JPS62178810A - Combustion cylinder - Google Patents

Combustion cylinder

Info

Publication number
JPS62178810A
JPS62178810A JP1949686A JP1949686A JPS62178810A JP S62178810 A JPS62178810 A JP S62178810A JP 1949686 A JP1949686 A JP 1949686A JP 1949686 A JP1949686 A JP 1949686A JP S62178810 A JPS62178810 A JP S62178810A
Authority
JP
Japan
Prior art keywords
tube
far infrared
far
combustion
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1949686A
Other languages
Japanese (ja)
Inventor
Ichiro Tsukada
一郎 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Home Technology Corp
Original Assignee
Toshiba Home Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Home Technology Corp filed Critical Toshiba Home Technology Corp
Priority to JP1949686A priority Critical patent/JPS62178810A/en
Publication of JPS62178810A publication Critical patent/JPS62178810A/en
Pending legal-status Critical Current

Links

Landscapes

  • Wick-Type Burners And Burners With Porous Materials (AREA)

Abstract

PURPOSE:To enable uniform radiation of far infrared rays in the horizontal direction around a glass cylinder, by a method wherein far infrared layers are formed at each stage around the glass cylinder raging from a lower stage to the upper part thereof, a ratio of a total area occupied by far infrared layers to the peripheral surface of the glass cylinder at each stage is gradually decreased from a lower part to an upper part. CONSTITUTION:A glass cylinder 13 is equally divided into a lower stage region Ea, a middle stage region Eb, and an upper stage region Ec, and the same number of far infrared layers 20 is formed to each of the regions Ea, Eb, and Ec. Areas of the far infrared layers 20 at the regions Ea, Eb, and Ec are Sa, Sb, and Sc, respectively, and a relation between the areas is set to Sa>Sb>Sc. In this constitution, by offsetting between the temperature difference of the glass cylinder and a difference between the total area of the far infrared layers and that of the peripheral surfaces at each of the regions Ea, Eb, and Ec, a radiation amount of far infrared rays from each of the far infrared layers 20 is about uniformized. Thereby, the portion above the waist of a person, seating in front of a combustion cylinder 3 for warming himself thereby, is uniformly warmed to provide an ideal state in that the person warms himself thereby.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は石油ストーブやガスストーブなどの燃焼装置
に使用する燃焼筒に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a combustion tube used in combustion devices such as kerosene stoves and gas stoves.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

例えば石油ストーブの燃焼装置は、灯芯で灯油を吸い上
げ、それをその上端から気化させ、その気化ガスを燃焼
筒を介して燃焼させるものである。
For example, a combustion device for a kerosene stove sucks up kerosene with a wick, vaporizes it from its upper end, and burns the vaporized gas through a combustion tube.

燃焼筒は同心的に重合して配置する内炎筒および外炎筒
を備え、さらに外炎筒の外周がガラス筒で覆われている
。そして灯芯の上端をその内外両炎筒間の下端部に臨ま
せ、この状態で灯芯の上端に点火をして燃焼を開始させ
る。この燃焼の開始に応じて、内炎筒および外炎筒の周
面に穿設された多数の通気孔からその相互間に燃焼用空
気が流入して燃焼が徐々に拡大し、定常燃焼に移行して
安定する。
The combustion tube includes an inner flame tube and an outer flame tube arranged concentrically overlapping each other, and the outer periphery of the outer flame tube is covered with a glass tube. Then, the upper end of the wick faces the lower end between the inner and outer flame cylinders, and in this state, the upper end of the wick is ignited to start combustion. In response to the start of this combustion, combustion air flows between the inner and outer flame tubes through a number of ventilation holes drilled on their circumferential surfaces, and combustion gradually expands and shifts to steady combustion. and stabilize.

