JPS6217720B2 - - Google Patents

Info

Publication number
JPS6217720B2
JPS6217720B2 JP55001311A JP131180A JPS6217720B2 JP S6217720 B2 JPS6217720 B2 JP S6217720B2 JP 55001311 A JP55001311 A JP 55001311A JP 131180 A JP131180 A JP 131180A JP S6217720 B2 JPS6217720 B2 JP S6217720B2
Authority
JP
Japan
Prior art keywords
output
distribution
reactor
calculation
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55001311A
Other languages
Japanese (ja)
Other versions
JPS5698682A (en
Inventor
Toshio Mita
Kotaro Inoe
Kazuo Azekura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP131180A priority Critical patent/JPS5698682A/en
Publication of JPS5698682A publication Critical patent/JPS5698682A/en
Publication of JPS6217720B2 publication Critical patent/JPS6217720B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 本発明は、高速炉のオンライン炉心監視方法・
装置に係り、特に、原子炉炉心内の出力分布と温
度分布を出力分布計算モデルによる推定結果と冷
却材温度・流量の測定結果とを用いて推定する高
速炉炉心監視方法及びその装置に関する。
[Detailed Description of the Invention] The present invention provides an online core monitoring method for a fast reactor.
The present invention relates to a fast reactor core monitoring method and an apparatus for estimating power distribution and temperature distribution in a nuclear reactor core using estimation results based on a power distribution calculation model and measurement results of coolant temperature and flow rate.

高速炉を安全かつ効率よく運転するためには、
炉心状態をオンラインで迅速かつ正確に把握する
必要がある。このためには、原子炉の出力分布を
精度よく求める必要があり、従来より3次元多群
拡散方程式を解くなどの方法が用いられている
が、計算時間の点からオンライン計算に適用する
ことは不適当である。このため、以下に示す各種
の近似計算法が提案されている。例えば (1) 3次元(修正)1群粗メツシユ法 (2) エネルギー・モード法 (3) シンセシス法 (4) インフルエンス関数法 がある。
In order to operate fast reactors safely and efficiently,
It is necessary to quickly and accurately grasp the reactor core status online. For this purpose, it is necessary to accurately determine the power distribution of the nuclear reactor, and conventional methods such as solving a three-dimensional multigroup diffusion equation have been used, but from the viewpoint of calculation time it is difficult to apply it to online calculations. It's inappropriate. For this reason, various approximate calculation methods shown below have been proposed. For example, there are (1) three-dimensional (modified) one-group coarse mesh method, (2) energy mode method, (3) synthesis method, and (4) influence function method.

一方、炉内に多数の中性子検出器を配置し、そ
の読みによつて出力分布を得る方法が考えられ、
熱中性子炉ではある程度の数の炉内中性子検出器
が設置されている。高速炉の場合には、炉心内は
高温ナトリウム、高中性子束等の厳しい使用環境
であることに加え、出力密度が大きいため小型の
検出器が必要となるため、高速炉用炉内検出器に
関しては現在まだ開発段階である。このため、従
来は炉心状況を把握するのに、計算または経験の
みにたよつていた。最近、高速炉でも冷却材の温
度・流量の測定値の情報を反映させる手法も提案
されているが、従来の熱中性子炉と同様、出力分
布計算モデルにより計算結果を、対応する実測デ
ータに一致させるべく修正するものである。この
手法は、熱中性子炉のごとく、炉内中性子検出器
により直接出力分布に相当する値が測定でき、比
較的測定精度が良い場合には適しているが、高速
炉のごとく、直接出力分布が測定できず、必ずし
も測定精度が計算精度を上回つているとは言えぬ
状況では不適当である。
On the other hand, there is a method of arranging a large number of neutron detectors inside the reactor and obtaining the output distribution from the readings.
A certain number of in-reactor neutron detectors are installed in thermal neutron reactors. In the case of fast reactors, the inside of the reactor core is a harsh environment with high temperature sodium, high neutron flux, etc., and the power density is large, so a small detector is required. is currently still in the development stage. For this reason, in the past, researchers relied only on calculations or experience to understand the core status. Recently, a method has been proposed that reflects information on measured values of coolant temperature and flow rate for fast reactors, but as with conventional thermal neutron reactors, the calculation results are matched with the corresponding measured data using a power distribution calculation model. This will be corrected to make it possible. This method is suitable for cases such as thermal neutron reactors, where a value corresponding to the direct power distribution can be measured using an in-reactor neutron detector, and the measurement accuracy is relatively good; however, such as for fast reactors, where the direct power distribution is It is inappropriate in situations where it cannot be measured and the measurement accuracy cannot necessarily be said to exceed the calculation accuracy.

