JPS6217721A - Projector - Google Patents

Projector

Info

Publication number
JPS6217721A
JPS6217721A JP15525585A JP15525585A JPS6217721A JP S6217721 A JPS6217721 A JP S6217721A JP 15525585 A JP15525585 A JP 15525585A JP 15525585 A JP15525585 A JP 15525585A JP S6217721 A JPS6217721 A JP S6217721A
Authority
JP
Japan
Prior art keywords
light
led
luminous flux
light emitting
paraboloid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15525585A
Other languages
Japanese (ja)
Inventor
Yoshio Fukushima
福島 善夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP15525585A priority Critical patent/JPS6217721A/en
Publication of JPS6217721A publication Critical patent/JPS6217721A/en
Pending legal-status Critical Current

Links

Landscapes

  • Focusing (AREA)
  • Lenses (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To assemble easily the titled device to a camera by dividing a paraboloid of revolution by a face containing its revolving shaft, forming a half or below of its one side to a specular surface, and providing a light source in the vicinity of the focus of a parabolic mirror so that the center luminous flux of emitted light is made incident on the parabolic mirror. CONSTITUTION:As for a focusing optical system, the paraboloid of revolution is divided by a plane containing its revolving shaft (x), and by using a reflecting mirror 12 on which a half of its one side or a part thereof has been formed to a specular surface, the center of a light emitting part of an LED 1 is placed in a focus of a parabolic mirror 12 or its vicinity. Also, the LED 1 is placed so that the center light of the LED 1 is made incident on the reflecting mirror 12. In such a way, the constitution of the optical system is simplified, such as it is converted to a block, etc., a light source 1 is placed without causing a problem for shielding a luminous flux, etc., and the assembly to a camera, etc. can also be executed easily. Furthermore, the utilization efficiency of a luminous flux energy can be raised.

Description

【発明の詳細な説明】 発明の目的 (産業上の利用分野) この発明は投光装置、特にカメラのオートフォーカス用
に適した投光装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Field of Industrial Application) The present invention relates to a light projecting device, particularly to a light projecting device suitable for autofocusing of a camera.

(従来技術) カメラの投光受光式オートフォーカス用の投光装置やバ
ーコードリーダの投光装置等において光源として利用さ
れるLEDの一般的な配光特性を第7図に示す。これは
一般に無指向性と呼ばれる特性に属し、0方向を軸とし
、発光点を頂点とする半頂角θの円錐の母線に沿う方向
の発光強度ft1θとすれば、IOを0方向の発光強度
として 1θ= 100080 で近似的に表現出来る。
(Prior Art) FIG. 7 shows the general light distribution characteristics of an LED used as a light source in a light projecting device for light emitting/receiving type autofocus of a camera, a light projecting device for a bar code reader, and the like. This generally belongs to a characteristic called omnidirectionality, and if ft1θ is the emission intensity in the direction along the generatrix of a cone with the 0 direction as the axis and the light emitting point as the apex and the half apex angle θ, then IO is the emission intensity in the 0 direction. It can be approximately expressed as 1θ=100080.

従来の投光装置の光学系の1例を第8図に示す。1は発
光光源としてのLED、2Fi投光レンズ、16は発光
点、3.3は発光点1aから出九光束のうち投光レンズ
2の周縁を通る光線、3は中心光線で、第7図の0方向
に出射する光線とする・図はこのような光学系の典型例
としてレンズ2の焦点距離f = 20 tw、ロ径り
=16鱈を示しており、この場合Fナンバーはf4= 
1.25となシ、この種の装置で得られる明るさのほぼ
限界である。しかし、この投光装置で有効KWわれる光
束の円錐半頂角はθ#21.8゜であり、この角度範囲
に含まれる光エネルギ比は全発光エネルギに対しく 1
− (!O82θ)/2で僅かに13.8%にしかなら
ない。
FIG. 8 shows an example of the optical system of a conventional light projector. 1 is an LED as a light emitting light source, a 2Fi floodlight lens, 16 is a light emitting point, 3.3 is a ray that passes through the periphery of the floodlight lens 2 among the nine luminous fluxes emitted from the light emitting point 1a, and 3 is a central ray. The figure shows a typical example of such an optical system, where the focal length of lens 2 is f = 20 tw, and the radius is 16. In this case, the F number is f4 =
1.25, which is almost the limit of the brightness that can be obtained with this type of device. However, the half-vertex angle of the cone of the luminous flux that is effective KW in this projector is θ#21.8°, and the ratio of light energy included in this angle range is 1 to the total luminous energy.
- (!O82θ)/2, which is only 13.8%.