しかして、燃焼の排ガスが対流により燃焼筒の上方に上
昇して室内に循環し、これにより室内の全体的な暖房が
図られ、また燃焼に応じて上記外炎筒が赤熱し、この赤
熱でガラス筒を通して燃焼筒の周囲に輻射熱として赤外
線が放射され、この赤外線で燃焼筒の前方の採暖者が加
温される。
The combustion exhaust gas rises above the combustion tube due to convection and circulates into the room, thereby heating the entire room. Also, as the combustion occurs, the outer flame tube becomes red hot, and this red heat causes the outer flame tube to become red hot. Infrared rays are emitted as radiant heat around the combustion tube through the glass tube, and the person in front of the combustion tube is heated by this infrared rays.

ガラス筒の温度は一般に上部で500℃、下部で300
℃程度となる。このような温度勾配が生じる理由として
は、ガラス筒の下部では燃焼用空気の流入が激しいとと
もに、燃焼による気流が活発に上昇し、このため比較的
温度が低く、上部に移行するに従ってその気流の流速が
低下し、また燃焼用空気の流入も減少し、さらにガラス
筒の上端がガラス押えで覆われているから、気流の一部
が停滞したり、下方へ逆流するためと言える。
The temperature of the glass cylinder is generally 500℃ at the top and 300℃ at the bottom.
It will be about ℃. The reason why such a temperature gradient occurs is that at the bottom of the glass tube, the inflow of combustion air is intense, and the airflow due to combustion rises actively, so the temperature is relatively low, and as it moves to the top, the airflow decreases. This is because the flow velocity decreases, the inflow of combustion air also decreases, and since the upper end of the glass cylinder is covered with a glass presser, part of the airflow becomes stagnant or flows backwards.

ところで近時、赤外線のうちで波長領域が4〜1000
μmの遠赤外線が人体に対する吸収性がよく、暖房効果
に優れている点に注目して、ガラス筒の周面に遠赤外線
層を設けて燃焼筒の周囲に遠赤外線を放射し得るように
構成したものが見られる。しかしながら従来のものは、
単にガラス筒の周面に遠赤外線層を均等的に点在させて
いるに過ぎない。ガラス筒には上述のような温度勾配が
生じ、したがってガラス筒の周面に均等的に遠赤外線層
が点在する構成では、ガラス筒の周囲の水平方向に対す
る遠赤外線の放射量に大きな格差、すなわち遠赤外線の
放射量がガラス筒の上部では多く、下部では少ないとい
う不均衡かが生じてしまう。燃焼筒の前方に座って採暖
をする場合、その採暖者の腰の部分を充分に加温し得る
ことが採暖の快適性の点で重要とされている。そして通
常の石油ストーブにおいては、ガラス筒の下方部分が採
暖者の腰の部分に対向するように構成されている。この
ため、上述のように遠赤外線の放射量に不均衡が生じる
構成では、採暖の快適性を充分に得ることが困難となる
ものであった。
By the way, recently, the wavelength range of infrared rays is 4 to 1000.
Focusing on the fact that μm far infrared rays are well absorbed by the human body and have an excellent heating effect, a far infrared layer is provided on the circumference of the glass tube to radiate far infrared rays around the combustion tube. You can see what happened. However, the conventional
Far-infrared rays are simply scattered evenly around the circumference of the glass tube. The above-mentioned temperature gradient occurs in the glass tube, and therefore, in a configuration in which the far-infrared layer is evenly scattered around the circumference of the glass tube, there is a large disparity in the amount of far-infrared radiation in the horizontal direction around the glass tube. In other words, an imbalance occurs in that the amount of far-infrared rays emitted is large at the top of the glass tube and small at the bottom. When taking heat while sitting in front of a combustion tube, it is important to be able to sufficiently heat the waist area of the person sitting in front of the combustion tube in terms of comfort while taking the heat. In a typical kerosene stove, the lower part of the glass cylinder is configured to face the waist of the person taking the heat. For this reason, in a configuration in which the amount of far-infrared rays radiated is unbalanced as described above, it has been difficult to obtain sufficient comfort in heating.

