JPS62178909A - Multicore optical fiber for constant polarized wave - Google Patents

Multicore optical fiber for constant polarized wave

Info

Publication number
JPS62178909A
JPS62178909A JP61020269A JP2026986A JPS62178909A JP S62178909 A JPS62178909 A JP S62178909A JP 61020269 A JP61020269 A JP 61020269A JP 2026986 A JP2026986 A JP 2026986A JP S62178909 A JPS62178909 A JP S62178909A
Authority
JP
Japan
Prior art keywords
core
optical fiber
cores
intermediate layer
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61020269A
Other languages
Japanese (ja)
Inventor
Akira Nishimura
西村 陽
Tooru Miyougadani
徹 茗荷谷
Nobumasa Nirasawa
韮澤 信昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61020269A priority Critical patent/JPS62178909A/en
Publication of JPS62178909A publication Critical patent/JPS62178909A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01217Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of polarisation-maintaining optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01222Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of multiple core optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/02External structure or shape details
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres
    • C03B2203/31Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres by use of stress-imparting rods, e.g. by insertion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/34Plural core other than bundles, e.g. double core

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To decrease the number of intermediate layers, and to make a diameter of a clad thin by providing >=two cores in the clad, and also, providing the intermediate layer for making each waveguide generate a double refraction, in the vicinity of a core, and holding the intermediate layer in common by >=two cores. CONSTITUTION:Stress providing layers 3 which are provided by placing a core 1 between them and also provide a stress for generating a double refraction to the core 1 are provided in the vicinity of the respective cores 1 in a clad 2. Among these stress providing layers 3, that of the center is held in common by its right and left cores 1, and comparing with a conventional one in which two pieces each of stress providing layers 3 are provided against one core 1, the diameter is made thin by a portion which has omitted one stress providing layer 3. In this way, a multicore optical fiber for constant polarized wave whose diameter has been made thin by omitting partially an intermediate layer can be obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はクラッド中に2以上のコアを有するマルチコア
光ファイバのうち、各コアが複屈折による定偏波特性を
有するマルチコア定量波光ファイバに関する。
Detailed Description of the Invention <Industrial Application Field> The present invention relates to a multi-core quantitative wave optical fiber in which each core has constant polarization characteristics due to birefringence among multi-core optical fibers having two or more cores in the cladding. .

〈従来の技術と問題点〉 近年、通信情11[の増大傾向の対策やセンサへの応用
としてコヒーレント光伝送方式の開発が盛んであり、こ
のコヒーレント光伝送方式の伝達媒体として定偏波光フ
ァイバに対する要求が高まっている。定偏波光ファイバ
を得る手段としては、クラッド中にコアに応力を加える
応力付与層を設け、導波路に複屈折を生じさせて定偏波
特性を与えるものが知られている。また、上記応力付与
層の代りに空洞をクラッド内に設け、これによって定偏
波特性を与えるものも知られている(「サイドトンネル
型光ファイバの提案と解析」信学技報Vo182 No
、1000QE82−38(1982)参照)。
<Conventional technology and problems> In recent years, development of coherent optical transmission systems has been active as a countermeasure against the increasing tendency of communication information11 and for application to sensors. Demand is increasing. As a means for obtaining a constant polarization optical fiber, a method is known in which a stress applying layer that applies stress to the core is provided in the cladding to cause birefringence in the waveguide to provide constant polarization characteristics. It is also known that a cavity is provided in the cladding instead of the stress applying layer, thereby providing constant polarization characteristics ("Proposal and Analysis of Side Tunnel Optical Fiber" IEICE Technical Report Vol. 182 No.
, 1000QE82-38 (1982)).

