JPS62178910A - Connecting joint for multicore optical fiber cable - Google Patents

Connecting joint for multicore optical fiber cable

Info

Publication number
JPS62178910A
JPS62178910A JP2010786A JP2010786A JPS62178910A JP S62178910 A JPS62178910 A JP S62178910A JP 2010786 A JP2010786 A JP 2010786A JP 2010786 A JP2010786 A JP 2010786A JP S62178910 A JPS62178910 A JP S62178910A
Authority
JP
Japan
Prior art keywords
optical fiber
joint
fixed cylinder
tension member
inside fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010786A
Other languages
Japanese (ja)
Inventor
Hiromi Shimokawa
下川 広実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010786A priority Critical patent/JPS62178910A/en
Publication of JPS62178910A publication Critical patent/JPS62178910A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)

Abstract

PURPOSE:To reduce a welding joint to the same degree as the outside diameter as a connecting cable, and also to make it excellent in its workability and joint reliability, by containing an uncovered line of an optical fiber, which has been generated by following a welding work, in a grooved spacer which can be attached and detached to and from the outside periphery of an inside fixed cylinder of a split type. CONSTITUTION:Multicore optical fiber cables 22 which have been opposed to each other are melted and coupled by peeling off covering of a protective sheath and laying bare an optical fiber 3 in order to execute fusion welding of the optical fiber 3, and by a discharge arc heat of an arc welding machine in a state that the respective end faces have been butted. Subsequently, a tension member 4 is joined to each other by an expansion joint 18, and an inside fixed cylinder 10 of a split type to which a grooved spacer 19 has been installed is inserted between the optical fiber 3 and the tension member 4. Each optical fiber 3 is selected in advance in accordance with its deflection quantity, and inserted into a containing groove of the prescribed grooved spacer 19 which has been installed to he inside fixed cylinder 10. When all the optical fibers 3 have been inserted completely into the groove of the inside fixed cylinder 10, its periphery is protected by winding a glass tape 8, and in the end, a protective sleeve 9 having a heat contractibility is installed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は光フアイバーケーブルの融着接続部において好
適な接続継手に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a connection joint suitable for a fusion splice section of an optical fiber cable.

〔発明の背景〕[Background of the invention]

従来の多芯光ファイバーケーブルの融着接続部について
、第5図、第6図、第7図で以下に説明する。まず第5
図は、多芯光ファイバーケーブルの構成を示したもので
ある。多芯光ファイバーケーブルは、複数の鋼線を編み
合おせた機械的強度を担うテンションメンバ4とこれを
取り巻くスペーサ2、スペーサ2の外周部に設けた複数
の溝に収納、保護された光ファイバー3およびこれら全
体を保護するシース1等で構成されている。
A conventional fusion splicer of a multicore optical fiber cable will be explained below with reference to FIGS. 5, 6, and 7. First of all, the fifth
The figure shows the configuration of a multicore optical fiber cable. A multicore optical fiber cable consists of a tension member 4 that provides mechanical strength by interweaving a plurality of steel wires, a spacer 2 surrounding this, and an optical fiber 3 that is housed and protected in a plurality of grooves provided on the outer periphery of the spacer 2. and a sheath 1 etc. that protects the whole.

スペーサ2の外周部に設けられた個々の溝は、らせん状
の構造を有し、光ファイバー3も各々の溝の中にらせん
状に配置されている。
The individual grooves provided on the outer periphery of the spacer 2 have a helical structure, and the optical fibers 3 are also arranged helically within each groove.

