のズレと
して写真上に現われる。
Due to the characteristics of the film, there is a difference in density between the in-focus area and the out-of-focus area, and in addition to this, chromatic aberration (
The focus position differs depending on the wavelength of the light), which appears on the photograph as a color shift.

これを解決する為には、レンズの光軸附近の色収差を少
なくした高性能レンズを設計するかあるいは従来レンズ
を用いて焦点を外して使用するかが考えられる。
In order to solve this problem, it is possible to design a high-performance lens that reduces chromatic aberration near the optical axis of the lens, or to use a conventional lens out of focus.

しかしながら、前者を採用すると高度の設計技術とレン
ズ構成枚数の増大あるいは高度の製造技術が要求され産
業上好ましくない。また後者を採用すると、性能上好ま
しくない。
However, adopting the former method requires advanced design technology, an increase in the number of lens components, or advanced manufacturing technology, which is industrially undesirable. Moreover, if the latter is adopted, it is not preferable in terms of performance.

〔問題点を解決するための手段〕[Means for solving problems]

したがって、本発明は、性能を落とすことなく、しかも
従来の一般写真撮影用レンズを用い。
Therefore, the present invention uses conventional general photography lenses without degrading performance.

上記従来の問題点を解決するために開発された近軸色収
差補正用アタッチメントレンズを提供することを目的と
する。
It is an object of the present invention to provide an attachment lens for paraxial chromatic aberration correction developed to solve the above conventional problems.

本発明のこの目的達成の手段は既存のレンズの基準波長
に対しては近似的に屈折力がなく、その前後の波長に対
しては屈折力を有しレンズとして作用するように少なく
とも2枚の凹凸レンズを組合わせたアタッチメントレン
ズでアシ、これによシ写真撮影用レンズの残存色収差を
少なくし、上記した写真上の色ズレを軽減することが出
来る。
The means for achieving this object of the present invention is such that at least two lenses have approximately no refractive power for the reference wavelength of existing lenses, but have refractive power for wavelengths before and after the reference wavelength, and act as a lens. An attachment lens that combines a concave and convex lens can reduce the residual chromatic aberration of the photographic lens, thereby reducing the above-mentioned color shift in photographs.

〔実施例〕〔Example〕

一般に収差補正されたレンズには必ず光軸附近の色収差
が残っており、大別して第1図(at、(blに示す様
な回合となる。普通の写真レンズでは第1図(blに示
すように2色で色消しにする事が多く、この時が色の巾
として見た場合厳も小さくできる。ここで第1図の縦軸
に波長、 t*軸に元軸上距離を表わし、縦軸の<g>
は青色光を代表する波長435.8 nmとし、<e>
は緑色光を代表する波長546.1nmとし、<e>は
赤色光を代表する波長656.3nmとする。
In general, lenses that have been corrected for aberrations always have residual chromatic aberration near the optical axis, which can be roughly divided into the aberrations shown in Figure 1 (at) and (bl). In many cases, two colors are used to achromatize the color, and in this case, the width of the color can be extremely small.Here, in Figure 1, the vertical axis represents the wavelength, the t* axis represents the distance on the original axis, and the vertical axis represents the wavelength. <g> of the axis
is the wavelength of 435.8 nm, which is representative of blue light, and <e>
is a wavelength of 546.1 nm representing green light, and <e> is a wavelength of 656.3 nm representing red light.

第2図は第1図(alに示す収差が残っている場合の本
発明実施例を示し、被写体側から入射面及び射出面が略
平面である凹凸の2枚構成の場合レンズからなる近軸色
収差補正用アタッチメントレンズA及び撮影レンズMか
らなり、以下の数値からなる。
Fig. 2 shows an embodiment of the present invention in which the aberration shown in Fig. 1 (al) remains; It consists of an attachment lens A for correcting chromatic aberration and a photographic lens M, and has the following numerical values.

実施例1 (第2図) 撮影レンズMの焦点距離fM=1.0Rd
   Na    Ng   Na1     ■  
   0.02  1.623  1.641  1.
6142 0.46657 0.05 1.623 1
.633 1.6173     ω     002 4 0.59436 0.05 1.51825 1.
52622 1.513855 −3.9390 φa=0.0   φg=−0,01715φc=o、
o0643但し、Rii曲率半径、dは元軸上間隔、N
oはe線(546,] nm )に対する屈折率、Ng
はg線(435,8nm)に対する屈折率、NcはC線
(656,3nm)に対する屈折耶をそれぞれ示し、ア
タッチメントレンズAのそれぞれの色に対する屈折力を
φg、φe、φcとする。
Example 1 (Figure 2) Focal length fM of photographing lens M = 1.0Rd
Na Ng Na1 ■
0.02 1.623 1.641 1.
6142 0.46657 0.05 1.623 1
.. 633 1.6173 ω 002 4 0.59436 0.05 1.51825 1.
52622 1.513855 -3.9390 φa=0.0 φg=-0,01715φc=o,
o0643 However, Rii radius of curvature, d is the spacing on the original axis, N
o is the refractive index for the e-line (546,] nm), Ng
is the refractive index for the G-line (435, 8 nm), Nc is the refractive index for the C-line (656, 3 nm), and the refractive powers of the attachment lens A for each color are φg, φe, and φc.