本発明は、上記の従来技術の欠点をなくし、冷
却材の温度・流量の実測データを有効に利用し
て、信頼性の高い高速炉の炉心監視方法・装置を
提供することを目的とするものである。
It is an object of the present invention to eliminate the drawbacks of the above-mentioned conventional techniques and to provide a highly reliable method and device for core monitoring of a fast reactor by effectively utilizing measured data of coolant temperature and flow rate. It is.

本発明は、前述した近似計算法を用いて、空間
出力分布および集合体平均出力を短時間で計算
し、集合体の入口温度差・流量の測定値からも集
合体平均出力を計算して、両者の最確値とその精
度を求めることにより、炉心の出力分布と温度分
布を推定するものである。
The present invention uses the above-mentioned approximate calculation method to calculate the spatial output distribution and the aggregate average output in a short time, and also calculates the aggregate average output from the measured values of the inlet temperature difference and flow rate of the aggregate, The power distribution and temperature distribution of the reactor core are estimated by finding the most probable values of both and their accuracy.

以下本発明を図に示す実施例によつて詳しく説
明する。
The present invention will be explained in detail below with reference to embodiments shown in the drawings.

第1図は本発明による炉心監視装置の実施例の
構成を示すブロツク図であり、本発明の装置は符
号100で示すプロセス計算機で構成されてい
る。図示しない制御棒の位置、炉心流量、熱出力
などの予め与えられる運転データは、出力分布計
算部1に送られ、炉心の幾何学的寸法と核定数か
ら修正1群拡散計算により原子炉出力の空間分布
C(r1z)±ΔPC(r1z)を近似的に計算され
る。ここでΔPC(r1z)は、本計算部1で求まる
出力分布の精度を表わし、各種モツクアツプ試験
で確認された詳細計算の精度(測定値との差)お
よび本計算部1で使用した近似計算法の精度(詳
細計算値との差)により決定されるもので、燃焼
度等の関数としてあらかじめ評価しておく。出力
分布計算部1で計算された空間出力分布値の信号
は、集合体出力算出部2及び出力分布最確値計算
部9へ送られる。集合体出力算出部2では、前記
空間出力分布値を各集合体毎に軸方向に積分し
て、集合体毎の出力PCi+ΔPCi(iは集合体番
号)を算出する。
FIG. 1 is a block diagram showing the configuration of an embodiment of a core monitoring system according to the present invention, and the system according to the present invention is composed of a process computer designated by the reference numeral 100. Operation data given in advance, such as the position of control rods (not shown), core flow rate, thermal output, etc., is sent to the power distribution calculation unit 1, and the reactor power is determined by a modified first group diffusion calculation based on the core geometric dimensions and nuclear constants. The spatial distribution P C (r 1 z) ±ΔP C (r 1 z) is approximately calculated. Here, ΔP C (r 1 z) represents the accuracy of the output distribution determined by this calculation unit 1, and it is the accuracy of detailed calculations (difference from measured values) confirmed in various mock-up tests and the accuracy of the output distribution used in this calculation unit 1. It is determined by the accuracy of the approximate calculation method (difference from the detailed calculation value), and is evaluated in advance as a function of burnup, etc. The signal of the spatial output distribution value calculated by the output distribution calculation section 1 is sent to the aggregate output calculation section 2 and the output distribution most probable value calculation section 9. The aggregate output calculation unit 2 integrates the spatial output distribution value in the axial direction for each aggregate to calculate the output P Ci +ΔP Ci (i is the aggregate number) for each aggregate.

出力分布最確値計算部9については後述する。 The output distribution most probable value calculation unit 9 will be described later.