一方、近年の通信網の拡大に伴って通信端末が増加し、
その間をつなぐ光ファイバの数も増加していることから
、1つのケーブル内に多数の光ファイバを収容してケー
ブル内光ファイバの高密度化を図る必要がある。このよ
うなケーブル内光ファイバの高密度化を図る手段として
、1つのクラッド中に複数のコアを有するマルチコア光
ファイバを用いて光フアイバ自体の高密度化を図ること
が有効である。すなわら、例えば、径が8μmのコアを
クラッド中に1つ有するシングルコア光ファイバはクラ
ツド径が125μm程度となるが、同径のコアをクラッ
ド中に2つ有するマルチコア光ファイバとすればクラツ
ド径が150μm程度で済み、シングルコア光ファイバ
を2本用いるよりはるかにスペース上有利である。
On the other hand, with the expansion of communication networks in recent years, the number of communication terminals has increased.
Since the number of optical fibers connecting them is increasing, it is necessary to accommodate a large number of optical fibers in one cable to increase the density of optical fibers in the cable. As a means for increasing the density of optical fibers in such a cable, it is effective to increase the density of the optical fiber itself by using a multi-core optical fiber having a plurality of cores in one cladding. For example, a single-core optical fiber that has one core with a diameter of 8 μm in its cladding has a cladding diameter of about 125 μm, but a multi-core optical fiber that has two cores with the same diameter in its cladding has a cladding diameter of about 125 μm. The diameter only needs to be about 150 μm, which is much more advantageous in terms of space than using two single-core optical fibers.

しかしながら、上記のようにマルチコア化して光ファイ
バの高密度化を図る手段も、前述した応力付与層や空洞
といった中間層を有した定偏波光ファイバに適用しても
それほどの効果を得ることができなかった。すなわち、
中間層の径がコアの径に較べて大きいことから、コアと
それに付随する中間層とを復数組クラッド中に収容して
もそれほどの細径化が得られなかった。
However, the above-mentioned means of increasing the density of optical fibers by making them multi-core cannot be as effective even when applied to polarization-controlled optical fibers having intermediate layers such as stress-applying layers and cavities as described above. There wasn't. That is,
Since the diameter of the intermediate layer is larger than the diameter of the core, even if the core and its accompanying intermediate layer were housed in several pairs of claddings, the diameter could not be reduced to that extent.

本発明は上記従来の事情に鑑みなされたもので、細径の
マルチコア定偏波光ファイバを提供することを目的とす
る。
The present invention was made in view of the above-mentioned conventional circumstances, and an object of the present invention is to provide a small-diameter multi-core polarization constant optical fiber.

〈問題点を解決するための手段〉 本発明のマルチコア定偏波光ファイバは、クラッド中に
2以上のコアを設けると共に各導波路に複屈折を生じさ
せる中間層を該コアの近傍に設け、該中間層を2以上の
コアにて共有させたことを特徴とし、中間層を共有する
ことによって必要とされる中間層の数を減らし、これに
よってクラツド径の■1径化を達成する。
<Means for Solving the Problems> The multi-core polarization constant optical fiber of the present invention has two or more cores in the cladding, and an intermediate layer that causes birefringence in each waveguide in the vicinity of the core. It is characterized in that the intermediate layer is shared by two or more cores, and by sharing the intermediate layer, the number of required intermediate layers is reduced, thereby achieving a reduction in the clad diameter to 1.

〈実施例〉 本発明の実施例を図面を参照して説明する。<Example> Embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例に係るマルチコア定偏波光フ
ァイバを表す断面図である。図中の1はそれぞれコア、
2はクラッド、3はそれぞれコア1の近傍に該コア1を
挟んで配設されると共に該コア1に複屈折を生じさせる
応力を付与する応力付与層(中間層)である。これら応
力付与層3のうちの中央のものはその左右のコア1によ
り共有されており、1つのコア1に対して2つづつ応力
付与層3を設ける従来のものに較べて1つの応力付与層
3を省略した分細径化が図られている。そして、クラッ
ド2の長径は170μm1短径は80um、コア1の径
は8μm、コア1とクラッド2との比屈折率差Δn=0
.29%、応力付与層3の径は35μm、コア1と応力
付与層3との距離は7μmであり、応力付与層3の屈折
率はクラッド2の屈折率に等しい。また、組成は、コア
1がゲルマニウムを添加したシリカガラス、クラッド2
が純シリカガラス、応力付与層3がボロン及びゲルマニ
ウムを添加したシリカガラスである。
FIG. 1 is a sectional view showing a multi-core polarization constant optical fiber according to an embodiment of the present invention. 1 in the figure is the core,
2 is a cladding, and 3 is a stress applying layer (intermediate layer) which is disposed near the core 1 with the core 1 in between and applies stress to the core 1 to cause birefringence. The center one of these stress applying layers 3 is shared by the cores 1 on the left and right sides, and compared to the conventional structure in which two stress applying layers 3 are provided for each core 1, only one stress applying layer is provided. 3 is omitted to reduce the diameter. The major axis of the cladding 2 is 170 μm, the minor axis is 80 μm, the diameter of the core 1 is 8 μm, and the relative refractive index difference Δn between the core 1 and the cladding 2 is 0.
.. 29%, the diameter of the stress applying layer 3 is 35 μm, the distance between the core 1 and the stress applying layer 3 is 7 μm, and the refractive index of the stress applying layer 3 is equal to the refractive index of the cladding 2. In addition, the composition is that core 1 is silica glass doped with germanium, cladding 2 is
is pure silica glass, and the stress applying layer 3 is silica glass doped with boron and germanium.