ここで、撮影レンズMのパックフォーカスをLMとし、
各色でのそれをjMg%1Me%ticとした場合、細
土色収差は1M1g −’tMm = −0,0149
:1Mc −IM* = 00085であるが、これに
アタッチメントレンズAを付けると、この時のバックフ
ォーカスをlrとし、各色でのそれをtag%the 
Here, the pack focus of the photographing lens M is set to LM,
If it is jMg%1Me%tic for each color, the Hosotchi chromatic aberration is 1M1g -'tMm = -0,0149
:1Mc - IM* = 00085, but if attachment lens A is attached to this, the back focus at this time is lr, and it is tag%the for each color.
.

Arcとした場合、lTg −ITo == 0.00
20 :lTc −Are = 0.0020となり収
差量が小さく出来る。
When Arc, lTg −ITo == 0.00
20:lTc-Are=0.0020, and the amount of aberration can be reduced.

このアタッチメントレンズへの条件は、アタッチメント
レンズへの各レンズの各色に対する屈折率をNg+、N
aI、  N01s Ngl、Nag 、 Nagとし
、各面における曲率半径をR1s J s ”mとし、
およびアタッチメントレンズ全体の各色に対する屈折力
をφg、φ−1φcとすると、(11Ne、 #No。
The conditions for this attachment lens are that the refractive index for each color of each lens to the attachment lens is Ng+, N
aI, N01s Ngl, Nag, Nag, and the radius of curvature on each surface is R1s J s ”m,
And if the refractive power for each color of the entire attachment lens is φg and φ-1φc, then (11Ne, #No.

(2)  Ng+ > Ng* (31Ncl < Ncl 条件(1)はアタッチメントレンズAの屈折力全出来る
だけ小さくし撮影レンズMへの影響(色収差以外の収差
)を少なくする為で、条件(2)、(3)はg&lとc
Mjに対するアタッチメントレンズAの屈折力を正負逆
にする為である。
(2) Ng+ > Ng* (31Ncl < Ncl Condition (1) is to reduce the total refractive power of attachment lens A as much as possible to reduce the influence on photographing lens M (aberrations other than chromatic aberration), and condition (2), (3) is g&l and c
This is to reverse the positive and negative refractive powers of the attachment lens A with respect to Mj.

これによシ、例えば細土色収差がe線に対してg線が負
にC線が正にある場合、R2を正にする事によシφg<
0およびφc>Oとなシ、負にあったgIt8!の細土
色収差を正方向へおよび正にあったC線の細土色収差を
負方向に補正することができる。
With this, for example, if the Hosotsu chromatic aberration is negative for the e-line and positive for the C-line, by making R2 positive, φg<
0 and φc>O, gIt8 was negative! It is possible to correct the C-line chromatic aberration in the positive direction and the C-line chromatic aberration in the negative direction.

この実施例の場合、細土色収差を零にする事は屈折率の
条件が狭くなりすぎ実用上難かしいので、第3図に示す
ように3枚構成のアタッチメントレンズにする方が望ま
しい。
In the case of this embodiment, it is practically difficult to reduce the chromatic aberration to zero because the refractive index conditions are too narrow, so it is preferable to use a three-element attachment lens as shown in FIG.

第3図は第2図の改良であって、被写体側から入射面及
び射出面が略平面である凹凸凹の3枚構成の接合レンズ
が近軸色収差補正用アタッチメントレンズとして用いら
れている以外は第2図と同様である。
Figure 3 is an improvement on Figure 2, except that from the subject side, a cemented lens consisting of three concave, convex, and convex lenses whose entrance and exit surfaces are approximately flat is used as an attachment lens for correcting paraxial chromatic aberration. It is similar to FIG.