アマチェア用のスチルカメラやビデオカメラに塔載する
自動焦点装置けカメラの携帯性その他の理由によって小
型、低コストが要求される。
Cameras with automatic focus devices mounted on amateur still cameras and video cameras are required to be small and low in cost due to their portability and other reasons.

投光・受光式AF装置はこのような要求を容易に満足さ
せうるので、比較的よく採用されている。
Light emitting/receiving type AF devices can easily satisfy such requirements and are therefore relatively commonly used.

この方式は外部照明が不足の場合でも使用できるという
大きな利点を有しているが、反面、遠距離被写体では反
射光エネルギ不足で測距不能になるという致命的欠点を
持っている。焦点距離の比較的長い、いわゆる望遠レン
ズをつけたカメラでは、被写体距離として10mもしく
はそれ以上ft!t!出(7て■とは区別して焦点合せ
を行なう必要がある。しかし現在実用化されているこの
方式のオートフォーカス装置の典型的な例では、限界検
知距離が約5mKすぎない。
This method has the great advantage of being usable even when there is insufficient external illumination, but on the other hand, it has the fatal drawback of not being able to measure distances when photographing distant objects due to insufficient reflected light energy. With a camera equipped with a relatively long focal length, so-called telephoto lens, the subject distance is 10 m or more! T! It is necessary to perform focusing separately from (7) and (2). However, in a typical example of an autofocus device of this type that is currently in practical use, the limit detection distance is only about 5 mK.

(この発明が解決しようとする問題点)投光・受光式オ
ートフォーカス装置で、受光素子に戻ってぐる光エネル
ギPiはLEDの発光エネルギをPoとすると ただし R:被写体反射率 D:受光レンズの口径 F:投光レンズのFナンバ t:被写体距離 で表わされる。
(Problem to be solved by this invention) In a light emitting/receiving type autofocus device, the light energy Pi returning to the light receiving element is as follows, where Po is the light emitting energy of the LED: R: Subject reflectance D: Light receiving lens Aperture F: F number of the light projection lens t: Expressed by subject distance.

従って、例えば限界検知距離を2@のIomにしようと
するとき、LEDの発光エネルギの増加のみで行うとす
れば、発光エネルギを少なくとも4@にしなければ受光
Wkヲ同じにすることが出来ない。
Therefore, for example, when trying to set the limit detection distance to Iom of 2@, if this is done only by increasing the light emitting energy of the LED, the light reception Wkwo cannot be made the same unless the light emitting energy is at least 4@.

また、投光レンズを明るくして解決しようと思えばFナ
ンバをI/2にしなければならない。
Also, if you want to solve the problem by making the projection lens brighter, you need to set the F number to I/2.

これを実現する方法は3通りあり、投光レンズの口径を
2@にすること、投光レンズの焦点距離を1/2にする
こと、またその両者t−i宜の割合で組合せることであ
る。
There are three ways to achieve this: by setting the aperture of the light projection lens to 2@, by reducing the focal length of the light projection lens to 1/2, or by combining both at the ratio of t-i. be.

別の方法として受光レンズの口径を2倍にすることで解
決することも考えられる。
Another possible solution is to double the aperture of the light receiving lens.

しかし、上記例でもLEDの発光エネルギの限界the
っており、投光レンズ、受光レンズの口径も外観上杵さ
れる限界まで大きくしである。
However, even in the above example, the limit of the emission energy of the LED is
Therefore, the apertures of the light projecting lens and the light receiving lens were increased to the maximum extent possible due to the appearance.