〔発明の目的〕[Purpose of the invention]

この発明はこのような点に着目してなされたもので、そ
の目的とするところは、ガラス筒の周囲の水平方向に対
して遠赤外線を均等的に放射することができるようにし
た燃焼筒を提供することにある。
This invention was made with attention to these points, and its purpose is to provide a combustion tube that can evenly radiate far-infrared rays in the horizontal direction around the glass tube. It is about providing.

〔発明の概要〕[Summary of the invention]

すなわちこの発明は、内炎筒および外炎筒を同心的に重
合して配置し、さらに外炎筒の外周をガラス筒で覆って
なるものにおいて、上記ガラス筒の周面の各段にその下
部から上部に亙って遠赤外線層を施し、この遠赤外線層
の上記ガラス筒の各段の周面に対して占める総面積の割
合を、ガラス筒の下部から上部に亙って順次小さくなる
ようにしたものである。
That is, the present invention has an inner flame tube and an outer flame tube arranged concentrically overlapping each other, and the outer periphery of the outer flame tube is further covered with a glass tube. A far-infrared layer is applied from the top to the top, and the ratio of the total area of this far-infrared layer to the circumferential surface of each step of the glass tube is gradually decreased from the bottom to the top of the glass tube. This is what I did.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例について図面を参照して説明
する。
An embodiment of the present invention will be described below with reference to the drawings.

第1図に石油ストーブを示し、1がその本体で、この本
体1には前面が開放する放熱部2が形成され、この放熱
部2に燃焼筒3が設けられ、またこの本体1の前面に点
火摘み4、火力調節摘み5、消火摘み6が配設されてい
る。
Fig. 1 shows a kerosene stove, and 1 is its main body.A heat radiating part 2 with an open front is formed on this main body 1.A combustion cylinder 3 is provided on this heat radiating part 2, and a combustion cylinder 3 is provided on the front of this main body 1. An ignition knob 4, a fire power adjustment knob 5, and a fire extinguishing knob 6 are provided.

燃焼筒3は第2図に示すように支持され、すなわち7お
よび8が互いに同心的に重合して配置した芯案内筒で、
これら芯案内筒7.8の上端で環状の火皿9が構成され
、この火皿9に灯芯10が臨み、この火皿9に燃焼筒3
が着脱自在に載置されている。燃焼筒3は、内炎筒11
と外炎筒12とを互いに同心的に重合して配置し、さら
に外炎筒12の外周に耐熱性のガラス筒13を同心的に
配置して外炎筒12を覆ってなる。ガラス筒13は外炎
筒12の下部外周に設けられた外筒14で支持され、上
端がガラス押え15で係止されている。なお、内炎筒1
1および外炎筒12の周面にはそれぞれ多数の通気孔1
6・・・、17・・・が穿設され、また内炎筒11の上
端面に拡散板18が取付けられている。なお、上記内炎
筒11、外炎筒12および外筒14の三者は、これらを
貫通したクロスビン(図示せず)を介して一体的に結合
されている。
The combustion tube 3 is supported as shown in FIG.
An annular fire pan 9 is formed at the upper end of these wick guide tubes 7.8, a wick 10 faces this fire pan 9, and a combustion tube 3
is placed in a removable manner. The combustion tube 3 is an inner flame tube 11.
and an outer flame tube 12 are arranged concentrically overlapping each other, and a heat-resistant glass tube 13 is further arranged concentrically around the outer periphery of the outer flame tube 12 to cover the outer flame tube 12. The glass tube 13 is supported by an outer tube 14 provided on the outer periphery of the lower part of the outer flame tube 12, and its upper end is locked with a glass presser 15. In addition, inner flame tube 1
1 and the outer flame cylinder 12 have a large number of ventilation holes 1 on their circumferential surfaces, respectively.
6..., 17... are bored, and a diffusion plate 18 is attached to the upper end surface of the inner flame cylinder 11. The inner flame tube 11, the outer flame tube 12, and the outer tube 14 are integrally connected via a cross bin (not shown) passing through them.