Rd    Na    Ng   Ncl    (
X)   0.02 1.638 1.658 1.6
282 0.32B42 0.05 1.644 1.
653 1.6373 −1.2721 0.02 1
.643 1.653 1.6374   0:l  
 0.02 5 0.59436 0.051.518251.52
6221.513856 −3.9309 φe=o、0]905  φg=o、o 0393  
φc =0.0274但し、Rは曲率半径、dはyt軸
上間隔、Noはe線に対する屈折率、Ngt’1gTh
に対する屈折率、NcはC線に対する屈折 率をそれぞれ示し、アタッチメントレ ンズAのそれぞれの色に対する屈折力 をφgφeφcとする。
Rd Na Ng Ncl (
X) 0.02 1.638 1.658 1.6
282 0.32B42 0.05 1.644 1.
653 1.6373 -1.2721 0.02 1
.. 643 1.653 1.6374 0:l
0.02 5 0.59436 0.051.518251.52
6221.513856 -3.9309 φe=o, 0]905 φg=o, o 0393
φc = 0.0274, where R is the radius of curvature, d is the interval on the yt axis, No is the refractive index for the e-line, Ngt'1gTh
Nc represents the refractive index for C-line, and φgφeφc represents the refractive power of attachment lens A for each color.

ここで、このアタッチメントレンズAを付けた時の細土
色収差は、lTg −IT・=0.0、tTc−11e
 = O,Oとなり、収差量をほとんど完全に零にする
事が可能となる。
Here, the Hoso chromatic aberration when attaching this attachment lens A is lTg - IT・=0.0, tTc - 11e
= O, O, and it becomes possible to reduce the amount of aberration to almost completely zero.

このアタッチメントレンズAの条件は、レンズへの各レ
ンズの各色に対する屈折率をNg+、Nol  %  
Nc1%Ngls  Nag、  Nag、  Ngs
%Nel  sNc、とし、各面における曲率半径をR
1s RtR* s R4とし、およびアタッチメント
レンズ全体の屈折力をφg、φe、φcとすると、(1
1Ne1 = Net #No。
The conditions for this attachment lens A are that the refractive index for each color of each lens to the lens is Ng+, Nol %.
Nc1%Ngls Nag, Nag, Ngs
%Nel sNc, and the radius of curvature on each surface is R
1s RtR* s R4, and the refractive powers of the entire attachment lens are φg, φe, φc, (1
1Ne1 = Net #No.

(21Ngz≧Ng+ > Ngm (31Nc、≧NeB > NO。(21Ngz≧Ng+  Ngm (31Nc, ≧NeB>NO.

(41Rt > o、1、R,<  o、1(5)  
φc〉φe〉φg 条件(1)はアタッチメントレンズAの屈折力を出来る
だけ小さくし、撮影レンズMへの影響を出来るだけ少な
くする為で、条件(2)、(3)、(4)、(5)はア
タッチメントレンズの屈折力をai@に対して[8のそ
れを小さく、e線に対してciのそれを大きくし、これ
によって撮影レンズMの細土色収差のg線とC線の収差
量をeMのそれに近づけることが出来る。
(41Rt > o, 1, R, < o, 1 (5)
φc〉φe〉φg Condition (1) is to make the refractive power of the attachment lens A as small as possible and to minimize the influence on the photographing lens M. Conditions (2), (3), (4), ( 5) sets the refractive power of the attachment lens to ai@ by decreasing that of 8 and increasing that of ci to e-line, thereby reducing the g-line and C-line chromatic aberrations of the taking lens M. The amount can be brought close to that of eM.

第4図および第5図は撮影レンズMが普通の細土色収差
補正された即ち第1図(blの収差特性を有するレンズ
で、被写体側から入射面及び射出面が略平面である凹凸
臼の3枚構戊の接合レンズで近軸色収差補正用アタッチ
メントレンズが構成されている。
Figures 4 and 5 show that the photographing lens M is a normal chromatic aberration corrected lens, that is, a lens having the aberration characteristics of Figure 1 (bl), and is a concave-convex lens whose entrance and exit surfaces are approximately flat from the subject side. The paraxial chromatic aberration correction attachment lens is composed of a cemented lens consisting of three lenses.

ま次撮影レンズMとしては、第4図は凸凹の接合単レン
ズ、第5図は被写体側に凸面を向けた凸メニスカス、凸
メニスカス、凹メニスカスおよび結像面側に凸面を向け
た凹メニスカス。
As the secondary photographing lens M, Fig. 4 shows a concave and convex cemented single lens, and Fig. 5 shows a convex meniscus with a convex surface facing the object side, a convex meniscus, a concave meniscus, and a concave meniscus with a convex surface facing the imaging surface side.

凸メニスカスの5枚玉レンズよシ構成され、以下の数値
例からなる。
It is composed of a five-element lens with a convex meniscus, and has the following numerical examples.