また投光レンズの焦点距離をこれ以上短かくすると単レ
ンズでは曲率が大きくなりすぎ、周辺光の反射が増加し
て投光エネルギの増加が期待出来なくなる。レンズの構
成枚数を増せばこの問題は一応解決するが、効果が小さ
い割りには大きなコスト上昇を招く。このような理由に
よって上記の従来例によっては距離検知能力の限界をこ
えることは出来なかった。
Furthermore, if the focal length of the projection lens is made shorter than this, the curvature of a single lens becomes too large, and the reflection of peripheral light increases, making it impossible to expect an increase in the projection energy. This problem can be temporarily solved by increasing the number of lens elements, but this results in a large increase in cost despite the small effect. For these reasons, the above-mentioned conventional examples have not been able to exceed the limit of distance detection ability.

この発明で1dLEDの発光光束の利用効率を上げよう
とするものであるが、発光点を頂点とする円錐半頂角θ
の場合の光の利用効率及びこれに相当するFナンバを示
せば下表のようになる。
This invention aims to increase the utilization efficiency of the emitted light flux of 1 dLED, but the half-apex angle θ of the cone with the light emitting point as the apex is
The table below shows the light utilization efficiency and the corresponding F number in the case of .

もし、光の利用効率’e50%にまで上げようとすれば
、半頂角45までの光束を利用しなければならず、第8
図のような通常の光学系で考えればFナンバーは1/2
tanθから0.5となシ、常識的に見て実現不可能と
なる。
If we want to increase the light utilization efficiency to 50%, we must use the luminous flux up to the half-vertex angle of 45, and the 8th
Considering the normal optical system as shown in the figure, the F number is 1/2.
If tanθ is 0.5, it is impossible to realize it based on common sense.

この発明は投光装置の大型化、コスト高を招かずに光の
利用効率を飛躍的に向上させようとするものである。
This invention aims to dramatically improve the efficiency of light use without increasing the size and cost of the projector.

発明の構成 (問題を解決するための手段) この発明の投光装置は第1図にその基本的な構成を示す
ように、集束光学系は回転放物面をその回転軸を含むf
fで分割し、その片側半分もしくはその一部を鏡面とし
た反射鏡12を用い、放物面鐘の焦点もしくはその近傍
にLEDlの発光部の中心を配置し、LEDの中心光線
が上記反射鏡に入射するようにLEDIを配設している
Structure of the Invention (Means for Solving the Problem) As shown in FIG. 1, the basic structure of the light projecting device of the present invention is such that the focusing optical system has a paraboloid of rotation with an axis of rotation f
Using a reflecting mirror 12 divided by f and having one half or a part thereof mirrored, the center of the light emitting part of the LED l is placed at or near the focal point of the parabolic bell, and the center ray of the LED is directed to the reflecting mirror 12. The LEDI is arranged so that the light is incident on the light.

(作用) 上記のように構成した投光装置は、LEDIの中心光線
が放物面鏡12の回転軸128に垂直に出射するように
その焦点に配設し、利用光束の限界の光線の経路が13
’、13で示される場合、これらの反射光線は放物面鏡
12によってその対称軸12aKモ行に進行する。第1
図において、射出光束の幅(y軸方向の@)を第8図の
レンズ2と同じ16龍とすると、10mの距離にある被
写体に収束させると、両側限界の光線が主光線となす角
はわずかに245であり、実質的に主光線とモ行と考え
てよい。レンズの焦点距離を第8図で20龍とすると、
10m先に集束させる場合とモ行光束にする場合との発
光点1aの位置の差はわずかに40μmであり、これは
部品の製造バラツキおよびLEDの取付は誤差と同程度
もしくはそれ以下であり、放物面鏡の焦点に置くと考え
てよい。
(Function) The light projection device configured as described above is arranged at the focal point so that the central light beam of the LEDI is emitted perpendicularly to the rotation axis 128 of the parabolic mirror 12, and the light beam path of the limit of the usable luminous flux is set. is 13
', 13, these reflected rays travel by the parabolic mirror 12 in the direction of its axis of symmetry 12aK. 1st
In the figure, if the width of the emitted light beam (@ in the y-axis direction) is 16 mm, which is the same as that of lens 2 in Figure 8, and the beam is converged on an object at a distance of 10 m, the angle that the rays at both limits make with the principal ray is It is only 245, and can be considered to be essentially the chief ray and the mo line. If the focal length of the lens is 20 dragons in Figure 8,
The difference in the position of the light emitting point 1a between the case of focusing 10 m ahead and the case of directing the light beam is only 40 μm, which is the same level of error or less than the error caused by manufacturing variations in parts and LED installation. You can think of it as placing it at the focus of a parabolic mirror.