第6図は多芯光ファイバーケーブル同志を融着接続する
様子を示したものである。光ファイバー3を融接するに
は保護シース1の皮覆を剥ぎ光ファイバー3をむき出す
必要がある。むき出された光ファイバー3は、それぞれ
の端面を突き合わせた状態でアーク溶接機6の放電アー
ク熱で溶融結合される。また、テンションメンバ4は、
融接でも機械的な方法でも接合可能だが、一般には、カ
シメによる機械的な接合が有利である。光ファイバー3
を融着するには、光ファイバー3の端面の突合わ状態が
不完全であると溶接性を阻害するばかりでなく、光フア
イバー3自身の屈折率等の性能低下にもつながることか
ら、光ファイバー3を保護シース1から十分むき出して
から端面合せの後、アーク放電の熱で融着するのが一般
的な方法となっている。この結果、一旦むき出された光
ファイバー3を元に戻すことは不可能であり、接合完了
後はスペースをとらない様、極力、小曲率で□ 曲げて
収納する必要がある。しかし、小曲率で曲′jげた場合
、光の屈折に伴う損失が大きくなるため、特定の曲率半
径を確保しなければならない。そこで曲率半径を大きく
して巻いた場合、大きい円筒の外周に沿わせることにな
り継手部の口径が大きくなっている。
FIG. 6 shows how multi-core optical fiber cables are fusion spliced. In order to fusion weld the optical fiber 3, it is necessary to peel off the protective sheath 1 and expose the optical fiber 3. The exposed optical fibers 3 are fused and bonded by the discharge arc heat of the arc welding machine 6 with their respective end faces butted against each other. In addition, the tension member 4 is
Although it is possible to join by fusion welding or mechanical methods, mechanical joining by caulking is generally advantageous. optical fiber 3
In order to fuse the optical fibers 3 to A common method is to fully expose the protective sheath 1, match the end faces, and then fuse them using the heat of arc discharge. As a result, once the optical fiber 3 has been exposed, it is impossible to restore it to its original state, and after completion of the bonding, it is necessary to bend it with as little curvature as possible and store it in order to save space. However, if it is bent with a small curvature, the loss due to the refraction of light increases, so a specific radius of curvature must be ensured. Therefore, if the radius of curvature is increased and the wire is wound, the diameter of the joint portion will be increased because it will be wound along the outer periphery of a large cylinder.

一方、テンションメンバ4のむき出し長さは、光ファイ
バー3のむき出し長さより短い。これは光ファイバー3
がらせん状に巻かれているのに対し、テンションメンバ
4は直線に伸びているからである。つまり、テンション
メンバ4については継手形状の上からは問題ない。重要
なことは溶接後の光ファイバー3のたわみを極力小さく
し、継手性能を向上させることであるが、テンションメ
ンバ4を短くしても光ファイバー3のたわみ量を軽減す
ることにはならない。
On the other hand, the exposed length of the tension member 4 is shorter than the exposed length of the optical fiber 3. This is optical fiber 3
This is because the tension member 4 is wound in a spiral, whereas the tension member 4 extends in a straight line. In other words, there is no problem with the tension member 4 in terms of the shape of the joint. What is important is to minimize the deflection of the optical fiber 3 after welding and improve joint performance, but even if the tension member 4 is shortened, the amount of deflection of the optical fiber 3 will not be reduced.

第7図は、多芯光ファイバーケーブル同志を1着接続し
たのち、ガラス繊維入りのプラスチックチューブでモー
ルド補強した例である。継手部の構造が複雑かつ被接続
ケーブルの外径より大巾に大きくなっている。これは先
に述べたように溶着を完了した光ファイバー3が大きく
たわんだ為、極度の曲げを生じない範囲で内部固定筒に
ツ割)10の表面をらせん状にはわせながら、光ファイ
バー3のむき出し線を吸収させ、その上からガラステー
プ8を巻いてさらに最外周部を保護スリーブ9でカバー
している。本設のケーブルと接続継手の固定はケーブル
クランプ11と保護金具12および内部固定筒10を介
して行われる。端部においては防水処理の為、防水テー
プ13及び自己融着テープ15で完全シールされる。ま
た、熱収縮スリーブ14及び16で接続継手と被接続ケ
ーブルを強固に一体化している。
FIG. 7 shows an example in which multicore optical fiber cables are connected together and then reinforced by molding with a plastic tube containing glass fiber. The structure of the joint is complex and the width is much larger than the outer diameter of the cable to be connected. This is because, as mentioned earlier, the optical fiber 3 that has been welded has been bent greatly, so the optical fiber 3 is exposed while making the surface of the split (split) 10 spirally on the internal fixed tube within a range that does not cause extreme bending. The wire is absorbed, a glass tape 8 is wrapped over the wire, and the outermost portion is further covered with a protective sleeve 9. The installed cable and connection joint are fixed via a cable clamp 11, a protective metal fitting 12, and an internal fixing tube 10. The ends are completely sealed with waterproof tape 13 and self-fusing tape 15 for waterproofing. Furthermore, the heat-shrinkable sleeves 14 and 16 firmly integrate the connecting joint and the cable to be connected.