一方原子炉運転中の実測データは、原子炉容器
101内の流量検出器102、温度検出器103
及び容器101へのナトリウム供給配管に取付け
られた温度検出器104により取出され、温度検
出器104からの情報は原子炉入口温度測定処理
部3へ、温度検出器103からの情報は集合体出
口温度測定処理部4へ、又流量検出器102から
の情報は集合体流量測定処理部へ夫々送られる。
そしてこれらの各処理部3〜5は、現時点の測定
値を求めるとともに、定期的に統計処理して、そ
の平均値とゆらぎ量を求める。
On the other hand, actual measurement data during reactor operation is obtained from the flow rate detector 102 and temperature detector 103 inside the reactor vessel 101.
The information from the temperature detector 104 is sent to the reactor inlet temperature measurement processing section 3, and the information from the temperature detector 103 is sent to the assembly outlet temperature. Information from the measurement processing unit 4 and the flow rate detector 102 are sent to the aggregate flow rate measurement processing unit, respectively.
Each of these processing units 3 to 5 obtains the measured value at the present time, and periodically performs statistical processing to obtain the average value and the amount of fluctuation.

上記測定処理部3〜5からの出力をTIN±ΔT
IN、TSAi±ΔTSAi、FSAi±ΔFSAiとすると、そ
の測定精度ΔTIN、ΔTSAi、ΔFSAiはセンサ、
計測回路等の精度、実機での設置条件できまる精
度と測定値のゆらぎ量により決定される。上記の
うち、流量の測定値FSAi±ΔFSAiは、オフライ
ンの詳細計算であらかじめ求めた計算値(集合体
流量分布記憶部6に格納)FCi±ΔFCiと共に流
量最確値計算部7に入力され、流量分布の最確値
i±ΔFiが求められる。8は集合体出力変換部
で、上記のTIN±ΔTIN、TSAi±ΔTSAi、Fi±
ΔFiから次式により集合体出力PMi±ΔPMiを算
出する。
The output from the measurement processing units 3 to 5 above is T IN ±ΔT
IN , T SAi ±ΔT SAi , F SAi ±ΔF SAi , the measurement accuracy ΔT IN , ΔT SAi , ΔF SAi is the sensor,
It is determined by the accuracy of the measurement circuit, etc., the accuracy determined by the installation conditions of the actual machine, and the amount of fluctuation in the measured value. Of the above, the measured flow rate F SAi ±ΔF SAi is input to the most probable flow rate calculation unit 7 together with the calculated value F Ci ±ΔF Ci (stored in the aggregate flow rate distribution storage unit 6) obtained in advance by offline detailed calculation. Then, the most probable value F i ±ΔF i of the flow rate distribution is determined. 8 is an aggregate output converter, which converts the above T IN ±ΔT IN , T SAi ±ΔT SAi , F i ±
The aggregate output P Mi ±ΔP Mi is calculated from ΔF i using the following formula.

Mi=Fi・CP・(TSAi−TIN) …(1) ここで、CPは冷却材比熱である。 P Mi =F i・C P・(T SAi −T IN )…(1) Here, C P is the specific heat of the coolant.

このようにして実測データから計算された出力
分布値の信号は前記出力分布最確値計算部9へ送
られ、出力分布最確値計算部9では、前記集合体
出力算出部2及び集合体出力算出部8から送られ
た信号から集合体出力の最確値Pi及びその精度
ΔPiを計算する。これは次の如く算出される。
The signal of the output distribution value calculated from the actual measurement data in this way is sent to the output distribution most probable value calculation section 9, and in the output distribution most probable value calculation section 9, the output distribution value calculation section 2 and the aggregate output calculation section The most probable value P i of the aggregate output and its precision ΔP i are calculated from the signal sent from 8. This is calculated as follows.

即ち、集合体出力算出部2の出力PCi±ΔPCi
と集合体出力変換部8の出力PMi±ΔPMiの確率
分布が、いずれも正規分布に従うとして、その最
確値Piおよびその精度ΔPiが各々次式によつて
求められる。第2図はその原理図である。
That is, the output P Ci ±ΔP Ci of the aggregate output calculation unit 2
Assuming that the probability distributions of P Mi ±ΔP Mi and the output P Mi ±ΔP Mi of the aggregate output converter 8 both follow a normal distribution, the most probable value Pi and its accuracy ΔP i are determined by the following equations. FIG. 2 is a diagram showing its principle.

i=(ΔPCi・PMi+(ΔPMi
Ci/(ΔPCi+(ΔPMi…(3) 尚、出力の軸方向分布に関しては、出力分布計
算部で求められる出力分布形が適用される。
P i =(ΔP Ci ) 2・P Mi +(ΔP Mi ) 2
P Ci /(ΔP Ci ) 2 + (ΔP Mi ) 2 …(3) Note that, regarding the axial distribution of output, the output distribution form determined by the output distribution calculation section is applied.

