JPS621776B2 - - Google Patents

Info

Publication number
JPS621776B2
JPS621776B2 JP53089159A JP8915978A JPS621776B2 JP S621776 B2 JPS621776 B2 JP S621776B2 JP 53089159 A JP53089159 A JP 53089159A JP 8915978 A JP8915978 A JP 8915978A JP S621776 B2 JPS621776 B2 JP S621776B2
Authority
JP
Japan
Prior art keywords
maleic anhydride
anhydride copolymer
melamine
formalin
microcapsules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53089159A
Other languages
Japanese (ja)
Other versions
JPS5515660A (en
Inventor
Mitsuru Fuchigami
Toshizo Iida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP8915978A priority Critical patent/JPS5515660A/en
Publication of JPS5515660A publication Critical patent/JPS5515660A/en
Publication of JPS621776B2 publication Critical patent/JPS621776B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/18In situ polymerisation with all reactants being present in the same phase

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は疎水性物質を芯物質として含む微小カ
プセル製造法に関するものであり、さらにくわし
くは、メラミン―ホルマリン樹脂を膜材とする微
小カプセル製造法の改良に関するものである。 微小カプセルは、反応性の強いもの、揮発性も
の、液状のもの、等不安定な物質を含有させて安
定化させ、次の使用・取扱いを便利にする為に使
われており、内容物も、医薬、農薬、香料、染
料、接着剤、等におよんでいる。最も良く知られ
ている用途はノーカーボン複写紙であり、30有餘
年の実績がある。 現在微小カプセルの製造法として知られている
方法に、ゼラチンを使用したコアセルベーシヨン
法がある。この方法は、比較的ち密なカプセル膜
ができる為、広く使用されているが、天然物を使
用する為に品質上どうしてもバラツキがでる、耐
水性が得られない、微生物に弱い(即ち腐敗し易
い)、高濃度で作れない、製造に複雑な工程を必
要とする、カプセル化終了までに長時間必要とす
る、等の欠点がある。 これ以外に、ち密なカプセル膜を得る有力な方
法として界面重合法(特公昭38―19574、特公昭
42―446、特公昭42―2882、特公昭42―8693)が
ある。この方法は、種々の特徴のある膜材でのカ
プセル化が可能であるが、反応性の高い薬品を膜
材原料として使用する為に、反応のコントロール
が工業的に難かしいので、製品(カプセル)にバ
ラツキがでる、 活性水素(―OH―NH等)をもつた内容物と
は化学反応をおこすので使用できない、原料薬品
の毒性が強いので工程中あるいは未反応物などに
注意がいる等の欠点があるので、ごく一部の用途
にのみ実用化されただけであつた。 アミノプラスト(アミノ樹脂)膜による微小カ
プセルも実用化されている(例えば、特公昭37―
12380、特公昭37―12381、特公昭44―3495、特公
昭44―14379、特公昭46―30282、特公昭47―
10780、特公昭47―23165)。この方法は、膜材料
として合成物でしかも安価な尿素−ホルマリン樹
脂が使え、その上耐水性や耐微生物性に優れたカ
プセルができるが、疎水性物質の周囲の壁が充分
ち密になりにくく、又、疎水性物質の分散・乳化
が充分できにくいという欠点があつた。この方法
の改良として、特開昭51―9079号に記載されてい
るように、カプセル膜の変性剤としてエチレン無
水マレイン酸共重合体、メチルビニルエーテル無
水マレイン酸共重合体、ポリアクリル酸を使用す
る方法が提案され、またその後、尿素―ホルマリ
ン樹脂の変性剤としてメラミンホルマリン樹脂の
使用が発表される様になつた(特開昭52―66878
号)。 本願発明者の一人は先に、スチレン無水マレイ
ン酸共重合体を最適なカプセル壁変性剤とするメ
ラミンホルマリン樹脂微小カプセルを新規技術と
して提唱した(特願昭52―116249号、発明の名称
「微小カプセル」、出願日昭和52年9月28日)。そ
の目的とするところはカプセル壁がち密で丈夫な
微小カプセルを提供することにあつた。 本発明は上記先願(特願昭52―116249)の改良
を目的とするものである。 主な改良点は、より安定した微小カプセルを高
濃度で得るようにした点であり、変性剤としてス
チレン無水マレイン酸共重合体の上へ更にエチレ
ン無水マレイン酸共重合体を添加することによつ
て達成されたのである。 即ち、本発明においては、水中に、1:0.5〜
1:2(重量比)で溶解したスチレン無水マレイ
ン酸共重合体とエチレン無水マレイン酸共重合体
との共存下において、メラミン―ホルマリン初期
縮合物を酸性加熱下で反応させて、疎水性物質の
周囲にメラミン―ホルマリンの重合体膜を析出さ
せることにより微小カプセルを生成させる。 先願(特願昭52―116249)においても述べた如
く、メラミン―ホルマリン樹脂自体は、尿素ホル
マリン樹脂に比べても、硬化速度が速い、引張強
さ、圧縮強さが強い、耐熱温度が高い、変形温度
が高い、吸水率が少ない、弱酸弱アルカリに強い
等の特長があり、カプセルの膜材として使用して
も、これらの性質があらわれるのである。従来よ
り、例えば、前述の特公昭37―12380号、特公昭
38―12518号等にもメラミン―ホルマリンによる
カプセル化の記載はあるが、具体的な方法につい
て詳細に書かれてなく、またその組み合わせ通り
にカプセル化を行なつても良いカプセルは得られ
ない。 本発明は、使用する変性剤に特徴をもつてい
る。上述の通り、変性剤として最も適しているも
のは、スチレン無水マレイン酸共重合体であるこ
とを、本発明者は先に見い出した(特願昭52―
116249)。本発明者等はさらに種々検討した結
果、スチレン無水マレイン酸共重合体に、エチレ
ン無水マレイン酸共重合体を加えることにより、
さらに安定したカプセル化が、可能であることが
わかり、本発明に到達した。ここでいう安定の意
味は、乳化粒子の揃い方が安定し、カプセル化の
条件(温度やPH等)の要因に対しても安定してお
り、また、他の変性剤の場合よりもカプセル化の
PHを高くできるので、酸に弱い内容物を安定した
まゝカプセル化ができるという種々の意味に於
て、使用でき、また、事実すべてに優れたカプセ
ルである。 すなわち、乳化粒子についていえば、疎水基の
大きなスチレン無水マレイン酸共重合体と小さな
エチレン無水マレイン酸とを適当に混合すること
により、疎水性物質の乳化をかなり自由にコント
ロールでき、粒子径のそろつた乳化粒子を作るこ
とができる。これに対し、たとえば、エチレン無
水マレイン酸共重合体単独使用の場合には、乳化
粒子が不揃いで、安定性が悪い。反応温度につい
ていえば、エチレン無水マレイン酸共重合体では
50℃程度の温度が最適で70℃以上となるとカプセ
ルがうまくできない。一方、スチレン無水マレイ
ン酸共重合体単独では、60℃以上で好ましいカプ
セルができるが、40℃程度では良いカプセルは得
にくい。これに対して本発明の如き併用系では、
40℃以上95℃でも良好なカプセルが得られる。 好適PHの範囲においても、エチレン無水マレイ
ン酸共重合体単独の場合には、PHは4.5〜5.0程
度、スチレン無水マレイン酸共重合体単独の場合
には、5.3〜5.8程度であるのに、併用系の場合に
は、5.0〜6.0と広い範囲のPHで良いカプセルがで
きる。変性剤のカプセル化におよぼす効果につい