以上のような部品から成る従来の接続継手部は約20φ
の多芯光ファイバーケーブルの接続に於いても継手長さ
が約1m、最外径が約130φという被接続ケーブルの
大きさに比べて、非常に大きな継手形状とならざるをえ
ないばかりか作業性が悪く継手の信頼性等も懸念される
The conventional connection joint made of the above parts is approximately 20φ.
When connecting multi-core optical fiber cables, the length of the joint is about 1m and the outermost diameter is about 130φ, which is not only a very large joint shape compared to the size of the cable to be connected, but also difficult to work with. The reliability of the joint is also a concern.

また、従来の接続継手構造では、ケーブル布設場所によ
っては突起物となり作業性や通路性の阻害、強いては高
密度実装も不能となる。こうした背景から多芯光ファイ
バーケーブル融着接続部を被接続ケーブルの外径値みに
縮小し、信頼性が高くなおかつ作業性に優れた接続継手
の開発が望まれていた。
In addition, in the conventional connection joint structure, protrusions may occur depending on the location where the cable is laid, impeding workability and passage, and even making high-density mounting impossible. Against this background, there has been a desire to develop a connection joint that reduces the fusion splicing part of a multicore optical fiber cable to the outer diameter of the cable to be connected, and is highly reliable and easy to work with.

〔発明の目的〕[Purpose of the invention]

本発明の目的は多芯光ファイバーケーブルの融着接合部
を被接続ケーブル外径値みに縮小しなおかつ作業性、継
手信頼性に優れた多芯光ファイバーケーブル接続継手及
び接続方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a multi-core optical fiber cable connection joint and connection method that reduces the fusion splicing portion of a multi-core optical fiber cable to the outer diameter of the cable to be connected and has excellent workability and joint reliability. .

〔発明の概要〕[Summary of the invention]

本発明は従来の多芯光ファイバーケーブルの接続部が被
接続ケーブルの直径と較べて異常に大きいことと、また
、接続部の長さが約1mと異常に長い構造をしたいるこ
とから、接続部を被接続ケーブルの外径値みに小さくし
、なおかつ、接続部の長さを極力、縮小する手段として
、伸縮継手及び多芯光ファイバーケーブルの保護に使わ
れるスペーサに着目し、融着作業に伴って発生した光フ
ァイバーのむき、出し線は分割型の内部固定筒外周に着
脱可能な溝付スペーサに収納し、一方、伸縮可能な強度
メンバーで、継手長さを調節することによって、前述の
問題点を解決した。
The present invention solves the problem that the connecting part of a conventional multi-core optical fiber cable is abnormally large compared to the diameter of the cable to be connected, and that the connecting part has an abnormally long structure of about 1 m. As a means of reducing the length of the connected cable to the outer diameter of the connected cable and reducing the length of the connection part as much as possible, we focused on spacers used to protect expansion joints and multi-core optical fiber cables, and developed The stripped optical fibers and wires generated during the process are housed in a removable grooved spacer on the outer periphery of the split-type internally fixed tube, while the length of the joint is adjusted using an expandable strength member, thereby solving the aforementioned problem. solved.

従来のガラス繊維入りプラスチックチューブでモールド
補強するケーブル接続部の構造は、第7図に示すように
、むき出された光ファイバー3を被接続ケーブルの外径
よりも大きな内部固定筒10の外周にはわせることによ
って固定化をはかつていた。本発明は、被接続ケーブル
の外径値の接続部を得るため伸縮機能を持った強度メン
バーの利用と、事前に光ファイバーのたわみ量に合わせ
てこれを吸収できる直線溝あるいは蛇行溝を有した着脱
式スペーサを数種類、準備して利用することによって接
続作業の標準化がはかれるため作業性と継手信頼性に優
れた方法である。
As shown in FIG. 7, the structure of a conventional cable connection section reinforced by molding with a glass fiber-filled plastic tube is such that the exposed optical fiber 3 is attached to the outer periphery of an internal fixing tube 10 that is larger than the outer diameter of the cable to be connected. By forcing the government to do so, they were able to become entrenched. The present invention utilizes a strength member with an expandable and contracting function to obtain a connection part with the outer diameter value of the cable to be connected, and a detachable member having a linear groove or a meandering groove that can absorb the deflection of the optical fiber in advance. By preparing and using several types of spacers, the connection work can be standardized, so this method has excellent workability and joint reliability.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図、第2図、第3図、第
4図で説明する。第1図は本発明の全体の概略を示して
いる。第2図は機械的強度を担うテンションメンバ4を
接続する伸縮継手18の概略を示している。第3図は溝
付スペーサの説明図、第4図は着脱式の溝付スペーサと
分割型の内部固定筒。
An embodiment of the present invention will be described below with reference to FIGS. 1, 2, 3, and 4. FIG. 1 shows an overall outline of the invention. FIG. 2 schematically shows an expansion joint 18 that connects the tension member 4 that provides mechanical strength. Fig. 3 is an explanatory diagram of a grooved spacer, and Fig. 4 shows a removable grooved spacer and a split-type internal fixed cylinder.