出力分布最確値計算部1で求められた集合体出
力最確値Pi及び前記流量最確値計算部7で求め
られた流量分布の最確値の信号は、温度分布計算
部10へ送られる。温度分布計算部10では、出
力分布と流量分布から冷却材温度、燃料被覆管温
度、燃料ペレツト温度を求め、ホツトスポツト係
数、局所ピーキング係数を考慮して最高温度を求
める。この温度は、許容温度と常時比較、監視さ
れる。即ち出力分布最確値計算部9で求められた
集合体iの発熱密度Pi(z)により次式で冷却
材温度分布を求める。一般に、冷却材密度ρおよ
び比熱CPは温度の関数であるので、その点も考
慮する。
The most probable value of the aggregate output P i obtained by the most probable output distribution value calculation section 1 and the signal of the most probable value of the flow rate distribution obtained from the most probable flow rate value calculation section 7 are sent to the temperature distribution calculation section 10 . The temperature distribution calculation section 10 calculates the coolant temperature, fuel cladding temperature, and fuel pellet temperature from the output distribution and flow rate distribution, and calculates the maximum temperature by taking into account the hot spot coefficient and local peaking coefficient. This temperature is constantly compared and monitored with the permissible temperature. That is, the coolant temperature distribution is determined by the following equation using the heat generation density P i (z) of the aggregate i determined by the output distribution most probable value calculation unit 9. In general, the coolant density ρ and specific heat C P are functions of temperature, so these points are also taken into account.

i(Z+ΔZ)=Ti(Z)+P(Z)ΔZA/Vρ(T(Z))C(T(Z)) ………(5) ここで、 Vi:冷却材体積流量 ΔZ:軸方向メツシユ幅 A:集合体断面積 上式で冷却材原子炉入口温度(測定値)を初期
値として与えると、集合体毎の軸方向分布が得ら
れる。つぎに定常熱伝導の基礎式により、燃料被
覆管表面温度、燃料被覆管内面温度、燃料ペレツ
ト表面温度、燃料ペレツト中心温度が順次求めら
れる。上記の値は集合体平均の値であるので、ホ
ツトスポツト係数と集合体内の局所ピーキング係
数により補正する。ホツトスポツト係数は、工学
的不確定係数に基づくもので、乗算処理を行う乗
算項Mij(出力分布誤差、原子炉熱出力誤差、集
合体間流量配分誤差、流量変形誤差等)と、統計
処理を行う統計項Fij(流路断面積製作公差、ペ
レツト製作公差、熱伝導度誤差、熱伝達率誤差
等)とがある。Mijのうち、出力分布誤差、流合
体間流量配分誤差は、第1図の各計算部7,9に
より決定される。ホツトスポツト温度TH.S.
次式で表わされる。
T i (Z + ΔZ) = T i (Z) + P i (Z) ΔZA / V i ρ (T i (Z)) C P (T i (Z)) ...... (5) Here, V i : Cooling Material volumetric flow rate ΔZ: Axial mesh width A: Aggregate cross-sectional area If the coolant reactor inlet temperature (measured value) is given as an initial value in the above equation, the axial distribution for each aggregate can be obtained. Next, the fuel cladding surface temperature, the fuel cladding inner surface temperature, the fuel pellet surface temperature, and the fuel pellet center temperature are successively determined using the basic formula for steady heat conduction. Since the above value is an aggregate average value, it is corrected by the hot spot coefficient and the local peaking coefficient within the aggregate. The hot spot coefficient is based on an engineering uncertainty coefficient, and is calculated by using a multiplication term M ij (power distribution error, reactor thermal output error, inter-assembly flow distribution error, flow rate deformation error, etc.) that performs multiplication processing, and statistical processing. There are statistical terms F ij (channel cross-sectional area manufacturing tolerance, pellet manufacturing tolerance, thermal conductivity error, heat transfer coefficient error, etc.) to be performed. Of M ij , the output distribution error and the inter-fluid flow rate distribution error are determined by each of the calculation units 7 and 9 shown in FIG. The hot spot temperature THS is expressed by the following equation.