ては充分わかつていないが、メラミン―ホルマリ
ンが酸性加熱下で樹脂として析出する時に、カル
ボン酸が吸引・濃縮させて、疎水性液体の周囲に
効率良く析出させる働きがある様に考えられる。
そこで異種のカルボン酸(同じマレイン酸でもと
なりの基が異る)により、適するPHの範囲をもつ
ものと考えられ、併用した場合には、広い範囲
で、カプセル膜となり得る様にメラミンホルマリ
ン樹脂が濃縮されるものと考えられる。 本発明に使用されるメラミン―ホルマリン初期
縮合物は、メラミン1モルに対して、ホルマリン
を1.2モル以上、好ましくは、1.5〜3.5モルをアル
カリ性で付加させたものであり、一般にモノメチ
ロールメラミンからヘキサメチロールメラミン及
びホルマリンの混合物といわれており、市販品も
多い。また、例えばメチル化、ブチル化等の変性
メラミン樹脂も市販されており、フエノル類、ベ
ンゾグアナミン、尿素等での変性もおこなわれて
いるが、水溶性であれば、メラミン―ホルマリン
初期縮合物と同様に使用できるものも多い。 メラミン―ホルマリン樹脂と上記変性剤との比
は重量でメラミン(単体)1に対して0.5乃至1.5
が好ましい範囲である。 カプセル化は、PH調整した変性剤を溶解した水
溶液中に、疎水性物質を分散乳化し、その中に、
メラミン―ホルマリン初期縮合物を加えて、上記
の温度に保つことにより短時間(1時間以内)
に、カプセル化が完了する。 カプセル分散液の固形分濃度は、主に疎水性物
質と膜の厚さにより種々作ることができるが、20
%から50%が本発明における通常の濃度である。 要約すると、本発明の目的は、ち密な膜をもつ
た微小カプセルを得ることにある。もう一つの目
的は、耐水性の強い、また耐微生物性に優れたカ
プセルを得ることにある。そして最も大きな目的
は、より安定したカプセルを高濃度で得ることに
ある。本発明の目的は、スチレン無水マレイン酸
共重合体に更に、エチレン無水マレイン酸共重合
体を加え、メラミン―ホルマリン樹脂を形成させ
ることにより達成された。 なお、スチレン無水マレイン酸共重合体とエチ
レン無水マレイン酸共重合体とは、同時に水に溶
解してもよいし、一方で分散・乳化した後に、他
方を加えても良く、疎水性物質により2種の組み
合わせ量、混合の方法を任意に選ぶことが出来
る。そして、両者が併存していれば、単独使用に
比べて顕著な改良効果が発揮されるのである。 以下わかりやすい様に、ノーカーボン複写紙用
の微小カプセルについて具体例を述べるが、他の
疎水性物質のカプセル化も同様に行なうことがで
きる。 実施例 1 クリスタルバイオレツトラクトン2gをKMC
―113(商品名、クレハ化学(株)製オイル)100gに
加熱溶解したものを疎水性物質とした。 スクリプセツト520(モンサント社製、スチレ
ン無水マレイン酸共重合体)6.5g、カセイソー
ダ0.1gを水100gに溶解した中に、疎水性物質を
乳化した。その上更にEMA―31(モンサント社
製、エチレン無水マレイン酸共重合体)5g、カ
セイソーダ0.1g、水100gを乳化液に加えた。 メラミン15gと37%ホルマリン30gを、PH9で
溶解したメラミン―ホルマリン初期縮合物水溶液
を上記乳化液中に加え、55℃で加熱、1時間をお
こない、カプセル化を終了した。カプセル化時の
PHは5であつた。 比較例 1 実施例1のスクリプセツト520のかわりに、
EMA31を同量使用し、変性剤としてはエチレン
無水マレイン酸共重合体単独のメラミンホルマリ
ン樹脂微小カプセルをPH5、温度55℃で1時間加
熱の条件で作つた。 比較例 2 実施例1のEMA31のかわりにスクリプセツト
520を同量使用し、変性剤としてはスチレン無水
マレイン酸共重合体単独のメラミンホルマリン樹
脂微小カプセルをPH5、温度55℃で1時間加熱の
条件で作つた。 実施例 2 実施例1の条件のうち反応条件をPH5.7、温度
70℃に変えてカプセルを作製した。 比較例 3 比較例2の反応条件をPH5.7、温度70℃とし、
比較例3のカプセルとした。 比較例 4 上記疎水性物質102gを5%EMA200g中に乳
化させ、尿素22gレゾルシン2g、ホルマリン50
gを加えて、PH3.5、55℃の条件でカプセル化を
おこなつた。1時間では不完全であつたので、3
時間反応させ、尿素―ホルマリン樹脂によるカプ
セルを作成した。 比較例 5 実施例2のスクリプセツト520のかわりに、同
量のアラビアゴムを使用し、実施例2と同様の条
件でカプセル化をおこなつた。 実施例 3 上記7種のカプセルを市販三菱NCR紙「下」
(クリスタルバイオレツトラクトンを発色させる
パラフエニルフエノール樹脂を塗抹してある)の
表面に、2g/m2(乾燥ベース)となる様に、ワ
イヤーバーで塗抹、乾燥させ、カプセルの完成度
をみた。 尚、カプセルの平均粒径はすべて3〜5μであ
つた。
The present invention relates to a method for producing microcapsules containing a hydrophobic substance as a core material, and more particularly to an improvement in a method for producing microcapsules using melamine-formalin resin as a membrane material. Microcapsules are used to contain and stabilize unstable substances such as highly reactive, volatile, and liquid substances, making them convenient for subsequent use and handling. , pharmaceuticals, agricultural chemicals, fragrances, dyes, adhesives, etc. The best known use is carbonless copying paper, which has been used for over 30 years. A currently known method for producing microcapsules is a coacervation method using gelatin. This method is widely used because it produces a relatively dense capsule membrane, but because it uses natural products, there are inevitably variations in quality, it does not have water resistance, and it is susceptible to microorganisms (i.e., it is easily putrefied). ), they have drawbacks such as not being able to be made at high concentrations, requiring complicated manufacturing steps, and requiring a long time to complete encapsulation. In addition to this, interfacial polymerization is an effective method for obtaining a dense capsule membrane (Tokuko Sho 38-19574,