上記構成によると、カットオフ波長が1.18μm及び
1.19μm、λ=1.3μmでの損失が0.86ci
a/Km及び0.92dB/Km、消光比がI Kmで
30dB及び28de、両コア1のクロストークが1 
Kmで42doである2心定偏波光フアイバが得られた
According to the above configuration, the loss at cutoff wavelengths of 1.18 μm and 1.19 μm and λ=1.3 μm is 0.86 ci.
a/Km and 0.92 dB/Km, extinction ratio is 30 dB and 28 de at I Km, crosstalk between both cores 1 is 1
A dicore constant polarization optical fiber having Km of 42 do was obtained.

第2図は本発明の他の一実施例に係るマルチコア定偏波
光ファイバを表す断面図である。本実施例は、3つのコ
ア1をクラッド2中に設け、これらコア1の近傍に断面
長円状の応力付与層3を2つ設けたものである。従って
、本実施例によれば、コア1を両側から挟んで応力を加
えている応力付与層3は2つであり、1つのコア1に2
つづつ応力付与層を設ける従来のものに較べて光フアイ
バ全体としての細径化が図られている。そして、クラッ
ド2の径は175μm、コア1の径は8μm。
FIG. 2 is a sectional view showing a multi-core polarization constant optical fiber according to another embodiment of the present invention. In this embodiment, three cores 1 are provided in a cladding 2, and two stress applying layers 3 each having an oval cross section are provided in the vicinity of these cores 1. Therefore, according to this embodiment, there are two stress applying layers 3 that sandwich the core 1 from both sides and apply stress, and one core 1 has two stress applying layers 3.
The optical fiber as a whole has a smaller diameter than the conventional optical fiber in which stress applying layers are provided one after another. The diameter of the cladding 2 is 175 μm, and the diameter of the core 1 is 8 μm.

コア1とクラッド2との比屈折率差Δn=0.30%、
応力付与層3の長径は118μm、短径は40μm、コ
ア1間の距離は28μm、コア1と応力付与層3との距
離は8μmであり、コア1゜クラッド2及び応力付与層
3の屈折率及び組成は上記実施例と同様である。
Relative refractive index difference Δn between core 1 and cladding 2 = 0.30%,
The long axis of the stress applying layer 3 is 118 μm, the short axis is 40 μm, the distance between the cores 1 is 28 μm, the distance between the core 1 and the stress applying layer 3 is 8 μm, and the refractive index of the core 1° cladding 2 and stress applying layer 3 is And the composition is the same as in the above example.

上記構成によると、カットオフ波長が1.18μm、1
.18μm及び1.21μm。
According to the above configuration, the cutoff wavelength is 1.18 μm, 1
.. 18 μm and 1.21 μm.

λ−1,3μmでの損失が0.85c+e/KIn。The loss at λ-1.3 μm is 0.85c+e/KIn.

0.90c+B/に/n及び0.88dB/Kmである
3心定偏波光フ?イバが得られた。
Three-core constant polarization light beam with 0.90c+B/n and 0.88dB/Km? Iba was obtained.

第3図は本発明の他の一実施例に係るマルチコア定偏波
光ファイバを表す断面図である。本実施例は、2つのコ
ア1にて応力付与層3を共有させることは上記実施例と
同様であるが、これら2つのコア1の偏波方向を揃えて
設定すると共にクラッド2の外面に識別用の平面2aを
設けたものである。
FIG. 3 is a sectional view showing a multi-core polarization constant optical fiber according to another embodiment of the present invention. This embodiment is similar to the above embodiment in that the stress applying layer 3 is shared by two cores 1, but the polarization directions of these two cores 1 are set to be the same, and identification is made on the outer surface of the cladding 2. A flat surface 2a for use is provided.