ここで、 TIN:原子炉入口温度 Tj:各部温度上昇量(ノミナル値) 尚前記流量最確値計算部の詳細については、前
記出力分布最確値計算部と同じ原理であるので、
詳細説明は省略する。
Here, T IN : Reactor inlet temperature T j : Amount of temperature rise at each part (nominal value) The details of the flow rate most probable value calculation section are based on the same principle as the power distribution most probable value calculation section, so
Detailed explanation will be omitted.

以上の各計算部で求められた値のうち、流量最
確値計算部7、出力分布最確値計算部9及び温度
分布計算部10の値信号は表示部13例えばブラ
ウン管により原子炉運転員への必要情報として表
示される。勿論その他の計算値信号も必要であれ
ば表示できるようにすれば良い。例えば次に説明
する原子炉の異常判定情報などを表示すれば、よ
り信頼性の高いものとなる。
Among the values obtained by each of the above calculation units, the value signals of the flow rate most probable value calculation unit 7, the power distribution most probable value calculation unit 9, and the temperature distribution calculation unit 10 are displayed on the display unit 13, for example, on a cathode ray tube, and are displayed to reactor operators. Displayed as information. Of course, other calculated value signals may also be displayed if necessary. For example, if abnormality determination information for a nuclear reactor, which will be described next, is displayed, the reliability will be even higher.

本実施例では、流路閉塞などの異常時、もしく
はセンサの故障時にも対処できるように、異常判
定部12を備えている。
In this embodiment, an abnormality determination section 12 is provided so as to be able to deal with an abnormality such as flow path blockage or a sensor failure.

異常判定部12には原子炉入口温度測定処理部
3、集合体出口温度測定処理部4、集合体流量測
定処理部5、集合体流量分布記憶部6、及び集合
体出入口温度差計算部11からの情報が入力され
ている。前述した様に、各測定処理部3,4,5
では、集合体出入口温度、集合体流量に関して、
定期的に熱出力で規格化した後、その平均値
()とゆらぎ量(ΔX)が求められる。ΔXと
して例えば標準偏差の3倍とする。異常判定の第
1段階として、現時点の測定値が±ΔX以内で
あるかどうか判定する。異常判定の第2段階とし
て、測定値と計算値の一致の確率の大きさが、規
定値以上であるかどうか判定する。この確率PB
は、測定値の平均値、標準偏差をXM、σM(上記
の測定値のゆらぎ量から決まる精度の他、センサ
の精度、実機での設置条件できまる精度等によ
る。)、計算値の平均値、標準偏差をXC、σCとす
ると、次式で与えられる。
The abnormality determination section 12 includes a reactor inlet temperature measurement processing section 3, an assembly outlet temperature measurement processing section 4, an assembly flow rate measurement processing section 5, an assembly flow rate distribution storage section 6, and an assembly inlet/outlet temperature difference calculation section 11. information has been entered. As mentioned above, each measurement processing section 3, 4, 5
Now, regarding the temperature at the entrance and exit of the aggregate and the flow rate of the aggregate,
After regularly normalizing the heat output, its average value () and the amount of fluctuation (ΔX) are determined. For example, ΔX is set to three times the standard deviation. As a first step in abnormality determination, it is determined whether the current measured value is within ±ΔX. As a second step of abnormality determination, it is determined whether the probability of coincidence between the measured value and the calculated value is greater than or equal to a specified value. This probability PB
is the average value and standard deviation of the measured values, X M , σ M (in addition to the accuracy determined from the amount of fluctuation in the measured values above, it also depends on the accuracy of the sensor, the accuracy determined by the installation conditions of the actual machine, etc.), and the calculated value. Letting the average value and standard deviation be X C and σ C , it is given by the following formula.

各判定の段階で、規定値を外れた場合には、異
常の種類を判別する。
At each determination stage, if the value deviates from the specified value, the type of abnormality is determined.

尚集合体出入口温度差計算部11には、集合体
流量測定処理部5及び集合体出力算出部2からの
集合体出力と流量の情報から、前記(1)式により集
合体出入口の温度差を計算し、前述と同様に標準
偏差値との比較が行なわれる。
The temperature difference calculation section 11 at the entrance and exit of the assembly calculates the temperature difference at the entrance and exit of the assembly using the above equation (1) from the information on the assembly output and flow rate from the assembly flow rate measurement processing section 5 and the assembly output calculation section 2. The standard deviation value is calculated and compared with the standard deviation value in the same manner as described above.

