JPS6217720A - Equal speed scanning lens - Google Patents
Equal speed scanning lensInfo
- Publication number
- JPS6217720A JPS6217720A JP15629685A JP15629685A JPS6217720A JP S6217720 A JPS6217720 A JP S6217720A JP 15629685 A JP15629685 A JP 15629685A JP 15629685 A JP15629685 A JP 15629685A JP S6217720 A JPS6217720 A JP S6217720A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- pupil
- negative
- object side
- order
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 210000001747 pupil Anatomy 0.000 claims abstract description 15
- 230000003287 optical effect Effects 0.000 abstract description 7
- 230000014509 gene expression Effects 0.000 abstract 3
- 230000004075 alteration Effects 0.000 description 7
- 201000009310 astigmatism Diseases 0.000 description 3
- 239000000470 constituent Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 206010010071 Coma Diseases 0.000 description 1
- 239000008609 bushi Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000004304 visual acuity Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/0005—Optical objectives specially designed for the purposes specified below having F-Theta characteristic
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Optical Scanning Systems (AREA)
- Lenses (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、レーザープリンターなどの高密度記録再生
装置に用いられる等速度走査用レンズに関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a constant velocity scanning lens used in high-density recording and reproducing devices such as laser printers.
(従来の技術)
半導体レーザーを光源とし、回転多面鏡やガルバノミラ
−等の偏光器でレーザービームによる被走査面の走査を
行うのに用いられる等速度走査用レンズとしてf−θレ
ンズが知られている。(Prior Art) An f-theta lens is known as a constant-velocity scanning lens that uses a semiconductor laser as a light source and is used to scan a surface to be scanned with a laser beam using a polarizer such as a rotating polygon mirror or a galvanometer mirror. There is.
(発明が解決しようとする問題点)
f−θレンズは、一般に集光型光学系では、入射角θに
関して像高をHとするとき、H=ftanθの関係を有
する。このようなf−θレンズにおいては、回転多面鏡
の反射面を入射瞳とし、走査角θ、レンズ系の焦点距離
をf、像高をHとするとき、走査面の中心部及び周辺部
の等速度走査を得(%)を満すことを要求される(f及
びθで得られるDの値だけ負の方向に歪曲させることが
要求される)。(Problems to be Solved by the Invention) Generally, in a condensing optical system, an f-theta lens has a relationship of H=ftan theta, where H is the image height with respect to the incident angle theta. In such an f-theta lens, the reflection surface of the rotating polygon mirror is the entrance pupil, the scanning angle is θ, the focal length of the lens system is f, and the image height is H. It is required to obtain uniform velocity scanning and satisfy (%) (it is required to distort in the negative direction by the value of D obtained by f and θ).
一般に、このような基本的特徴をもつf−θレンズには
、入射瞳を前側焦点面に設置する、いわゆるテレセント
リックタイプと、広角タイプとがあるが、レーザープリ
ンターのような仕様に関しては広角型が用いられるのが
普通である。In general, f-theta lenses with these basic features include the so-called telecentric type, in which the entrance pupil is located on the front focal plane, and the wide-angle type, but the wide-angle type is more suitable for specifications such as laser printers. It is commonly used.
従来、この種のf−θ光学系は、プリンターとしての走
査幅に関する画角、f、θに関する直線性及び結像のス
ポットサイズに関し、それぞれ補正がなされていなけれ
ばならない。そしてf−0光学系を構成するレンズは、
普通Fナンバーと連鎖してその構成枚数が変わり、Fナ
ンバーが小さく(明るく)なれば、構成枚数も増加する
のが一般的である。しかしながら、低コスト化を1指し
たプリンター等に関しては、必要とする特性を一定に保
ち、しかもf−θ光学系の構成枚数はできるだけ少なく
する必要がある。そのため従来、2枚構成よりなるf−
θレンズが提案されているが、これはf、[?に関する
直線性及び走査角全域における画面の平面性等について
問題点が残されており、精微なハードコピーを得るのに
難点があった。Conventionally, this type of f-theta optical system must be corrected in terms of the angle of view regarding the scanning width as a printer, the linearity with respect to f and θ, and the spot size of imaging. And the lenses that make up the f-0 optical system are:
Generally, the number of constituent images changes in conjunction with the F-number, and as the F-number becomes smaller (brighter), the number of constituent images also increases. However, for printers and the like that aim to reduce costs, it is necessary to keep the required characteristics constant and to minimize the number of f-θ optical systems. Therefore, conventionally, f-
A θ lens has been proposed, but this is f, [? Problems remain regarding the linearity of the image and the flatness of the screen over the entire scanning angle, making it difficult to obtain precise hard copies.