42-446, Special Publication No. 42-2882, Special Publication No. 42-8693). This method allows encapsulation with membrane materials with various characteristics, but since highly reactive chemicals are used as raw materials for membrane materials, it is industrially difficult to control the reaction. ), it cannot be used because it will cause a chemical reaction with contents containing active hydrogen (-OH-NH, etc.), and the raw chemicals are highly toxic, so care must be taken during the process or unreacted substances. Because of its drawbacks, it was put into practical use only for a limited number of applications. Microcapsules made of aminoplast (amino resin) membranes have also been put to practical use (for example,
12380, Special Publication 12381, Special Publication 12381, Special Publication 1977-3495, Special Publication 14379, Special Publication 14379, Special Publication 30282, Special Publication 1977-
10780, Special Publication Showa 47-23165). This method uses a synthetic and inexpensive urea-formalin resin as the membrane material, and can produce capsules with excellent water resistance and microbial resistance, but it is difficult to make the wall around the hydrophobic substance sufficiently dense. Another drawback was that it was difficult to sufficiently disperse and emulsify hydrophobic substances. As an improvement to this method, as described in JP-A-51-9079, ethylene maleic anhydride copolymer, methyl vinyl ether maleic anhydride copolymer, and polyacrylic acid are used as modifiers for the capsule membrane. A method was proposed, and subsequently, the use of melamine-formalin resin as a modifier for urea-formalin resin was announced (Japanese Patent Application Laid-Open No. 52-66878).
issue). One of the inventors of this application previously proposed melamine-formalin resin microcapsules using styrene-maleic anhydride copolymer as the optimal capsule wall modifier as a new technology (Japanese Patent Application No. 116249/1989, title of the invention "Microcapsules"). Capsule”, filing date September 28, 1978). The purpose was to provide microcapsules with dense and durable capsule walls. The purpose of the present invention is to improve the above-mentioned earlier application (Japanese Patent Application No. 116249/1986). The main improvement is that more stable microcapsules can be obtained at higher concentrations by adding ethylene maleic anhydride copolymer on top of the styrene maleic anhydride copolymer as a modifier. It was achieved. That is, in the present invention, in water, 1:0.5~
In the coexistence of styrene-maleic anhydride copolymer and ethylene-maleic anhydride copolymer dissolved at a ratio of 1:2 (weight ratio), the melamine-formalin initial condensate is reacted under acidic heating to form a hydrophobic substance. Microcapsules are produced by depositing a melamine-formalin polymer film around them. As mentioned in the previous application (Japanese Patent Application No. 116249/1986), melamine-formalin resin itself has a faster curing speed, stronger tensile strength and compressive strength, and higher heat resistance than urea-formalin resin. It has characteristics such as high deformation temperature, low water absorption, and resistance to weak acids and weak alkalis, and these properties are exhibited even when used as a membrane material for capsules. Traditionally, for example, the aforementioned Tokko Sho 37-12380, Tokko Sho No.
No. 38-12518 and the like also describe encapsulation with melamine-formalin, but the specific method is not described in detail, and good capsules cannot be obtained even if the combination is encapsulated. The present invention is characterized by the modifier used. As mentioned above, the present inventors have previously discovered that the most suitable modifier is a styrene maleic anhydride copolymer (Japanese Patent Application No.
116249). As a result of further various studies, the present inventors found that by adding ethylene maleic anhydride copolymer to styrene maleic anhydride copolymer,