異常判定の系統は第3図に示されている。セン
サに関しては、ダブルエレメントの場合には相互
チエツクを行う。
The abnormality determination system is shown in FIG. Regarding the sensor, in the case of double elements, a mutual check is performed.

流路異常と判定された場晶には、異常時ルーチ
ン計算として、測定値を主体に出力分布、温度分
布を推定する。つまり、第1図において、流量最
確値計算部7、出力分布最確値計算部9は、着目
する集合体に関して異常判定部からの制御信号1
4により、集合体流量測定処理部5、集合体出力
変換部8の出力信号をそのまま出力する。
When a flow path abnormality is determined, the output distribution and temperature distribution are estimated based on the measured values as a routine calculation at the time of abnormality. That is, in FIG. 1, the most probable flow rate calculation section 7 and the most probable output distribution calculation section 9 receive the control signal 1 from the abnormality determination section regarding the aggregate of interest.
4, the output signals of the aggregate flow rate measurement processing section 5 and the aggregate output converting section 8 are output as they are.

センサ間信号の相互チエツクやセンサのハード
的チエツクによつてセンサ故障と判定された場合
には、着目する集合体に関して、上記とは逆に、
制御信号14により、故障したセンサ信号は使用
せず対応する計算値を主体に出力分布、温度分布
を推定する。
If a sensor failure is determined by a mutual check of inter-sensor signals or a hardware check of the sensor, contrary to the above,
According to the control signal 14, the output distribution and temperature distribution are estimated based mainly on the corresponding calculated values without using the failed sensor signal.

以上説明したように、本発明によれば高速炉の
ごとく測定精度と計算精度が同程度の場合にも、
原子炉内の出力分布をオンライン的に高速度で正
確に推定することができ、運転員に必要な情報を
提供し、原子炉の安全で効率的な運転を行うこと
を可能にする。
As explained above, according to the present invention, even when measurement accuracy and calculation accuracy are the same as in fast reactors,
The power distribution within the reactor can be estimated online, at high speed, and accurately, providing operators with the necessary information and enabling safe and efficient operation of the reactor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例のブロツク図、第2図
は本発明の最確値計算部の原理を示す線図、第3
図は本発明の一実施例における異常の判別系統を
示す系統図である。 1…出力分布計算部、2…集合体出力算出部、
3…原子炉入口温度測定処理部、4…集合体出口
温度測定処理部、5…集合体流量測定処理部、6
…集合体流量分布記憶部、7…流量最確値計算
部、8…集合体出力変換部、9…出力分布最確値
計算部、10…温度分布計算部、11…集合体出
入口温度差計算部、12…異常判定部、13…表
示部、14…制御信号、100…プロセス計算
機。
FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 is a diagram showing the principle of the most probable value calculation section of the present invention, and FIG.
The figure is a system diagram showing an abnormality discrimination system in an embodiment of the present invention. 1... Output distribution calculation unit, 2... Aggregate output calculation unit,
3... Reactor inlet temperature measurement processing section, 4... Assembly outlet temperature measurement processing section, 5... Assembly flow rate measurement processing section, 6
... Aggregate flow rate distribution storage section, 7... Flow rate most probable value calculation section, 8... Aggregate output conversion section, 9... Output distribution most probable value calculation section, 10... Temperature distribution calculation section, 11... Aggregate inlet/outlet temperature difference calculation section, DESCRIPTION OF SYMBOLS 12... Abnormality determination part, 13... Display part, 14... Control signal, 100... Process computer.

Claims (1)