まず、第1図において、本発明である多芯光ファイバー
ケーブル接続継手は、テンションメンバー4とこれを結
合する伸縮継手18の接続体からなる機械的強度を担う
部分と、光ファイバー3を収納する溝付スペーサ19と
内部分固定筒10の部分及びこれら全体を保護する熱収
縮性チューブで成る保護スリーブ9の3つの大きな部分
から構成される。
First, in FIG. 1, the multi-core optical fiber cable connection joint of the present invention has a part that provides mechanical strength consisting of a tension member 4 and a connection body of an expansion joint 18 that connects the tension member 4, and a grooved part that houses the optical fiber 3. It is composed of three large parts: the spacer 19, the inner fixing tube 10, and the protective sleeve 9 made of a heat-shrinkable tube that protects the entirety.

次に本発明である多芯光ファイバーケーブル接続継手が
装着されるまでを手順を追って説明する。
Next, the steps until the multi-core optical fiber cable connection joint of the present invention is installed will be explained step by step.

まず、互いに向かい合わせた多芯光ファイバーケーブル
22は光ファイバー3の融接の為に保護シース1の皮覆
を剥ぎ光ファイバー3をむき出す。
First, the protective sheath 1 of the multi-core optical fiber cables 22 facing each other is peeled off to expose the optical fiber 3 for fusion welding of the optical fiber 3.

むき出された光ファイバー3はそれぞれの端面を突き合
わせた状態でアーク溶接機6の放電アーク熱で溶融結合
される。次にテンションメンバ4は伸縮継手18で瓦い
に接合される。第2図でテンションメンバ4と伸縮継手
18゛について説明する。
The exposed optical fibers 3 are fused and bonded by the discharge arc heat of the arc welding machine 6 with their respective end faces butted together. The tension member 4 is then joined to the shingle with an expansion joint 18. The tension member 4 and expansion joint 18' will be explained with reference to FIG.

伸縮継手18はテンションメンバ4と圧着器(図参照な
し)等によりかしめられるジヨイント24と、これを保
持する外筒23から構成され、それぞれネジ山を介して
左右に回転移動する。この為、テンションメンバ4の両
端で長さの調節を可能としておく。テンションメンバ4
間の距離が定まったらジヨイント24をかしめる。
The expansion joint 18 is composed of a tension member 4, a joint 24 that is crimped by a crimping device (not shown), and an outer cylinder 23 that holds the joint, and each rotatably moves left and right via threads. For this reason, the length can be adjusted at both ends of the tension member 4. tension member 4
Once the distance between them is determined, caulk the joint 24.

光ファイバー3の融接及びテンションメンバ4のかしめ
が終了したら、溝付スペーサ19を装着した分割型の内
部固定筒10を光ファイバーjとテンションメンバ4間
に挿入する。各々の光ファイバー3はそのたわみ量に応
じてあらかじめ選定し、内部固定筒10に装着した所定
の溝付スペーサ19の収納溝に挿入する。光ファイバー
3が全て内部固定筒19の溝に挿入し終えたらその周囲
をガラステープ8を巻き保護する。ガラステープ8を巻
くことによって溝付スペーサ19の溝に納った光ファイ
バーは完全に固定される。最後に熱′収縮性のチューブ
で成る保護スリーブ9を装着して作業を終了する。以上
の説明では、テンションメンバ4と光ファイバー3の接
続後の長さで誤差が小さい範囲では、作業は容易に進行
する。これは第3図に示したケース(1)に相当する。
After the fusion welding of the optical fiber 3 and the caulking of the tension member 4 are completed, a split internal fixing tube 10 equipped with a grooved spacer 19 is inserted between the optical fiber j and the tension member 4. Each optical fiber 3 is selected in advance according to its amount of deflection, and inserted into a storage groove of a predetermined grooved spacer 19 attached to the internal fixed cylinder 10. After all the optical fibers 3 have been inserted into the grooves of the internal fixing cylinder 19, a glass tape 8 is wrapped around them to protect them. By wrapping the glass tape 8, the optical fibers accommodated in the grooves of the grooved spacer 19 are completely fixed. Finally, a protective sleeve 9 made of a heat-shrinkable tube is attached to complete the work. In the above explanation, the work progresses easily within a range where the error in the length of the tension member 4 and the optical fiber 3 after connection is small. This corresponds to case (1) shown in FIG.