しかして、灯芯10の上端に点火をして着火させると、
灯芯10の上端から燃料(灯油)が順次気化し、その気
化ガスによりまず燃焼筒3の下部において燃焼が開始す
るとともに、各通気孔16・・・、17・・・を通して
内外両炎筒11.12間に燃焼用空気が流入し、やがて
気化量が増大して燃焼筒3の上部側にまで燃焼域が拡大
して定常燃焼に移行し、外炎筒12が赤熱し、ガラス筒
13が加熱される。
However, when the upper end of the wick 10 is lit and ignited,
Fuel (kerosene) is sequentially vaporized from the upper end of the lamp wick 10, and the vaporized gas first starts combustion in the lower part of the combustion tube 3, and then passes through the ventilation holes 16..., 17... to both the inner and outer flame tubes 11. Combustion air flows in between 12 and the amount of vaporization increases and the combustion area expands to the upper side of the combustion tube 3, transitioning to steady combustion, the outer flame tube 12 becomes red hot, and the glass tube 13 is heated. be done.

ここで、ガラス筒13の外周面の各段には、点在するよ
うに丸形状をなす多数の遠赤外線層20・・・が施され
ている。これら遠赤外線層20・・・は、例えばセラミ
ック溶液をガラス筒13の外周面に塗布し、それを40
0〜600℃程度の温度で加熱して焼付けてなる。そし
てガラス筒13の温度上昇に伴い、各遠赤外線層20・
・・を通してガラス筒13の周囲の水平方向に遠赤外線
が放射されるものである。
Here, on each stage of the outer peripheral surface of the glass cylinder 13, a large number of far-infrared ray layers 20, each having a round shape, are provided in a scattered manner. These far-infrared layers 20... can be formed by applying a ceramic solution to the outer circumferential surface of the glass cylinder 13, for example.
It is baked by heating at a temperature of about 0 to 600 degrees Celsius. As the temperature of the glass tube 13 increases, each far-infrared layer 20 and
Far-infrared rays are radiated in the horizontal direction around the glass tube 13 through...

ところで、周知のように放射体が電磁波により熱エネル
ギを伝える場合、 Me =σxT”(Kca I/m2h)Me:熱エネ
ルギ σ :ステフ7ンボルツマン定数 T :放熱体温度 の関係式によりその量が決定され、放熱体の湿度の4乗
に比例する。
By the way, as is well known, when a radiator transmits thermal energy by electromagnetic waves, the amount is determined by the following relational expression: Me = σxT'' (Kca I/m2h) Me: thermal energy σ: Steph7 Boltzmann's constant T: radiator temperature It is proportional to the fourth power of the humidity of the heat sink.

ここで、上記関係式の放射体を遠赤外線層20、放射体
の温度をガラス筒13の温度とすることができるが、ガ
ラス筒13の温度は前述したのように下部から上部に移
行するに従って上昇し、このためガラス筒13の外周面
の各部に同一面積の遠赤外線層を施したのでは、ガラス
筒13の下部側では遠赤外線の放射量が少なく、上部側
では遠赤外線の放射量が多くなるという不均衡が生じて
しまう。
Here, the radiator in the above relational expression can be the far-infrared layer 20, and the temperature of the radiator can be the temperature of the glass tube 13, but as described above, the temperature of the glass tube 13 changes as it moves from the bottom to the top. Therefore, if a far-infrared layer of the same area is applied to each part of the outer peripheral surface of the glass tube 13, the amount of far-infrared rays radiated is small on the lower side of the glass tube 13, and the amount of far-infrared rays radiated on the upper side is small. This creates an imbalance.