第1図(a)において放物線の方程式は一般のように 
y2=4PX とおくことができる。装置の大きさの制
約から、開口部のyの直を一定とすると、XはPに反比
例することとなり、そのXは放物面@i!12!Lの深
さ、すなわち放物線の頂点から開口部までの距離を表わ
すこととなる。
In Figure 1(a), the equation of a parabola is generally
It can be set as y2=4PX. Due to the size constraints of the device, if the axis of y of the aperture is constant, then X will be inversely proportional to P, and that X will be a paraboloid @i! 12! It represents the depth of L, that is, the distance from the apex of the parabola to the opening.

従って、深さはPが小さい程深く、Pが大きい程浅くな
り、これによって実施例の形態が異なったものとなって
くる。
Therefore, the smaller P is, the deeper the depth is, and the larger P is, the shallower the depth is, and this makes the embodiments different.

第1図の光学系において、開口を16sowとし、P 
= 3.2 tmとおけば深さは20龍となり、@8図
の従来例に対応する。このとき開口部を出て行く光束の
限界角度すなわち円錐半頂角は約46.4となり、光束
の利用効率は52チ強となり、従来例の利用効率の3培
以上となる。
In the optical system shown in Fig. 1, the aperture is 16 sow, and P
= 3.2 tm, the depth will be 20 tm, which corresponds to the conventional example shown in Figure @8. At this time, the critical angle of the light beam exiting the aperture, that is, the half-vertex angle of the cone, is approximately 46.4, and the light flux utilization efficiency is a little more than 52 inches, which is more than 3 times the utilization efficiency of the conventional example.

(実施例) 第1図(b)は、LEDの中心光線から半頂角10毎に
とった円錐型光束の拡がりを13&−13f・に示す。
(Example) FIG. 1(b) shows the spread of a conical light beam taken at every half apex angle of 10 from the center ray of the LED at 13&-13f.

従って、放物面鏡の有効範囲を考慮して例えば図の鎖線
で切る等、任意の形とすることが出来る。このように切
断したものの1例を第2図に斜視図として示す◎ これ迄の説明では、発光点1aは大きさのない点として
扱ってき九が、実際のLEDでは発光部の大きさが半径
083龍〜0.5mであるのが普通である。発光部に大
きさがあると当然被写体面においてもそれに応じた光束
の拡がシが発生する。第8図に示すような普通のレンズ
系ではその拡がフはfき率計算で求めることが出来、レ
ンズの焦点距離を20m1発光部の半径を0゜3關とす
れば10mの被写体位置において半径150uの拡がり
となる。受光部側に投光側と同等の光学系を用いている
場合は、受光素子上に得られる反射光の鐵の大きさは、
発光部の大きさと同じサイズとなシ、発光部の大きさに
起因する光束の拡がりは本来は光量損失の原因にはなら
ない。しかし光束の拡がりが目標の被写体よシ大きくな
ると、反射光として返ってとないエネルギが多くなり、
光量損失になってしまう。主要被写体として人物を想定
した場合、上記の半径150龍は十分に小さい1直であ
り、2501位迄は許容できる。第1図示の上記の構成
の投光装置の例では、発光部が半tl 0.3 mの大
きさを持つと、光束の拡がりは被写体距離10mにおい
て短径700冨翼、長径1400m5の長円になる。
Therefore, considering the effective range of the parabolic mirror, it can be made into any shape, such as by cutting along the chain line in the figure. An example of a cut piece like this is shown in a perspective view in Figure 2. In the explanation so far, the light emitting point 1a has been treated as a point with no size, but in an actual LED, the size of the light emitting part is a radius. It is normal that the length is 083 to 0.5m. Naturally, if the light emitting section has a certain size, a corresponding spread of the luminous flux will occur on the subject surface as well. In a normal lens system as shown in Figure 8, its expansion can be found by calculating the f-factor.If the focal length of the lens is 20 m and the radius of the light emitting part is 0°3, then at a subject position of 10 m, It has a radius of 150u. When using the same optical system on the light receiving side as on the light emitting side, the size of the reflected light obtained on the light receiving element is:
Unless the size is the same as that of the light emitting part, the spread of the luminous flux due to the size of the light emitting part does not originally cause loss of light quantity. However, if the spread of the light beam becomes larger than the target object, more energy will be returned as reflected light.
This will result in a loss of light quantity. When a person is assumed as the main subject, the above-mentioned radius of 150 degrees is a sufficiently small one shift, and a radius of up to 2,501 degrees is acceptable. In the example of the floodlight device shown in Figure 1 with the above configuration, if the light emitting part has a size of half TL 0.3 m, the spread of the luminous flux will be an ellipse with a short axis of 700 m and a long axis of 1400 m5 at a subject distance of 10 m. become.