Rd     No      Ng      Nc
l    ω     0.02  1.638  1
.658   1.6282 1.1370   0.
05  1.644  1.658   1.6373
 −0.63181 0.02  1.643  1.
653   1.6374    ω     0.0
2 5 0.65583  0.05 1.62286 1
.63312 1.617276 −0.40462 
0.02 1.62408 1.64202 1.61
5037 −11.253 φe=0.00686  φg=0.00791  φ
e=0.00792Rd       No     
Ng     Ncl     (X)     0.
02    1.638   1.658   1.6
282 0.79787  0.15    1.64
4   1.658   1.6373 −0.414
50 0.02    1.643   1.653 
  1.6374    (X)     0.02 5 0.40326  0.0593  1.7369
2 1.755136 1.729166 0.716
30  0.002137 0.33421  0.0
8897 1.74794 1.76499  1.7
39078 0.56853  0.018769 0
.45722  0.01973 1.79192 1
.82523  1.7759710 0.20424
  0.20066II  −0,170780,03
9651,677641,699821,666621
2−0,235090,00213 33−1,27920,075621,591431,
600991,5861914−0,29234 φe  =  0.00993  、 φg  =  
0.01206、φc=o、01]28但し%Rは曲率
半径、dは光軸上間隔、N・はe@に対する屈折率、N
gはg蝕に 対する屈折率、NcはC線に対する屈 折率をそれぞれ示し、アタッチメント レンズへのそれぞれの色に対する屈折 力をφg、φe1φcとする。
Rd No Ng Nc
l ω 0.02 1.638 1
.. 658 1.6282 1.1370 0.
05 1.644 1.658 1.6373
-0.63181 0.02 1.643 1.
653 1.6374 ω 0.0
2 5 0.65583 0.05 1.62286 1
.. 63312 1.617276 -0.40462
0.02 1.62408 1.64202 1.61
5037 -11.253 φe=0.00686 φg=0.00791 φ
e=0.00792Rd No.
Ng Ncl (X) 0.
02 1.638 1.658 1.6
282 0.79787 0.15 1.64
4 1.658 1.6373 -0.414
50 0.02 1.643 1.653
1.6374 (X) 0.02 5 0.40326 0.0593 1.7369
2 1.755136 1.729166 0.716
30 0.002137 0.33421 0.0
8897 1.74794 1.76499 1.7
39078 0.56853 0.018769 0
.. 45722 0.01973 1.79192 1
.. 82523 1.7759710 0.20424
0.20066II -0,170780,03
9651, 677641, 699821, 666621
2-0, 235090, 00213 33-1, 27920, 075621, 591431,
600991,5861914-0,29234 φe = 0.00993, φg =
0.01206, φc=o, 01]28 where %R is the radius of curvature, d is the distance on the optical axis, N is the refractive index for e@, N
g indicates the refractive index for the g-line, Nc indicates the refractive index for the C-line, and the refractive powers for the respective colors to the attachment lens are φg and φe1φc.

ここで、撮影レンズMのバックフォーカスをlxとし、
各色でのそれをtMg、 lie 、 ticとしfc
場合、LXg −IMe = 0.0031 (実施例
3)0.0021(実施例4 )、 IMe   1M
m ”0.0011(実施例3)、0.0014(実施
例4)であるが、こl]にアタッチメントレンズAを付
けるとlTg −Irmおよびtrc −treをいず
れも零とし、[?IN%e線、C線の各収差量を零とす
ることが出来る。
Here, let the back focus of the photographing lens M be lx,
Let it be tMg, lie, tic and fc for each color.
In the case, LXg −IMe = 0.0031 (Example 3) 0.0021 (Example 4), IMe 1M
m ”0.0011 (Example 3) and 0.0014 (Example 4), but when attachment lens A is attached to this item, both lTg -Irm and trc -tre become zero, and [?IN% It is possible to make each aberration amount of e-line and C-line zero to zero.

このアタッチメントレンズAの条件は、アタッチメント
レンズAの各レンズの各色に対する屈折率をNgl、N
 @H1N c 1 s  Ngt、N6 %Nag、
Ngs 、  Nag、Nag  とし、各面における
曲率半径をR,、R,%R,%R4とし、およびアタッ
チメントレンズ全体の各色に対する屈折力をφg1φe
、φcとすると、 (1)   Nel #Net”t  Nag(21N
g2≧ Ng+ >  Ngs(3)   Ne、≧ 
Nag )  Ncl+4)   g、>o、i  、
  R,< −0,1(5)   φg〉φe 、 φ
c〉φe条件(1)はアタッチメントレンズAの屈折力
を出来るだけ小さくし、メインレンズへの影響を出来る
だけ少なくする為で条件(2)、(3)、(4)はg線
とC線に対する屈折力を常に正とするための条件であり
、条件(5)はe線に対するg線とC線の屈折力を大き
くし、g?aとCIt+の収差’((6線に近づける為
の条件である。
The conditions for this attachment lens A are that the refractive index for each color of each lens of attachment lens A is Ngl, N
@H1N c 1 s Ngt, N6% Nag,
Ngs, Nag, Nag, the radius of curvature on each surface is R,, R, %R, %R4, and the refractive power for each color of the entire attachment lens is φg1φe
, φc, (1) Nel #Net”t Nag(21N
g2≧ Ng+ > Ngs(3) Ne,≧
Nag) Ncl+4) g, >o, i,
R, < −0, 1 (5) φg〉φe, φ
c〉φe Condition (1) is to minimize the refractive power of attachment lens A and minimize its influence on the main lens, and conditions (2), (3), and (4) are for g-line and C-line. Condition (5) is a condition for making the refractive power for the e-line always positive, and the condition (5) increases the refractive power for the g-line and the C-line with respect to the e-line. The aberration of a and CIt+' ((This is a condition for approaching the 6th line.