しかし、実際の光ファイバー3の融接に於いては、どう
しても接続長さに誤差を生じ易いことが懸念される。そ
こで本発明は伸縮継手18で長さ調整したが、それでも
光ファイバーのたわみが大きい場合を考慮している。つ
まり、第3図のケース(2)及び(3)では伸縮継手1
8で調整可能な接続部の長さをLとした時、溶接した光
ファイバーが極端に長くなった場合の処理方法を表わし
ており、このような場合、蛇行溝付スペーサとし所要の
溝内に収納すれば良いことを示している。
However, in actual fusion welding of the optical fibers 3, there is a concern that errors are likely to occur in the connection length. Therefore, in the present invention, although the length is adjusted using the expansion joint 18, the case is taken into consideration where the optical fiber still has a large degree of deflection. In other words, in cases (2) and (3) in Figure 3, expansion joint 1
When the length of the adjustable connection part in 8 is L, this represents the treatment method when the welded optical fiber becomes extremely long.In such a case, use a meandering grooved spacer and store it in the required groove. It shows what you should do.

第4図は本発明の着脱式の分割型溝付スペーサ19が内
部固定筒10に装着された状態を示している。内部固定
筒10に装着された溝付スペーサ19は種々の長さを持
った、つまり光ファイバー3の融接作業に伴って生じる
継手長さに対するたわみ量を想定してこれらを吸収可能
な蛇行溝付スペーサ27.28.29等を事前に準備し
ておくと接続誤差の大きいものから小さいものまでを有
効に吸収できることになる。
FIG. 4 shows a state in which the removable split type grooved spacer 19 of the present invention is attached to the internal fixed cylinder 10. As shown in FIG. The grooved spacer 19 attached to the internal fixed cylinder 10 has a meandering groove that can absorb the amount of deflection to the joint length that occurs during fusion welding of the optical fiber 3. If spacers 27, 28, 29, etc. are prepared in advance, connection errors ranging from large to small can be effectively absorbed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来、多芯光ファイバーケーブルの融
着接続部においてみられた被接続ケーブル外径よりも大
きな継手構造は廃止可能となりケーブル布設作業性や通
路性スペース確保及び多芯光ファイバーケーブルの継手
性能が向上するなどの効果がある。
According to the present invention, it is possible to eliminate the joint structure that is larger than the outer diameter of the cable to be connected, which has conventionally been seen in the fusion splicing part of multi-core optical fiber cables, improving cable installation workability, securing passage space, and improving the efficiency of multi-core optical fiber cables. This has the effect of improving joint performance.

【図面の簡単な説明】[Brief explanation of drawings]

第・1図は本発明の多芯光ファイバーケーブル接続継手
の構成図、第2図は本発明の伸縮継手の断面図、第3図
は光フアイバー接続部のたわみの例を示す説明図、第4
図は本発明の内部固定筒に着脱可能な分割型の溝付スペ
ーサの説明図、第5図は多芯光ファイバーケーブルの構
造図、第6図は多芯光ファイバーケーブルの接続作業概
略図、第7図は従来の多芯光ファイバーケーブルの接続
継手の構成図である。 1・・・保護シース、2・・・スペーサ、3・・・光フ
ァイバー、7・・・光フアイバー継手部、8・・・ガラ
ステープ、9・・・保護スリーブ、10・・・内部固定
筒、11・・・ケーブルクランプ、12・・・保護金具
、13・・・防水テープ。
1 is a configuration diagram of a multi-core optical fiber cable connection joint of the present invention, FIG. 2 is a sectional view of an expansion joint of the present invention, FIG. 3 is an explanatory diagram showing an example of deflection of an optical fiber connection part, and FIG.
The figures are an explanatory diagram of a split-type grooved spacer that can be attached to and detached from the internal fixed tube of the present invention, Figure 5 is a structural diagram of a multi-core optical fiber cable, Figure 6 is a schematic diagram of the connection operation of a multi-core optical fiber cable, and Figure 7 The figure is a configuration diagram of a conventional multi-core optical fiber cable connection joint. DESCRIPTION OF SYMBOLS 1... Protective sheath, 2... Spacer, 3... Optical fiber, 7... Optical fiber joint part, 8... Glass tape, 9... Protective sleeve, 10... Internal fixed cylinder, 11... Cable clamp, 12... Protective metal fittings, 13... Waterproof tape.