この集光状態を第1図(e)にスポットダイヤグラムで
示す。図において座標原点は投光側の光軸(反射鏡の開
口の中心を通る水子線)に一致させである。原点を中心
とした2つの円は内側が許容範囲である半径25011
i!であり、外側は半径300flの参考臼である。
This condensed state is shown in a spot diagram in FIG. 1(e). In the figure, the coordinate origin is aligned with the optical axis of the light projecting side (the water line passing through the center of the aperture of the reflecting mirror). The radius of the two circles centered on the origin is 25011, which is within the allowable range.
i! The outside is a reference mill with a radius of 300fl.

距離10mにおいて被写体面に到達する全光束のうち、
上記許容臼に入るのはエネルギで約69%であり、LE
Dの全発光エネルギの約36.3%になっている。この
構成によって、第8図のものに比べて約2.6@の効率
の向上が得られておシ、オートフォーカス装置の測距可
能距離が16@でほぼ8mfM度になる。
Of the total luminous flux reaching the subject plane at a distance of 10 m,
Approximately 69% of the energy enters the allowable mill above, and LE
This is approximately 36.3% of the total luminous energy of D. With this configuration, an improvement in efficiency of about 2.6@ is obtained compared to the one shown in FIG. 8, and the measurable distance of the autofocus device becomes approximately 8 mfM degrees at 16@.

第3図に示す例では、LEDの中心軸を垂直から約20
だけ放物面の開口側へ傾けたものである。この構成によ
って光束の利用効率は38゜3%に向上する。
In the example shown in Figure 3, the center axis of the LED is approximately 20 degrees from the vertical.
The paraboloid is tilted toward the opening side. With this configuration, the luminous flux utilization efficiency is improved to 38.3%.

第4図は浅い放物面を用いた例であυ、Pが71111
でLED 1は光軸に対する垂直方向から反時計回シに
20傾いている。同図中)はその集光状f14に一スポ
ットダイヤグラムで示す。この例では光束の利用効率F
i44.1%になる。
Figure 4 is an example using a shallow paraboloid, where υ and P are 71111.
In this case, LED 1 is tilted 20 degrees counterclockwise from the perpendicular direction to the optical axis. (in the same figure) is shown by a single spot diagram on its condensing shape f14. In this example, the luminous flux utilization efficiency F
i44.1%.

第5図はP=14.8、LEDの頌き角65とし、光学
系を叫脂もしくはガラス等の透明体で1ブロツクとして
形成したものである。ブロック22Fi、その1端に反
射面とされた回転放物面22Cを有し、その回転軸22
a上に光束の入射面22bを形成し、他端は回転軸22
&に垂直な出射面22dとされている。同図(b)はこ
のブロックの斜視図である。
In FIG. 5, P=14.8, the LED angle is 65, and the optical system is formed as one block from a transparent material such as resin or glass. The block 22Fi has a paraboloid of revolution 22C as a reflective surface at one end thereof, and its rotation axis 22
The incident surface 22b of the light flux is formed on the top a, and the other end is the rotation axis 22
The output surface 22d is perpendicular to &. Figure (b) is a perspective view of this block.