第6図は第5図の撮影レンズMに別のアタッチメントレ
ンズAを付けた場合の実施例で、被写体側から入射面及
び射出面が略平面である凸凹凸の3枚構成の接合レンズ
で近軸色収差補正用アタッチメントレンズAが構成され
ておシ、以下の数値例(アタッチメントレンズのみのデ
ータ)から麦る。
Fig. 6 shows an example in which another attachment lens A is attached to the photographing lens M shown in Fig. 5. From the subject side, a cemented lens consisting of three convex, concave, and convex lenses whose entrance and exit surfaces are approximately flat is used for close-up. Assuming that the attachment lens A for correcting axial chromatic aberration is configured, we will use the following numerical example (data for the attachment lens only).

Rd     Ne     Ng     Ncl 
    (X)     0.04 1.6627 1
.6740 1.65662 −2.5239 0.0
2 1.659  1.6740 1.6493 1.
5294  0.04 1.659  1.6796 
1.64884    ω φe=0.00153  、  φg=0.00366
  、φa=0.00288但し、Rは曲率半径、dは
光軸上間隔、Neはe線に対する屈折率、Ngはg線に 対する屈折率、NCはC線に対する屈 折率をそれぞれ示し、アタッチメント レンズAのそれぞれの色に対する屈折 力をφg、φe1φcとする。
Rd Ne Ng Ncl
(X) 0.04 1.6627 1
.. 6740 1.65662 -2.5239 0.0
2 1.659 1.6740 1.6493 1.
5294 0.04 1.659 1.6796
1.64884 ω φe=0.00153, φg=0.00366
, φa=0.00288, where R is the radius of curvature, d is the distance on the optical axis, Ne is the refractive index for the e-line, Ng is the refractive index for the g-line, and NC is the refractive index for the C-line. Let φg and φe1φc be the refractive powers for the respective colors.

ここで、このアタッチメントレンズAを付けると、上記
同様に細土色収差をほとんど零にすることができる。
Here, by attaching this attachment lens A, it is possible to reduce Hosochi chromatic aberration to almost zero, as described above.

このアタッチメントレンズへの条件は、アタッチメント
レンズ人の各レンズの各色に対する屈折率をNgl s
  Nel s  Ncl s  Ng、 s  Ng
t s NclsNg、、N6g、Nc、とし、各面に
おける曲率半径をR1s R* 、81%R4とし、お
よびアタッチメントレンズ全体の各色に対する屈折力を
φg1φ・、φcとすると、 (1)  N @ 1 #N @@ # N @ B(
21Ngm > Ngi≧Ng。
The conditions for this attachment lens are that the refractive index for each color of each lens of the attachment lens person is Ngl s
Nel s Ncl s Ng, s Ng
Assuming that t s NclsNg,, N6g, Nc, the radius of curvature on each surface is R1s R*, 81%R4, and the refractive power for each color of the entire attachment lens is φg1φ・, φc, (1) N @ 1 # N @ @ # N @ B (
21Ngm>Ngi≧Ng.

(3)  Ne、 > Nag≧NO。(3) Ne, > Nag≧NO.

(4)  R,< −0,1、R,>0.1(5)  
φg〉φe、φc〉φ6 条件(1)はアタッチメントレンズAの屈折力を出来る
だけ小さくし、撮影レンズの光軸付近の色収差以外の収
差への影豐を少なくする為で。
(4) R, < -0,1, R, >0.1 (5)
φg〉φe, φc〉φ6 Condition (1) is to make the refractive power of the attachment lens A as small as possible and to reduce the influence on aberrations other than chromatic aberration near the optical axis of the photographic lens.