It has been found that more stable encapsulation is possible, leading to the present invention. Stability here means that the arrangement of the emulsified particles is stable, that it is stable against factors such as encapsulation conditions (temperature, pH, etc.), and that it is more stable than other modifiers. of
Since the pH can be raised, it can be used in a variety of ways, including stably encapsulating contents that are sensitive to acids, and is in fact an excellent capsule in all respects. In other words, when it comes to emulsified particles, by appropriately mixing a styrene maleic anhydride copolymer with large hydrophobic groups and ethylene maleic anhydride with small groups, the emulsification of hydrophobic substances can be controlled quite freely, and the particle size can be made uniform. It is possible to make ivy emulsified particles. On the other hand, for example, when ethylene maleic anhydride copolymer is used alone, emulsified particles are irregular and stability is poor. Regarding the reaction temperature, for ethylene maleic anhydride copolymer,
A temperature of around 50℃ is optimal; if it exceeds 70℃, the capsules will not form properly. On the other hand, if the styrene maleic anhydride copolymer is used alone, a desirable capsule can be formed at a temperature of 60°C or higher, but it is difficult to obtain a good capsule at a temperature of about 40°C. On the other hand, in a combination system like the present invention,
Good capsules can be obtained even at temperatures above 40°C and 95°C. Even in the preferred pH range, when using ethylene maleic anhydride copolymer alone, the pH is about 4.5 to 5.0, and when using styrene maleic anhydride copolymer alone, it is about 5.3 to 5.8. In the case of a pH of 5.0 to 6.0, good capsules can be produced in a wide range of pH. The effect of modifiers on encapsulation is not fully understood, but when melamine-formalin is precipitated as a resin under acidic heating, the carboxylic acid is sucked and concentrated to efficiently precipitate around the hydrophobic liquid. It seems that there is.
Therefore, different types of carboxylic acids (the same maleic acid has different adjacent groups) are thought to have a suitable pH range, and when used together, melamine-formalin resin can be used as a capsule membrane over a wide range. It is thought that it is concentrated. The melamine-formalin initial condensate used in the present invention is one in which 1.2 mol or more, preferably 1.5 to 3.5 mol, of formalin is added to 1 mol of melamine under alkaline conditions, and is generally prepared by adding hexamethylol from monomethylolmelamine. It is said to be a mixture of methylolmelamine and formalin, and there are many commercially available products. In addition, modified melamine resins such as methylated and butylated are also commercially available, and modified with phenols, benzoguanamine, urea, etc., but as long as they are water-soluble, they are similar to the melamine-formalin initial condensate. There are many things that can be used for. The ratio of melamine-formalin resin to the above modifier is 0.5 to 1.5 to 1 part melamine (single substance) by weight.
is the preferred range. Encapsulation involves dispersing and emulsifying a hydrophobic substance in an aqueous solution containing a pH-adjusted denaturing agent.
Add melamine-formalin initial condensate and maintain at the above temperature for a short time (within 1 hour)
, encapsulation is complete. The solid content concentration of the capsule dispersion can be made in various ways depending mainly on the hydrophobic substance and the thickness of the membrane.