この投光装置による集光状a’を同図(e)にスポット
ダイアグラムで示す。LEDlからの出射光束のほぼ6
0チが出射面22dから出射し、光束エネルギの利用効
率も51チと第8図の従来例の3.7@となシ、これに
よって測距可能距離がほぼ9.6mに迄のびる。
The condensed light a' by this light projecting device is shown in a spot diagram in FIG. 2(e). Approximately 6 of the luminous flux emitted from the LEDl
0 beams are emitted from the exit surface 22d, and the efficiency of use of luminous energy is 51 beams, which is 3.7 meters in the conventional example shown in FIG. 8, thereby extending the measurable distance to approximately 9.6 meters.

第1図(e)と第5図(C)のスポットダイヤグラムを
比較すれば光束の拡がり方がかなシ相違しているのが明
らかである。これはいわゆる倍率の差によるものである
。この発明に利用されるような反射鏡の倍率は、鏡面か
ら被写体までの距離に対する光源から鏡面までの距離の
比であり、光源の大きさ等による焦点からのズレは被写
体面上にこの倍率で表われてくる。第1図の実施例では
、反射鏡の部位によって@率が230〜2300@と異
なっておシ、スポットダイヤグラムは点の分布が拡がっ
ている。第5図の実施例では@率は520〜660倍と
比較的揃っており、このために光束の拡がりは小さくな
っている。
Comparing the spot diagrams of FIG. 1(e) and FIG. 5(C), it is clear that there is a slight difference in the way the light beam spreads. This is due to the so-called difference in magnification. The magnification of the reflecting mirror used in this invention is the ratio of the distance from the light source to the mirror surface to the distance from the mirror surface to the subject, and the deviation from the focal point due to the size of the light source etc. is reflected on the subject plane at this magnification. It's coming out. In the embodiment shown in FIG. 1, the rate varies from 230 to 2300 depending on the location of the reflecting mirror, and the distribution of points in the spot diagram is widened. In the embodiment shown in FIG. 5, the @ ratio is relatively uniform at 520 to 660 times, and therefore the spread of the light beam is small.

上記実施例では、LED1発光面と入射面22b′l!
:互に子桁としたが、第6図に示す場合は、入射面22
bはそのままとし、LEDlを時計回りに若干傾けたも
のである0例えば5傾けたときの光束エネルギの利用効
率は50.2%であり、効率の低下は険めて少ない。ま
た、LEDlの発光面はそのままとし、入射面22bを
どちらかに若干峨けても結果はほぼ同様である。
In the above embodiment, the light emitting surface of the LED 1 and the incident surface 22b'l!
: Both are child beams, but in the case shown in Fig. 6, the entrance plane 22
When b is left unchanged and the LED l is tilted slightly clockwise by 0, for example, by 5, the luminous flux energy utilization efficiency is 50.2%, and the decrease in efficiency is extremely small. Moreover, the result is almost the same even if the light emitting surface of LEDl is left as is and the incident surface 22b is slightly tilted to either side.

これは、LED発光面や入射面の角変に関しては、製造
誤差、組付誤差があっても光束エネルギの利用効率Fi
あまり変動しないという利点を有することを意味してい
る。また、入射面22bはモ面でなく、ゆるい凹面にし
たt′!!うが収差補正上は有利である。但し、凹面に
すると組付精Vは若干厳しくなる。
This means that even if there are manufacturing errors and assembly errors regarding the angular changes of the LED light emitting surface and the incident surface, the luminous flux energy utilization efficiency Fi
This means that it has the advantage of not changing much. In addition, the entrance surface 22b is not a flat surface but a gently concave surface t'! ! This is advantageous in correcting aberrations. However, if the surface is concave, the assembly precision V will be slightly stricter.