(問題点を解決するための手段)
f−θレンズの前方の回転多面鏡の位置に入射瞳を設定
し、回転多面鏡の反射面を中心として、走査角θで入射
するビームに関して像高H=f・0になるときに負の歪
曲収差をもたせると共に、像面が走査幅全域で平面にな
るようにしたf−θレンズであって、入射瞳側より順に
曲率半径の小さい凹面を向けた負レンズの第ルンズ及び
入射瞳側に曲率半径の大きい凸面を向けた正レンズの第
2レンズとによって構成されていて、f−θレンズ全系
の焦点距離をf、各レンズの各面の曲率半径を瞳側より
順にr1〜r4.レンズ面間隔を瞳側より順にd、〜d
うとするとき、
(1) r、<f
(2) 2 <r2/r1<2.6r。(Means for solving the problem) Set the entrance pupil at the position of the rotating polygon mirror in front of the f-θ lens, and set the image height H with respect to the beam incident at the scanning angle θ with the reflecting surface of the rotating polygon mirror as the center. It is an f-theta lens that has negative distortion when = f・0 and has an image plane that is flat over the entire scanning width, and has a concave surface with a small radius of curvature facing the entrance pupil side. It consists of a negative lens and a positive second lens with a convex surface with a large radius of curvature facing the entrance pupil.The focal length of the entire f-θ lens system is f, and the curvature of each surface of each lens is The radius is r1 to r4 in order from the pupil side. The lens surface spacing is d, ~d in order from the pupil side.
(1) r,<f (2) 2 <r2/r1<2.6r.
(3) 2f<r、 <4f
(4) 0.04f<d、z<0.08fなる条件を満
足させたものである。(3) 2f<r, <4f (4) 0.04f<d, z<0.08f.
ここで条件(1)は、特に軸外収差に関する条件であり
、この条件をこえると、走査角の最周辺で像面が急激に
マイナス方向に増大し広角用走査レンズとしての像面の
平面性が阻害される。Here, condition (1) is particularly related to off-axis aberrations, and when this condition is exceeded, the image plane sharply increases in the negative direction at the farthest periphery of the scanning angle, and the image plane flatness as a wide-angle scanning lens increases. is inhibited.
条件(2)は第1負レンズの形状とパワーを規定するも
のであり、上限2.6をこえるとf・θ性は改善される
が、像面湾曲が所定の最大画角周辺で急激に増大する。Condition (2) defines the shape and power of the first negative lens, and if the upper limit of 2.6 is exceeded, the f/θ properties will be improved, but the curvature of field will sharply increase around the predetermined maximum angle of view. increase
このため、広角f・θレンズの像平面性が阻害される。Therefore, the image flatness of the wide-angle f/θ lens is impaired.
下限、2.0をこえると像面の平面性は良くなるが、f
・θの直線性が悪化(プラス側方向に)する。When the lower limit of 2.0 is exceeded, the flatness of the image plane improves, but f
・The linearity of θ deteriorates (in the positive direction).
条件(3)は、f・θ性と、像面湾曲及び球面収差に関
するものであり、上限4fをこえると像面の平面性は良
くなるが、f・θ性を悪化(歪曲収差がプラス側に増大
)し、又、球面収差は補正不足となる。下限、2fをこ
えるとf・θ性は改善されるが。Condition (3) is related to f/θ characteristics, field curvature, and spherical aberration; if the upper limit of 4f is exceeded, the image surface flatness improves, but f/θ characteristics worsen (distortion aberration is on the positive side). ), and the spherical aberration becomes insufficiently corrected. When the lower limit, 2f, is exceeded, the f/θ properties are improved.
像面が一方向に増大する。The image plane increases in one direction.