% to 50% are common concentrations in this invention. In summary, the aim of the invention is to obtain microcapsules with a dense membrane. Another objective is to obtain capsules with strong water resistance and excellent microbial resistance. The main goal is to obtain more stable capsules at higher concentrations. The object of the present invention was achieved by adding an ethylene maleic anhydride copolymer to the styrene maleic anhydride copolymer to form a melamine-formalin resin. The styrene maleic anhydride copolymer and the ethylene maleic anhydride copolymer may be dissolved in water at the same time, or one may be dispersed and emulsified before the other is added. The amount of combination of seeds and the mixing method can be arbitrarily selected. If both of them coexist, a remarkable improvement effect will be exhibited compared to when they are used alone. For the sake of clarity, a specific example will be described below regarding microcapsules for carbonless copying paper, but other hydrophobic substances can be encapsulated in the same way. Example 1 2g of crystal violet lactone was added to KMC
-113 (trade name, oil manufactured by Kureha Chemical Co., Ltd.) by heating and dissolving it in 100 g was used as a hydrophobic substance. A hydrophobic substance was emulsified in a solution of 6.5 g of SCRIPSET 520 (manufactured by Monsanto, styrene maleic anhydride copolymer) and 0.1 g of caustic soda in 100 g of water. Furthermore, 5 g of EMA-31 (manufactured by Monsanto, ethylene maleic anhydride copolymer), 0.1 g of caustic soda, and 100 g of water were added to the emulsion. A melamine-formalin initial condensate aqueous solution containing 15 g of melamine and 30 g of 37% formalin dissolved at pH 9 was added to the above emulsion, heated at 55° C. for 1 hour, and encapsulation was completed. During encapsulation
The pH was 5. Comparative Example 1 Instead of script set 520 of Example 1,
Melamine-formalin resin microcapsules were made using the same amount of EMA31 and ethylene-maleic anhydride copolymer alone as the modifier under conditions of heating at pH 5 and temperature of 55° C. for 1 hour. Comparative example 2 Script set instead of EMA31 of Example 1
Melamine-formalin resin microcapsules were prepared using the same amount of 520 and styrene-maleic anhydride copolymer alone as the modifier under conditions of pH 5 and heating at 55° C. for 1 hour. Example 2 Among the conditions of Example 1, the reaction conditions were PH5.7 and temperature.
Capsules were produced by changing the temperature to 70°C. Comparative Example 3 The reaction conditions of Comparative Example 2 were PH5.7 and temperature 70°C.
This was the capsule of Comparative Example 3. Comparative Example 4 102 g of the above hydrophobic substance was emulsified in 200 g of 5% EMA, 22 g of urea, 2 g of resorcin, and 50 g of formalin.
g was added thereto, and encapsulation was carried out under conditions of pH 3.5 and 55°C. 1 hour was not enough, so 3
After a time reaction, capsules made of urea-formalin resin were created. Comparative Example 5 Encapsulation was carried out under the same conditions as in Example 2, using the same amount of gum arabic instead of Script Set 520 in Example 2. Example 3 The above seven types of capsules were printed on commercially available Mitsubishi NCR paper “Bottom”
(paraphenylphenol resin that develops crystal violet lactone color) was smeared with a wire bar at a concentration of 2 g/m 2 (dry basis), dried, and the degree of completion of the capsule was examined. Incidentally, the average particle diameter of all capsules was 3 to 5 μm.