発明の効果 上記のように、この発明は、回転放物面鏡を用い、しか
も常用のように光源の中心光線を放物面鏡の頂点に向け
るのではなく、回転放物面鏡を回転軸を含むモ面で分割
し、その半分もしくは1部を用い、この部分放物面鏡の
中心処光源の中心光線を向けるようにしたので、光学系
をブロック化する等、その構成が容易になり、光源の配
置も光束を遮蔽する等の問題もなく、カメラ等への組付
けも容易になる。
Effects of the Invention As described above, this invention uses a parabolic mirror of revolution, and instead of directing the central ray of the light source to the vertex of the parabolic mirror as is commonly used, the parabolic mirror of revolution is directed toward the axis of rotation. The mirror is divided by a plane containing the mirror, and one half or part of it is used to direct the central ray of the central light source of this partial parabolic mirror, making it easier to configure the optical system by making it into blocks. There is no problem of arranging the light source or blocking the light beam, and it is easy to assemble it into a camera or the like.

その上、従来の光学系とほぼ同じ大きさで通常のレンズ
系では実現不可能なtitに光束エネルギーの利用効率
を高めることが出来、オートフォーカスカメラ等に用い
て測距可能距離をほぼ2倍にしつるという顕著な効果を
奏する口
In addition, it is approximately the same size as a conventional optical system, and can improve the efficiency of using luminous flux energy to a point that cannot be achieved with a normal lens system, and can be used in autofocus cameras, etc. to almost double the measurable distance. A mouth that has a remarkable effect of drying.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の投光装置の基本構成を示す説明図、
@2図第5図(b)はその実施例の斜視図、第3図、第
4図(a)、第5図(a)、第6図はそれぞれの変形実
施例を示す断面図、第4図(b)第5図(11りはスポ
ットダイヤグラム、第7図はLEDの配光特性図、第8
図は従来例の光学配置図である。 1:LED  2:v:yズ 12.22c:回転放物
反射面 22b:入射面 22d:射出面 特許出願人  株式会社 リ  コ  −出願人代理人
 弁理士 佐  藤  文  男(ほか2名) [bl 第2図 第1図 ソ′ [el シ 第3図 第  4  図           ず[bl 第6図
FIG. 1 is an explanatory diagram showing the basic configuration of a light projecting device of the present invention;
@2 Figure 5 (b) is a perspective view of the embodiment, Figure 3, Figure 4 (a), Figure 5 (a), and Figure 6 are sectional views showing respective modified embodiments. Figure 4 (b) Figure 5 (11 is the spot diagram, Figure 7 is the LED light distribution characteristic diagram, Figure 8 is
The figure is an optical arrangement diagram of a conventional example. [ bl Figure 2 Figure 1 So' [el C Figure 3 Figure 4 [bl Figure 6

Claims (1)

【特許請求の範囲】[Claims] 回転放物面をその回転軸を含む面で分割し、その片側半
分以下を鏡面とし、該放物面鏡の焦点近傍に射出光の中
心光束が該放物面鏡に入射するように光源を配設したこ
とを特徴とする投光装置
A paraboloid of revolution is divided by a plane including its axis of rotation, less than half of one side thereof is made into a mirror surface, and a light source is provided so that the central beam of the emitted light enters the parabolic mirror near the focal point of the paraboloid. A floodlighting device characterized by the following:
JP15525585A 1985-07-16 1985-07-16 Projector Pending JPS6217721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15525585A JPS6217721A (en) 1985-07-16 1985-07-16 Projector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15525585A JPS6217721A (en) 1985-07-16 1985-07-16 Projector

Publications (1)

Publication Number Publication Date
JPS6217721A true JPS6217721A (en) 1987-01-26

Family

ID=15601921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15525585A Pending JPS6217721A (en) 1985-07-16 1985-07-16 Projector

Country Status (1)