【特許請求の範囲】 1 高速炉の各種運転データから炉出力の空間分
布を近似的に計算し、一方高速炉運転中の各種実
測データから炉出力の分布を計算し、これらの二
つの出力分布計算値から、出力分布最確値及びそ
の精度を求めるようにした高速炉炉心監視方法。 2 各種データの異常及び異常部分を判別し、そ
の結果により、前記近似計算主体もしくは実測デ
ータからの計算主体の炉心監視をなすように切換
える第1項記載の高速炉炉心監視方法。 3 原子炉の空間出力分布および集合体平均出力
を求める計算手段と、原子炉入口冷却材温度およ
び集合体出口冷却材温度・流量を測定する計測手
段と、上記計測手段による冷却材温度・流量の測
定値から集合体平均出力を求める計算手段と、上
記の両者の集合体平均出力の計算結果に基づき、
空間出力分布の最確値とその精度を求める計算手
段と、本手法で求まる出力分布と流量分布の最確
値とその精度からホツトスポツト係数を決定し、
炉心内部のホツトスポツト温度を求める手段を具
備することを特徴とする高速炉炉心監視装置。
[Claims] 1. Approximately calculating the spatial distribution of reactor output from various operational data of the fast reactor, and calculating the distribution of reactor output from various actual measurement data during operation of the fast reactor, and calculating these two output distributions. A fast reactor core monitoring method that calculates the most probable value of power distribution and its accuracy from calculated values. 2. The fast reactor core monitoring method according to item 1, wherein abnormalities and abnormal portions of various data are determined, and depending on the results, the core monitoring is switched to perform core monitoring based on the approximate calculation or calculation based on actual measurement data. 3 Calculation means for calculating the spatial power distribution of the reactor and aggregate average power; measuring means for measuring the reactor inlet coolant temperature and aggregate outlet coolant temperature and flow rate; Based on the calculation means for calculating the aggregate average output from the measured values and the calculation results of the aggregate average output of both of the above,
A calculation means for determining the most probable value of the spatial output distribution and its accuracy, and a hot spot coefficient determined from the most probable value of the output distribution and flow rate distribution determined by this method and its accuracy,
A fast reactor core monitoring device comprising means for determining hot spot temperature inside the reactor core.
JP131180A 1980-01-11 1980-01-11 Method and device for monitoring fast reactor core Granted JPS5698682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP131180A JPS5698682A (en) 1980-01-11 1980-01-11 Method and device for monitoring fast reactor core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP131180A JPS5698682A (en) 1980-01-11 1980-01-11 Method and device for monitoring fast reactor core

Publications (2)

Publication Number Publication Date
JPS5698682A JPS5698682A (en) 1981-08-08
JPS6217720B2 true JPS6217720B2 (en) 1987-04-18

Family

ID=11497948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP131180A Granted JPS5698682A (en) 1980-01-11 1980-01-11 Method and device for monitoring fast reactor core

Country Status (1)

Country Link
JP (1) JPS5698682A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4774049A (en) * 1986-04-10 1988-09-27 Westinghouse Electric Corp. Two and three dimensional core power distribution monitor and display

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4898295A (en) * 1972-03-29 1973-12-13

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4898295A (en) * 1972-03-29 1973-12-13

Also Published As

Publication number Publication date
JPS5698682A (en) 1981-08-08

Similar Documents

Publication Publication Date Title
EP0030459B1 (en) System for monitoring steam condenser performance
KR100605815B1 (en) Nuclear reaction protection system
KR101428404B1 (en) Nuclear reactor protection system using in-core sensors
US4803040A (en) Expert system for surveillance and diagnosis of breach fuel elements
JPS6217720B2 (en)
KR101958626B1 (en) Apparatus for detecting crack of steam generator and method using thereof
JPH10221485A (en) Reactor power measuring instrument
JPS59193398A (en) Reactor power distribution monitoring device
JPH0338559B2 (en)
Tsypin et al. 16N γ-ray diagnostics of a nuclear reactor in a nuclear power plant
JP2975654B2 (en) Core monitoring device
JPH1010276A (en) Method and system for coolant flowrate measurement in reactor core
JP2521683B2 (en) Reactor power distribution monitor
JP2509901B2 (en) Reactor power distribution monitoring method
Van Erp et al. Protection against local core accidents in liquid metal fast breeder reactors
JPS6212877B2 (en)
JP3442598B2 (en) Fixed in-core instrumentation system
JPH042919B2 (en)
JPH0252837B2 (en)
JPS6038676B2 (en) How to measure nuclear reactor output
JPH04268496A (en) Device and method for diagnostic abnormality of reactor
RU2093908C1 (en) Method for relative measurement of total composition of fissionable uranium and plutonium isotopes of in core of heterogeneous water-moderated reactor with multiple-loop heat transfer scheme
CN114787941A (en) Method and apparatus employing vanadium neutron detectors
Eck et al. MITG test procedure and results
McCardell et al. Thermal fuels behavior program test results report. Power-coolant-mismatch series power calibration test