【表】 本発明によれば広い範囲で良好なカプセルが生
成されることがわかる。 即ち、本発明になる実施例1、2ではPHを5か
ら5.7、温度55℃から70℃に変えても、優秀な微
小カプセルが安定して製造し得た。これに反し
て、先願(特願昭52―116249号)に基く比較例
2、3では、確かにPH5.7、温度70℃では可成り
良好な微小カプセルが得られたが、PH5、温度55
℃ではカプセル化が不完全であり、従つて条件の
変動に極めて敏感であり、工業的微小カプセル化
法としては本発明の方が許容度が寛く、優れてい
ることがわかつた。その上、比較例3の微小カプ
セル液は高粘度であつた。その点でも本発明の方
が低粘度で、高固形分濃度のまま実用に供するこ
とができ、優れている。 実施例 4 パラフエニルフエノール樹脂(m.P.83℃)50
gをKMC―113,25gとSASN―296(商品名、
日石化学(株)製、オイル)25gとの混合液に加熱溶
解し疎水性物質を得た。EMA31とスクリプセツ
ト520の1:1(重量比)の5%水溶液200g(PH
4.8)中に、上記疎水性物質を分散.乳化した。 メラミン20gホルマリン45g水55gをPH9で加
熱して得たメラミン―ホルマリン初期縮合物水溶
液を乳化液に加えて65℃で1時間反応させ、冷却
後PHをアンモニア水溶液で9.0とした。ここフエ
ノール樹脂溶液を芯物質とする微小カプセルが得
られた。 実施例 5 実施例2と実施例4のカプセルを1:1で混合
し、5g/m2(乾燥ベース)となる様に41g/m2
の上質紙に塗抹した所、白色度83.0のまつ白な自
己発色シートが得られた。膜のち密さをみる為
に、トルエン及びエタノールをそれぞれ一滴塗抹
面に落して乾燥したが、何ら影響がなかつた。リ
ボンなしタイプライターで印字した所純白の背景
に濃青色の発色文字が得られた。 これらはカプセルの特性を調べる為のテストで
あつて、実際には顔料、接着剤、その他添加剤等
と共に塗抹することにより、良好なノーカーボン
紙が得られるのであり、本発明になる微小カプセ
ルは実用的に優れたノーカーボン紙に使用するこ
とができた。
[Table] It can be seen that according to the present invention, good capsules can be produced over a wide range. That is, in Examples 1 and 2 according to the present invention, excellent microcapsules could be stably produced even when the pH was changed from 5 to 5.7 and the temperature was changed from 55°C to 70°C. On the other hand, in Comparative Examples 2 and 3 based on the earlier application (Japanese Patent Application No. 116249/1982), fairly good microcapsules were certainly obtained at PH5.7 and temperature 70°C; 55
℃, the encapsulation is incomplete and therefore extremely sensitive to fluctuations in conditions, and the present invention was found to be superior and more lenient as an industrial microencapsulation method. Moreover, the microcapsule liquid of Comparative Example 3 had a high viscosity. In this respect as well, the present invention is superior in that it has a lower viscosity and can be put to practical use with a high solid content concentration. Example 4 Paraphenylphenol resin (mP83℃) 50
g to KMC-113, 25g and SASN-296 (product name,
A hydrophobic substance was obtained by heating and dissolving the mixture with 25 g of oil (manufactured by Nisseki Chemical Co., Ltd.). 200 g of 5% aqueous solution of 1:1 (weight ratio) of EMA31 and Script Set 520 (PH
4.8) Disperse the above hydrophobic substance inside. Emulsified. A melamine-formalin initial condensate aqueous solution obtained by heating 20 g of melamine, 45 g of formalin, and 55 g of water at a pH of 9 was added to the emulsion and allowed to react at 65° C. for 1 hour, and after cooling, the pH was adjusted to 9.0 with an aqueous ammonia solution. Microcapsules containing the phenolic resin solution as the core material were obtained. Example 5 The capsules of Example 2 and Example 4 were mixed in a 1:1 ratio to yield 41 g/m 2 to give 5 g/m 2 (dry basis).
When smeared on high-quality paper, a bright white self-coloring sheet with a whiteness of 83.0 was obtained. In order to check the density of the film, one drop each of toluene and ethanol was dropped on the smeared surface and dried, but there was no effect. When printed using a ribbonless typewriter, dark blue colored characters were obtained on a pure white background. These are tests to investigate the characteristics of capsules, and in reality, good carbonless paper can be obtained by smearing them with pigments, adhesives, and other additives, and the microcapsules of the present invention It could be used for practically excellent carbonless paper.