Country Link
JP (1) JPS6217721A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5936769A (en) * 1994-10-07 1999-08-10 Japan Invention Spread Promotion Association Corporation Reflecting sheet
EP1631855A1 (en) * 2003-06-10 2006-03-08 Samsung Electronics Co., Ltd. Compact led module and projection display adopting the same
JP2006527416A (en) * 2003-06-10 2006-11-30 サムスン エレクトロニクス カンパニー リミテッド Compact light source module and projection type image display apparatus using the same
WO2007048274A1 (en) * 2005-10-27 2007-05-03 Kazuhiro Miyashita An enclosed led light emitting source structure
US7281860B2 (en) 2003-06-06 2007-10-16 Sharp Kabushiki Kaisha Optical transmitter
JP2008041256A (en) * 2006-08-01 2008-02-21 Hitachi Ltd Optical unit and video display device using the same
KR100994767B1 (en) 2003-09-17 2010-11-16 삼성전자주식회사 Projection display
KR101057996B1 (en) 2003-10-27 2011-08-19 삼성전자주식회사 Projection type image display device
WO2013116839A1 (en) * 2012-02-04 2013-08-08 Douglas Scientific Method and apparatus for rapid, high sensitivity analysis of low volume samples of biological materials

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5936769A (en) * 1994-10-07 1999-08-10 Japan Invention Spread Promotion Association Corporation Reflecting sheet
US7281860B2 (en) 2003-06-06 2007-10-16 Sharp Kabushiki Kaisha Optical transmitter
EP1631855A1 (en) * 2003-06-10 2006-03-08 Samsung Electronics Co., Ltd. Compact led module and projection display adopting the same
JP2006527416A (en) * 2003-06-10 2006-11-30 サムスン エレクトロニクス カンパニー リミテッド Compact light source module and projection type image display apparatus using the same
EP1631855A4 (en) * 2003-06-10 2008-01-23 Samsung Electronics Co Ltd Compact led module and projection display adopting the same
JP4823898B2 (en) * 2003-06-10 2011-11-24 サムスン エレクトロニクス カンパニー リミテッド Compact light source module and projection type image display apparatus using the same
KR100994767B1 (en) 2003-09-17 2010-11-16 삼성전자주식회사 Projection display
KR101057996B1 (en) 2003-10-27 2011-08-19 삼성전자주식회사 Projection type image display device
WO2007048274A1 (en) * 2005-10-27 2007-05-03 Kazuhiro Miyashita An enclosed led light emitting source structure
JP2008041256A (en) * 2006-08-01 2008-02-21 Hitachi Ltd Optical unit and video display device using the same
WO2013116839A1 (en) * 2012-02-04 2013-08-08 Douglas Scientific Method and apparatus for rapid, high sensitivity analysis of low volume samples of biological materials

Similar Documents

Publication Publication Date Title
KR100858571B1 (en) Coupling of light from a small light source for projection systems using parabolic reflectors
JP2675677B2 (en) Prism light guide luminaire with efficient directional output
US20070236950A1 (en) Headlight assembly having strongly trained cut-off
US7645061B2 (en) Headlight assembly
US11921413B2 (en) Projection screen and projection system
US6908218B2 (en) Light source unit and projector type display device using the light source unit
CA1245487A (en) Apparatus of projecting luminous lines on an object by a laser beam
US6558007B2 (en) Illumination optical system and image projection apparatus
CN113777870A (en) Projection light source and projection apparatus
JPS6217721A (en) Projector
CN211043831U (en) Optical beam expanding lens and lamp
CN107870386B (en) A kind of photoconductive tube and lighting system
KR101679061B1 (en) Light output device and method
KR20070084600A (en) Optical system and corresponding optical element
US4565421A (en) Plural-beam scanning apparatus
WO2021259270A1 (en) Light source assembly and projection device
Parkyn et al. Converging TIR lens for nonimaging concentration of light from compact incoherent sources
KR20020033112A (en) System for collecting and condensing light
JP2656770B2 (en) Transmission screen
JPS6281614A (en) Photocoupler
JPS6125104A (en) Compound lens
JP2000122178A5 (en)
WO2016084680A1 (en) Light guide plate, illumination optical system, and optical device
WO2015115244A1 (en) Light flux control member, light-emitting device, and illumination device
JP2919082B2 (en) Multi-segment lens for optical detector