条件(2)、(3)、(4)はg線とC線に対する屈折
力をe線の屈折力よりも常に大きくする為でめシ条件(
5)はg a b C線の収差を・線のそれに近づける
ための条件である。ここで、本発明アタッチメントレン
ズは、前後を逆にして使用しても全く同じ効果が得られ
ることは云うまでもない。
Conditions (2), (3), and (4) are ideal conditions (
5) is a condition for bringing the aberration of the g a b C line closer to that of the - line. Here, it goes without saying that the same effect can be obtained even if the attachment lens of the present invention is used with the front and back sides reversed.

さらに本笑施例では撮影レンズ前方に付加するアタッチ
メントレンズとして説明したが、後方に配置しても可能
である。
Furthermore, although this embodiment has been described as an attachment lens that is added to the front of the photographic lens, it is also possible to place it at the rear.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明アタッチメントレンズによれ
ば、従前の色補正された撮影レンズの残存軸上色収差を
ほぼ完全に取除くことができ、格子又は市松模様等を傾
けて撮影した場合にも、色ズレを生ずることがなく非常
に高性能な撮影レンズを構成することが出来る近軸色収
差補正用アタッチメントレンズが提供できる。
As explained above, according to the attachment lens of the present invention, residual longitudinal chromatic aberration of conventional color-corrected photographic lenses can be almost completely removed, and even when photographing a grid or checkered pattern at an angle, It is possible to provide an attachment lens for paraxial chromatic aberration correction that does not cause color shift and can constitute a very high-performance photographic lens.

さらに、アタッチメントレンズの他の収差や屈折力の影
響を極力少なくするように構成したため、他の性能を劣
化させることがない等従前にない新規なアタッチメント
レンズが提供できる。
Furthermore, since the attachment lens is configured to minimize the effects of other aberrations and refractive power, it is possible to provide a novel attachment lens that does not degrade other performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は細土色収差の各波長における元軸方向の結像位
置の例で(alは単レンズ等の色収差、価)は一般の写
真用撮影レンズで補正された色収差の例を示し、第2図
ないし第6図は本発明の各実施例を示す光学系をそれぞ
れ示す。 A・・・アタッチメントレンズ M・・・撮影レンズ
Figure 1 shows an example of the image formation position in the original axis direction at each wavelength of Hosochi chromatic aberration (al is the chromatic aberration of a single lens, etc.). Figure 1 shows an example of chromatic aberration corrected with a general photographic lens. 2 to 6 show optical systems showing respective embodiments of the present invention. A...Attachment lens M...Photographing lens

Claims (1)