Claims (1)

【特許請求の範囲】[Claims] 1 スチレン無水マイレン酸共重合体の酸性水溶
液中に疎水性物質を不連続な微小粒子となるよう
に分散又は乳化させた後、メラミンホルマリン初
期縮合物を加え、酸性、加熱下で反応させて壁膜
を形成させることによる、疎水性物質を芯物質と
して含む微小カプセル製造法において、スチレン
無水マイレン酸共重合体1重量部の酸性水溶液中
に更にエチレン無水マイレン酸共重合体を0.5乃
至2重量部の割合で添加・溶解せしめることを特
徴とする改良された微小カプセル製造法。
1. After dispersing or emulsifying a hydrophobic substance into discontinuous fine particles in an acidic aqueous solution of styrene maleic anhydride copolymer, a melamine-formalin initial condensate is added, and the mixture is reacted under acidic conditions and heat to form a wall. In a method for producing microcapsules containing a hydrophobic substance as a core material by forming a membrane, 0.5 to 2 parts by weight of ethylene maleic anhydride copolymer is further added to an acidic aqueous solution of 1 part by weight of styrene maleic anhydride copolymer. An improved microcapsule production method characterized by adding and dissolving microcapsules at a ratio of
JP8915978A 1978-07-21 1978-07-21 Improved micro capsule Granted JPS5515660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8915978A JPS5515660A (en) 1978-07-21 1978-07-21 Improved micro capsule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8915978A JPS5515660A (en) 1978-07-21 1978-07-21 Improved micro capsule