上記構成によれば、2つの光ファイバを接続する場合、
互いの平面2aを揃えるだけで各コア1の偏波方向を一
致させることができる。尚、この効果は第1図に示した
ようにクラッド2の形状を断面長円状とすることによっ
ても得られ、また、クラッド2の外面に識別用の色彩を
施ずこと等によってもjqられる。
According to the above configuration, when connecting two optical fibers,
The polarization directions of the cores 1 can be matched by simply aligning the planes 2a. Note that this effect can also be obtained by making the shape of the clad 2 elliptical in cross section as shown in FIG. 1, and can also be achieved by not applying a distinguishing color to the outer surface of the clad 2. .

上記各実施例は応力付与層を中間層として備えた光ファ
イバを示したが、中間層を空洞として上記と同様にコア
1に定偏波特性を与えるようにした光ファイバにおいて
も中間層(空洞部)の一部省略による細径化が図られる
Each of the above embodiments has shown an optical fiber having a stress imparting layer as an intermediate layer, but an optical fiber in which the intermediate layer is hollow to give constant polarization characteristics to the core 1 in the same manner as above may also be used as an intermediate layer ( The diameter can be reduced by omitting part of the hollow part.

〈発明の効果〉 本発明によれば、中間層を一部省略して細径化されたマ
ルチコア定偏波光ファイバを1昇ることかできる。
<Effects of the Invention> According to the present invention, it is possible to create a multi-core polarization constant optical fiber whose diameter is reduced by omitting a part of the intermediate layer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係るマルチコア定偏波光フ
ァイバの断面図、第2図は本発明の他の一実施例に係る
マルチコア定偏波光ファイバの断面図、第3図は本発明
の他の一実施例に係るマルチコア定偏波光ファイバの断
面図である。 図面中、 1はコア、 2はクラッド、 3は応力付与層(中間層)である。 特許出願人    住友電気工業株式会社代理人 弁理
士    光石 土部(他1名)第1図 第2図
FIG. 1 is a cross-sectional view of a multi-core polarization constant optical fiber according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of a multi-core polarization constant optical fiber according to another embodiment of the present invention, and FIG. 3 is a cross-sectional view of a multi-core polarization constant optical fiber according to another embodiment of the present invention. FIG. 3 is a cross-sectional view of a multi-core polarization constant optical fiber according to another example. In the drawings, 1 is a core, 2 is a cladding, and 3 is a stress applying layer (intermediate layer). Patent applicant Sumitomo Electric Industries Co., Ltd. Agent Patent attorney Mitsuishi Dobe (and 1 other person) Figure 1 Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)クラッド中に2以上のコアを設けると共に各導波
路に複屈折を生じさせる中間層を該コアの近傍に設け、
該中間層を2以上のコアにて共有させたことを特徴とす
るマルチコア定偏波光ファイバ。
(1) Two or more cores are provided in the cladding, and an intermediate layer that causes birefringence in each waveguide is provided in the vicinity of the core,
A multi-core polarization constant optical fiber characterized in that the intermediate layer is shared by two or more cores.
(2)中間層はコアに応力を加える応力付与層である特
許請求の範囲第1項記載のマルチコア定偏波光ファイバ
(2) The multi-core polarization constant optical fiber according to claim 1, wherein the intermediate layer is a stress applying layer that applies stress to the core.
(3)中間層は空洞である特許請求の範囲第1項記載の
マルチコア定偏波光ファイバ。
(3) The multi-core polarization constant optical fiber according to claim 1, wherein the intermediate layer is hollow.
(4)全てのコアの偏波方向を揃えると共にクラッドの
外面に該コアの偏波方向に対応した識別面を設けた特許
請求の範囲第1項乃至第3項のいずれか1項に記載のマ
ルチコア定偏波光ファイバ。
(4) The method according to any one of claims 1 to 3, wherein the polarization directions of all the cores are aligned and an identification surface corresponding to the polarization direction of the cores is provided on the outer surface of the cladding. Multi-core polarization constant optical fiber.
JP61020269A 1986-02-03 1986-02-03 Multicore optical fiber for constant polarized wave Pending JPS62178909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61020269A JPS62178909A (en) 1986-02-03 1986-02-03 Multicore optical fiber for constant polarized wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61020269A JPS62178909A (en) 1986-02-03 1986-02-03 Multicore optical fiber for constant polarized wave