【特許請求の範囲】 1)既存のレンズ系の前後に付加されるアタッチメント
レンズにおいて、少なくとも1個の凹レンズ及び凸レン
ズを含み入射面及び射出面が略平面である接合レンズか
らなり、前記レンズ系の他の収差に影響を与えることな
く近軸色収差を補正することを特徴とする近軸色収差補
正用アタッチメントレンズ。 2)既存のレンズ系の前後に付加され、1個の凹レンズ
及び凸レンズにより構成され入射面及び射出面が略平面
である接合レンズからなり、以下の条件を満足すること
を特徴とする近軸色収差補正用アタッチメントレンズ。 (1)Ne_1≒Ne_2 (2)Ng_2>Ng_2 (3)Nc_1<Nc_2 但し、Ne、Ng、Ncはそれぞれの波長、e線(54
6.1nm)、g線(435.8 nm)、c線(656.3nm)に対する 屈折率を示し、添字の数値は前面から のレンズ番号に対応する。 3)既存のレンズ系の前後に付加され、凹レンズ、凸レ
ンズおよび凹レンズより構成され入射面及び射出面が略
平面である接合レンズからなり、以下の条件を満足する
ことを特徴とする近軸色収差補正用アタッチメントレン
ズ。 (1)Ne_1≒Ne_2≒Ne_3 (2)Ng_2≧Ng_1>Ng_3 (3)Nc_2≧Nc_3>Nc_1 (4)R_2>0.1、R_3<−0.1 (5)φc>φe>φg 但し、Ne、Ng、Ncはそれぞれの波長、e線、g線
、c線に対する屈折率、Rは 各レンズ面の曲率半径およびφe、φg、 φcは上記それぞれの波長に対する屈 折力をそれぞれ示し、添字の数値は前 面からのレンズ番号に対応する。 4)既存のレンズ系の前後に付加され、凹レンズ、凸レ
ンズおよび凹レンズより構成され入射面及び射出面が略
平面である接合レンズからなり、以下の条件を満足する
ことを特徴とする近軸色収差補正用アタッチメントレン
ズ。 (1)Ne_1≒Ne_2≒Ne_3 (2)Ng≧Ng_1>Ng_3 (3)Nc_2≧Ne_3>Nc_1 (4)R_2>0.1、R_3<−0.1 (5)φg>φe、φc>φe 但し、Ne、Ng、Ncはそれぞれの波長、e線(54
6.1nm)、g線(435.8 nm)、c線(656.3nm)に対する 屈折率、Rは各レンズ面の曲率半径お よびφg、φe、φcは上記それぞれの 波長に対する屈折力をそれぞれ示し、 添字の数値は前面からのレンズ番号に 対応する。 5)既存のレンズ系の前後に装着され、凸レンズ、凹レ
ンズおよび凸レンズより構成され入射面及び射出面が平
面である接合レンズからなり、以下の条件を満足するこ
とを特徴とする近軸色収差補正用アタッチメントレンズ
。 (1)Ne_1≒Ne_2≒Ne_3 (2)Ng_3>Ng_1≧Ng_2 (3)Nc_1>Nc_3≧Nc_2 (4)R_2>0.1、R_3<−0.1 (5)φg>φe、φc>φe 但し、Ne、Ng、Ncはそれぞれの波長、e線(54
6.1nm)、g線(435.8 nm)、c線(656.3nm)に対する 屈折率、Rは各レンズ面の曲率半径お よびφg、φe、φcは上記それぞれの 波長に対する屈折力をそれぞれ示し、 添字の数値は前面からのレンズ番号に 対応する。
[Scope of Claims] 1) An attachment lens added before and after an existing lens system, which is a cemented lens including at least one concave lens and a convex lens and whose entrance surface and exit surface are substantially flat; An attachment lens for paraxial chromatic aberration correction, which is characterized by correcting paraxial chromatic aberration without affecting other aberrations. 2) A paraxial chromatic aberration that is added to the front and rear of an existing lens system and consists of a cemented lens composed of one concave lens and one convex lens, and whose entrance and exit surfaces are substantially flat, and which satisfies the following conditions: Attachment lens for correction. (1) Ne_1≒Ne_2 (2) Ng_2>Ng_2 (3) Nc_1<Nc_2 However, Ne, Ng, and Nc are the respective wavelengths, e-line (54
6.1 nm), G-line (435.8 nm), and C-line (656.3 nm), and the numerical value of the subscript corresponds to the lens number from the front. 3) Paraxial chromatic aberration correction, which is added to the front and rear of an existing lens system, consists of a cemented lens consisting of a concave lens, a convex lens, and a concave lens, and whose entrance and exit surfaces are substantially flat, and satisfies the following conditions: Attachment lens for. (1) Ne_1≒Ne_2≒Ne_3 (2) Ng_2≧Ng_1>Ng_3 (3) Nc_2≧Nc_3>Nc_1 (4) R_2>0.1, R_3<-0.1 (5) φc>φe>φg However, Ne , Ng, and Nc are the refractive indexes for the respective wavelengths, e-line, g-line, and c-line, R is the radius of curvature of each lens surface, and φe, φg, and φc are the refractive powers for each of the above wavelengths, and the numerical value of the subscript is corresponds to the lens number from the front. 4) Paraxial chromatic aberration correction that is added to the front and rear of an existing lens system, consists of a cemented lens consisting of a concave lens, a convex lens, and a concave lens, and whose entrance and exit surfaces are substantially flat, and satisfies the following conditions: Attachment lens for. (1) Ne_1≒Ne_2≒Ne_3 (2) Ng≧Ng_1>Ng_3 (3) Nc_2≧Ne_3>Nc_1 (4) R_2>0.1, R_3<-0.1 (5) φg>φe, φc>φe However, , Ne, Ng, Nc are the respective wavelengths, e-line (54
6.1 nm), G line (435.8 nm), and C line (656.3 nm), R is the radius of curvature of each lens surface, and φg, φe, and φc are the refractive powers for each of the above wavelengths, respectively. , the subscript number corresponds to the lens number from the front. 5) For paraxial chromatic aberration correction, which is attached to the front and rear of an existing lens system, consists of a cemented lens consisting of a convex lens, a concave lens, and a convex lens, and whose entrance surface and exit surface are flat, and which satisfies the following conditions. Attachment lens. (1) Ne_1≒Ne_2≒Ne_3 (2) Ng_3>Ng_1≧Ng_2 (3) Nc_1>Nc_3≧Nc_2 (4) R_2>0.1, R_3<-0.1 (5) φg>φe, φc>φe However, , Ne, Ng, Nc are the respective wavelengths, e-line (54
6.1 nm), G line (435.8 nm), and C line (656.3 nm), R is the radius of curvature of each lens surface, and φg, φe, and φc are the refractive powers for each of the above wavelengths, respectively. , the subscript number corresponds to the lens number from the front.
JP2178086A 1986-02-03 1986-02-03 Attachment lens for correcting paraxial chromatic aberration Pending JPS62178916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2178086A JPS62178916A (en) 1986-02-03 1986-02-03 Attachment lens for correcting paraxial chromatic aberration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2178086A JPS62178916A (en) 1986-02-03 1986-02-03 Attachment lens for correcting paraxial chromatic aberration