Publications (2)

Publication Number Publication Date
JPS5515660A JPS5515660A (en) 1980-02-02
JPS621776B2 true JPS621776B2 (en) 1987-01-16

Family

ID=13963045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8915978A Granted JPS5515660A (en) 1978-07-21 1978-07-21 Improved micro capsule

Country Status (1)

Country Link
JP (1) JPS5515660A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6430271U (en) * 1987-08-18 1989-02-23

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59177129A (en) * 1983-03-25 1984-10-06 Mitsubishi Paper Mills Ltd Preparation of microcapsule
JPS63272580A (en) * 1987-04-30 1988-11-10 Kanzaki Paper Mfg Co Ltd Manufacture of micro capsule printed matter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6430271U (en) * 1987-08-18 1989-02-23

Also Published As

Publication number Publication date
JPS5515660A (en) 1980-02-02

Similar Documents

Publication Publication Date Title
DE3114035C3 (en)
US4233178A (en) Micro-capsules and method for their production
US4162165A (en) Process for the production of microcapsular coating compositions containing pigment particles and compositions produced thereby
US4785048A (en) Polyurea and polyurea-epoxy microcapsules
US4066568A (en) Method of producing microcapsules
US4124526A (en) Encapsulation process and resulting aqueous dispersion of encapsulated droplets
KR840001591B1 (en) Process of preparing microcapsule for pressure-sensitive recording paper
US4209188A (en) Microcapsules, method of making same, and carbonless copying system including said microcapsules
JPS621776B2 (en)
JPS621777B2 (en)
US7807076B2 (en) Process for the preparation of microcapsules
JPS5919193A (en) Heat sensitive recording paper
JPH0337970B2 (en)
GB1603448A (en) Microcapsules and their use
US5196149A (en) Preparation of high solids, low viscosity carbonless paper gelatin base microcapsules
US5064470A (en) High solids, low viscosity carbonless paper gelatin base microcapsule system
US4333849A (en) Encapsulation process
JPS60149489A (en) Partial pressure sensitive paper
JPH01164433A (en) Production of microcapsule
JPS63166430A (en) Production of high-density microcapsule
JPS58139738A (en) Microcapsule
KR910004435B1 (en) Production method of micro-capsule for the recording paper
JPS6012904B2 (en) Method for manufacturing microcapsules
JP2825526B2 (en) Emulsifier for microcapsules, microcapsules using the emulsifier, and method for producing the same
SU1090255A3 (en) Method for making microcapsules