そこで、この発明においては、ガラス筒13の各段の周
面に対して占める遠赤外線層20・・・の総面積の割合
を、ガラス筒13の下部から上部に亙っで順次小さくし
である。いま、この実施例においては、ガラス筒13を
均等的に下段領域Ea1中段領域Eb、上段領域ECと
に均等的に区分し、各領域Ea 、Eb 、Ecにそれ
ぞれ同数の遠赤外線層20・・・を施し、そして各領域
Ea 、 Eb 。
Therefore, in the present invention, the ratio of the total area of the far-infrared layers 20 to the circumferential surface of each stage of the glass tube 13 is gradually decreased from the bottom to the top of the glass tube 13. . In this embodiment, the glass tube 13 is evenly divided into a lower region Ea, a middle region Eb, and an upper region EC, and the same number of far-infrared layers 20 are provided in each region Ea, Eb, and Ec.・and each area Ea, Eb.

Ecごとkの遠赤外線層20・・・の面積をそれぞれ3
a 、3b 、3cとし、この面積の関係をSa >3
b >SCとシテアル。
For each Ec, the area of k far infrared layer 20... is 3
a, 3b, 3c, and the area relationship is Sa > 3
b > SC and shitial.

このような構成によれば、ガラス筒13の温度の差と、
ガラス筒13の各領域Ea 、 Eb 、 ECの周面
に対して占める遠赤外線層20・・・の総面積の差との
相殺により、各遠赤外線層20・・・からの遠赤外線の
放射量がほぼ均一となり、したがって燃焼筒3の前方に
座って配置する採暖者の腰の部分からその上方を均等的
に加湿して理想的な採暖状態を与えることができる。
According to such a configuration, the temperature difference between the glass cylinders 13 and
The amount of far-infrared rays emitted from each far-infrared layer 20 is offset by the difference in the total area of the far-infrared layer 20 relative to the circumferential surface of each region Ea, Eb, EC of the glass tube 13. This makes it possible to uniformly humidify the area above the waist of the person sitting in front of the combustion tube 3, thereby providing ideal warming conditions.

なお、上記実施例においては、ガラス筒の各段における
遠赤外a層目体の面積を、その各段ごとに変えるように
したが、各段の遠赤外線層の面積をすべて同一とし、そ
の配設密度をガラス筒の下部から上部に亙って密から疎
に変えることにより、ガラス筒の各段の周面に対して占
める遠赤外線層の総面積の割合が、ガラス筒の下部から
上部に亙っで順次小さくなるように構成することも可能
である。この場合において、 Suニガラス簡の上部における遠赤外線層の総面積 Saミニガラスの下部における遠赤外線層の総面積 Tuニガラス筒の上部の温度 T2ニガラス筒の下部の温度 としたとき、5u=SQxl/ (Tu/Tn)’の関
係となるように、その密度をガラス筒の下部から上部に
亙って均等的な勾配で順次変えるようにするとよい。
In the above example, the area of the far-infrared A-layer eye body in each stage of the glass tube was changed for each stage, but the area of the far-infrared layer in each stage was all the same, and the By changing the arrangement density from dense to sparse from the bottom to the top of the glass tube, the ratio of the total area of the far-infrared layer to the circumferential surface of each step of the glass tube increases from the bottom to the top of the glass tube. It is also possible to construct the structure so that it becomes smaller sequentially over the period. In this case, when the total area of the far-infrared layer at the top of the Su mini-glass glass, the total area of the far-infrared layer at the bottom of the Sa mini-glass, Tu, the temperature at the top of the Ni-glass tube, T2 the temperature at the bottom of the Ni-glass tube, 5u=SQxl/ It is preferable that the density is successively varied with a uniform gradient from the bottom to the top of the glass cylinder so that the relationship is (Tu/Tn)'.

また、この発明は石油(灯油)を燃料とする燃焼装置の
燃焼筒に適用する場合に限らず、ガスを一〇− 燃料とする燃焼装置の燃焼筒においても同様に適用する
ことが可能である。
Furthermore, this invention is not limited to application to the combustion tube of a combustion device that uses petroleum (kerosene) as fuel, but can similarly be applied to a combustion tube of a combustion device that uses gas as fuel. .