Publications (1)

Publication Number Publication Date
JPS62178916A true JPS62178916A (en) 1987-08-06

Family

ID=12064573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2178086A Pending JPS62178916A (en) 1986-02-03 1986-02-03 Attachment lens for correcting paraxial chromatic aberration

Country Status (1)

Country Link
JP (1) JPS62178916A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264637A (en) * 2000-03-21 2001-09-26 Nikon Corp Spherical aberration compensating optical system and device, and optical observation device equipped with compensating optical system or device
WO2013129221A1 (en) * 2012-02-29 2013-09-06 株式会社ニコン Corrective optical system, attachment, waterproof lens port, waterproof camera case, optical system, and method for manufacturing corrective optical system
FR3054678A1 (en) * 2016-07-27 2018-02-02 Office National D'etudes Et De Recherches Aerospatiales (Onera) KIT FOR IMAGEUR DEVICE
CN109856775A (en) * 2018-12-27 2019-06-07 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN110328445A (en) * 2019-07-12 2019-10-15 卡门哈斯激光科技(苏州)有限公司 A kind of near-infrared monochromatie objective

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831513B2 (en) * 1978-09-26 1983-07-06 ハンス・エ−テイケル Hose clamp insertion material
JPS5969711A (en) * 1982-09-20 1984-04-20 ロツキ−ド・ミサイルズ・アンド・スペ−ス・コンパニ−・インコ−ポレ−テツド Optical system and selection of optical material for design-ing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831513B2 (en) * 1978-09-26 1983-07-06 ハンス・エ−テイケル Hose clamp insertion material
JPS5969711A (en) * 1982-09-20 1984-04-20 ロツキ−ド・ミサイルズ・アンド・スペ−ス・コンパニ−・インコ−ポレ−テツド Optical system and selection of optical material for design-ing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264637A (en) * 2000-03-21 2001-09-26 Nikon Corp Spherical aberration compensating optical system and device, and optical observation device equipped with compensating optical system or device
WO2013129221A1 (en) * 2012-02-29 2013-09-06 株式会社ニコン Corrective optical system, attachment, waterproof lens port, waterproof camera case, optical system, and method for manufacturing corrective optical system
JPWO2013129221A1 (en) * 2012-02-29 2015-07-30 株式会社ニコン Correction optical system, attachment, waterproof lens port, waterproof camera case, optical system, and method of manufacturing correction optical system
FR3054678A1 (en) * 2016-07-27 2018-02-02 Office National D'etudes Et De Recherches Aerospatiales (Onera) KIT FOR IMAGEUR DEVICE
CN109856775A (en) * 2018-12-27 2019-06-07 瑞声科技(新加坡)有限公司 Camera optical camera lens
CN110328445A (en) * 2019-07-12 2019-10-15 卡门哈斯激光科技(苏州)有限公司 A kind of near-infrared monochromatie objective
CN110328445B (en) * 2019-07-12 2020-12-22 卡门哈斯激光科技(苏州)有限公司 Near-infrared monochromatic objective lens

Similar Documents

Publication Publication Date Title
JPH0356609B2 (en)
US8670193B2 (en) Optical system and optical apparatus using the same
JPH0217084B2 (en)
JPH07119888B2 (en) Re-imaging optics
JPS63247713A (en) Photographing lens for which floating is utilized
JPS6185921A (en) Apparatus for observing and photographing eyebottom
JP2000241614A (en) Diffraction optical element and photographing optical system having the same
JPS60188918A (en) Closeup combined lens system
JP2582144B2 (en) Shooting lens
JPS62178916A (en) Attachment lens for correcting paraxial chromatic aberration
US5822132A (en) Soft focus lens
JPS63205626A (en) Relay lens system
JPH06337348A (en) Gauss type lens
JP3069437B2 (en) Fixed focal length lens
JPH09133859A (en) Photographic lens
JPH0119125B2 (en)
JPH073503B2 (en) Wide-angle lens with long back focus
JPS61188512A (en) Photographing lens of long back focus
JPH01307712A (en) Photographic lens
JPH02100009A (en) Zoom lens variable in variable power range
JPH0412454B2 (en)
JPS6317421A (en) Fisheye lens
JPH0436714A (en) Retrofocus type photographic lens
JPH0296107A (en) Wide angle lens of long back focus
JPS62124515A (en) Photography system with soft focusing function