Publications (1)

Publication Number Publication Date
JPS62178909A true JPS62178909A (en) 1987-08-06

Family

ID=12022468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61020269A Pending JPS62178909A (en) 1986-02-03 1986-02-03 Multicore optical fiber for constant polarized wave

Country Status (1)

Country Link
JP (1) JPS62178909A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009138120A1 (en) * 2008-05-14 2009-11-19 Abb Research Ltd High voltage measurement device using poled fibers
WO2010073822A1 (en) * 2008-12-25 2010-07-01 古河電気工業株式会社 Multicore optical fiber
JP2015068892A (en) * 2013-09-27 2015-04-13 株式会社中原光電子研究所 Optical connection component
US9897751B2 (en) 2015-07-02 2018-02-20 Fujikura Ltd. Multicore polarization-maintaining fiber
US20230072462A1 (en) * 2021-09-09 2023-03-09 Cisco Technology, Inc. Radiation-induced birefringence in polarization-maintaining fiber

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009138120A1 (en) * 2008-05-14 2009-11-19 Abb Research Ltd High voltage measurement device using poled fibers
US8441249B2 (en) 2008-05-14 2013-05-14 Abb Research Ltd High voltage measurement device using poled fibers
WO2010073822A1 (en) * 2008-12-25 2010-07-01 古河電気工業株式会社 Multicore optical fiber
JP2010152163A (en) * 2008-12-25 2010-07-08 Furukawa Electric Co Ltd:The Multicore optical fiber
US8457462B2 (en) 2008-12-25 2013-06-04 Furukawa Electric Co., Ltd. Multi-core optical fiber
JP2015068892A (en) * 2013-09-27 2015-04-13 株式会社中原光電子研究所 Optical connection component
US9897751B2 (en) 2015-07-02 2018-02-20 Fujikura Ltd. Multicore polarization-maintaining fiber
US20230072462A1 (en) * 2021-09-09 2023-03-09 Cisco Technology, Inc. Radiation-induced birefringence in polarization-maintaining fiber
US11675123B2 (en) * 2021-09-09 2023-06-13 Cisco Technology, Inc. Radiation-induced birefringence in polarization-maintaining fiber

Similar Documents

Publication Publication Date Title
JP2996602B2 (en) Optical branching coupler for constant polarization optical fiber
US4753497A (en) Directional coupler for coupling single-polarization optical fibers
CA2329238C (en) Multiple-core optical fibers and associated coupling methods
JPH01237507A (en) Absolute single polarizing optical fiber
JPS62178909A (en) Multicore optical fiber for constant polarized wave
US11333828B2 (en) Optical connection component
JPS59198419A (en) Production of fiber-shaped directional coupler
US6959131B2 (en) Achromatic fiber-optic power splitter and related methods
JPS6230602B2 (en)
JP2828276B2 (en) Manufacturing method of polarization maintaining optical fiber coupler
JP3295053B2 (en) 4-core ferrule for constant polarization optical fiber
Sato et al. In-line optical isolators integrated into a fiber array without alignment
JP3009746B2 (en) Optical fiber coupler and manufacturing method thereof
GB2199423A (en) Fibre optic transfer devices
JP3011140B2 (en) Fiber type optical isolator and method of manufacturing the same
JP2524400B2 (en) Polarization-maintaining optical fiber coupler
JPH0213281B2 (en)
JP2925253B2 (en) Optical fiber coupler and manufacturing method thereof
JP2980248B2 (en) Optical fiber coupler
JPS60113214A (en) Fiber type optical switch
Basak et al. A New Hole-walled Multi-core Fiber for Space Division Multiplexing for Improved Performance
JPH03287113A (en) Optical isolator
Probst et al. Inverse-designed, normal incidence grating couplers for multi-core fiber I/O
JPS6247607A (en) Optical fiber type polarizer
Schlangen et al. Grating assisted optical waveguide couplers for Mode Division Multiplexing