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明によれば、ガラス筒の周囲
の水平方向に対して遠赤外線を均等的に放射することが
でき、したがってこの発明の燃焼筒を石油ストーブやガ
スストーブに使用した場合に、採暖者に対して快適な採
暖状態を与えることができるという効果を奏する。
As explained above, according to the present invention, far infrared rays can be uniformly radiated in the horizontal direction around the glass tube, so when the combustion tube of the present invention is used in an oil stove or a gas stove. This has the effect of providing a comfortable temperature measurement state to the person taking the heat.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の一実施例を示し、第1図は石油ストー
ブの斜視図、第2図は要部の断面図である。 3・・・燃焼筒、11・・・内炎筒、12・・・外炎筒
、13・・・ガラス筒、20・・・遠赤外線層。 出願人代理人 弁理士 鈴江武彦 第1°図 第2図
The drawings show an embodiment of the present invention, and FIG. 1 is a perspective view of a kerosene stove, and FIG. 2 is a sectional view of the main parts. 3... Combustion tube, 11... Inner flame tube, 12... Outer flame tube, 13... Glass tube, 20... Far infrared layer. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 内炎筒および外炎筒を同心的に重合して配置し、さらに
外炎筒の外周をガラス筒で覆ってなるものにおいて、上
記ガラス筒の周面の各段にその下部から上部に亙って遠
赤外線層を施し、この遠赤外線層の上記ガラス筒の各段
の周面に対して占める総面積の割合を、ガラス筒の下部
から上部に亙って順次小さくしたことを特徴とする燃焼
筒。
In a structure in which an inner flame tube and an outer flame tube are concentrically superimposed and arranged, and the outer periphery of the outer flame tube is further covered with a glass tube, there is provided a structure in which each step on the circumferential surface of the glass tube extends from the bottom to the top. A combustion method characterized in that a far-infrared layer is applied to the glass tube, and the ratio of the total area of the far-infrared layer to the circumferential surface of each stage of the glass tube is gradually decreased from the bottom to the top of the glass tube. Tube.
JP1949686A 1986-01-31 1986-01-31 Combustion cylinder Pending JPS62178810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1949686A JPS62178810A (en) 1986-01-31 1986-01-31 Combustion cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1949686A JPS62178810A (en) 1986-01-31 1986-01-31 Combustion cylinder

Publications (1)

Publication Number Publication Date
JPS62178810A true JPS62178810A (en) 1987-08-05

Family

ID=12000980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1949686A Pending JPS62178810A (en) 1986-01-31 1986-01-31 Combustion cylinder

Country Status (1)

Country Link
JP (1) JPS62178810A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03100701U (en) * 1990-01-30 1991-10-21

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03100701U (en) * 1990-01-30 1991-10-21

Similar Documents

Publication Publication Date Title
JPH06180110A (en) Exhaust heat recovering combustion apparatus
JPS62178810A (en) Combustion cylinder
JP3715256B2 (en) Oil burning appliance burning cylinder
JPS61128014A (en) Petroleum combustion device
JPS6151204B2 (en)
JP2546023B2 (en) Oil Combustor Burner
JPS581687Y2 (en) radiant burner
JPH0238181Y2 (en)
JPS6347781Y2 (en)
JPS6041459Y2 (en) red hot body
JPS593216Y2 (en) red flame stove
JPH045865Y2 (en)
JPS63279008A (en) Burning equipment
JPH0238182Y2 (en)
JPS6189409A (en) Combustion apparatus
JPH0238183Y2 (en)
JPS589123Y2 (en) Infrared radiation burner device
JPS6231761Y2 (en)
JPS5840415A (en) Burner
JPH0225611A (en) Combustion device
JPS618511A (en) Gas cooking apparatus
JPS6129314A (en) Portable catalitically burning cooker
JPS61134512A (en) Kerosene burner
JPS61134513A (en) Kerosene burner
JPS63254308A (en) Burner