Claims (1)

【特許請求の範囲】[Claims] 1、機械的な強度を担うテンションメンバとこれを取囲
むスペーサ及びスペーサに設けた溝に収納された光ファ
イバーとこれら全体を覆うシースから成る多芯光ファイ
バーケーブルの融着接続部において、内部固定筒とその
外周に着脱可能な分割型の溝付スペーサを用いることを
特徴とする接続継手。
1. At the fusion splicing part of a multi-core optical fiber cable, which consists of a tension member responsible for mechanical strength, a spacer surrounding it, an optical fiber housed in a groove provided in the spacer, and a sheath that covers all of these, an internal fixed cylinder and A connection joint characterized by using a removable split-type grooved spacer on its outer periphery.
JP2010786A 1986-02-03 1986-02-03 Connecting joint for multicore optical fiber cable Pending JPS62178910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010786A JPS62178910A (en) 1986-02-03 1986-02-03 Connecting joint for multicore optical fiber cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010786A JPS62178910A (en) 1986-02-03 1986-02-03 Connecting joint for multicore optical fiber cable

Publications (1)

Publication Number Publication Date
JPS62178910A true JPS62178910A (en) 1987-08-06

Family

ID=12017890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010786A Pending JPS62178910A (en) 1986-02-03 1986-02-03 Connecting joint for multicore optical fiber cable

Country Status (1)

Country Link
JP (1) JPS62178910A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010136670A (en) * 2008-12-11 2010-06-24 Metawater Co Ltd Methane fermentation vessel
CN111965774A (en) * 2020-08-25 2020-11-20 宏安集团有限公司 Low-temperature-resistant special optical cable and production process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010136670A (en) * 2008-12-11 2010-06-24 Metawater Co Ltd Methane fermentation vessel
CN111965774A (en) * 2020-08-25 2020-11-20 宏安集团有限公司 Low-temperature-resistant special optical cable and production process

Similar Documents

Publication Publication Date Title
NO164141B (en) PROCEDURE AND APPARATUS FOR COMPOUNDING THE OUTER END OF TWO OPTICAL FIBER CABLES FOR UNDERWATER USE.
US4580874A (en) Optical fiber cable repair and joining technique and kit for performing the same
US5241611A (en) Cable joint
US4585304A (en) Technique for repairing and joining small diameter optical fiber cables
US4494822A (en) Overhead electric and optical transmission systems
JPS5824109A (en) Optical fiber
JPH0451803B2 (en)
US4657343A (en) Optical fiber cable and method of jointing two cable elements
JP3083170B2 (en) Optical cable connection joint and method of manufacturing the joint
JPS62178910A (en) Connecting joint for multicore optical fiber cable
JP3867273B2 (en) Optical fiber retainer
JP2017068220A (en) Connection structure and connection method of metal tube covered optical fiber cable
CA2443876C (en) Flexible factory joint for metallic tubes which enclose loosely inside them optical fibers and its method of construction
JP2670382B2 (en) Metal tube coated optical fiber connection part and connection method thereof
GB2274175A (en) Submarine optical cable joint
US20050141832A1 (en) Armouring joint, an armoured cable joint and a method for jointing armouring of two armoured cables
EP1291694A2 (en) Joining of metallic tubes which enclose optical fibres
EP1059549A1 (en) A submarine casing for a submarine optical cable
JPS6217764Y2 (en)
JPH1152163A (en) Optical fiber connection part reinforcing method and reinforcing member
JPS635308A (en) Optical cable connected section
JPS60217314A (en) Optical fiber branching part
JPH07218752A (en) Production of electric power and optical fiber compound cable and optical fiber cable connection part used for the same
JPH04104106A (en) Reinforcing method for connection part of coated optical fiber sheathed with metallic pipe
JP2005037800A (en) Optical cable connection part, long-sized optical cable formed thereby, manufacturing method of optical cable connection part and electric power/light combined optical cable