条件(4)は非点収差とf・θの直線性に関するもので
、上限0.08fをこえると非点収差が増大し、軸外コ
マ収差も増大する。又、下限0.04fをこえるとf・
0の直線性が悪化する。Condition (4) relates to astigmatism and the linearity of f·θ; when the upper limit of 0.08 f is exceeded, astigmatism increases and off-axis coma aberration also increases. Also, if the lower limit of 0.04f is exceeded, f・
0 linearity deteriorates.
(作 用)
最大走査幅を画角変換で約63°、入射ビーム径3 、
5mm、焦点距離250mm、使用波長830nmの場
合、f−θレンズのFナンバーを計算すると約71とな
る。このとき使用される半導体レーザーのエネルギーが
ガウス分布であると仮定し、エネルギー強度の1/e2
をビームのスポットサイズとすれば。(Function) The maximum scanning width is approximately 63° by angle of view conversion, the incident beam diameter is 3,
5 mm, focal length of 250 mm, and wavelength used of 830 nm, the F number of the f-θ lens is calculated to be approximately 71. Assuming that the energy of the semiconductor laser used at this time has a Gaussian distribution, 1/e2 of the energy intensity
Let be the spot size of the beam.
回折によるスポット径の大きさは約75μmとなり、プ
リンター用レンズとしては十分な分解能である。The spot diameter due to diffraction is approximately 75 μm, which is sufficient resolution for a printer lens.
従って、レーザープリンターに使用される光学系は、2
枚程度で十分であり基本特性であるf・θの直線性と、
走査角全域の平面性とを考慮すればよく、懸回学的な集
光特性に多大の労力を費やす必要はそれ程ないこととな
る。Therefore, the optical system used in laser printers is
The linearity of f and θ is sufficient and is a basic characteristic,
It is only necessary to consider the flatness of the entire scanning angle, and there is no need to spend a lot of effort on the focusing characteristics in terms of rotation.
本発明によれば、f−θレンズの必要解像能力は、上記
の回折によるスポット径75μmから約14本71mm
となり、従って15本/1mmにおけるMTFの値が全
走査面に関して安定であり、約70%以上となるように
集束光の特性を補正し、またf・θの直線性が走査全域
で概ね1%以内になる2群2枚よりなるプリンター用f
−θレンズが得られる。According to the present invention, the required resolving power of the f-theta lens is approximately 14 lines of 71 mm from the spot diameter of 75 μm due to the above-mentioned diffraction.
Therefore, the characteristics of the focused light are corrected so that the MTF value at 15 lines/1 mm is stable over the entire scanning surface and is approximately 70% or more, and the linearity of f and θ is approximately 1% over the entire scanning area. f for printers consisting of two groups of two sheets within
A −θ lens is obtained.
(実 施 例)
実施例1゜
d、、43.00 d4=286.4072 使用
波長= 830nmf =249.998
実施例2゜
do=ts、oo d4=289.7368 使用
波長= 830nmf =250.003
ただし、第1図において、Pは瞳位置、Aは被走査面を
示す。なお、実施例2の収差曲線は実施例1のそれと類
似であるから省略する。(Example) Example 1゜d,,43.00 d4=286.4072 Wavelength used = 830nmf =249.998 Example 2゜do=ts,oo d4=289.7368 Wavelength used = 830nmf =250.003 However, in FIG. 1, P indicates the pupil position and A indicates the surface to be scanned. Note that the aberration curve of Example 2 is similar to that of Example 1, and therefore will be omitted.
第1図は本発明の一実施例を示す等速走査用レンズの植
成図、第2図は実施例の収差図、第3図は実施例1のM
TFを示す。
fθ。直線性 非点収差
□サジタル
一一一メソラ守オナル
一ブシ′タル
−一一−メリディオナル
手続補正書
昭和60年9月12日Fig. 1 is an implantation diagram of a constant velocity scanning lens showing an embodiment of the present invention, Fig. 2 is an aberration diagram of the embodiment, and Fig. 3 is an M of the embodiment 1.
Indicates TF. fθ. Linearity Astigmatism □ Sagittal 111 Mesora Mamoru Onal 1 Bushi'tal - 11 - Meridional Procedural Correction Letter September 12, 1985
Claims (1)
枚構成よりなるレンズ系であって、該レンズ系の前方に
入射瞳を有し、全系の焦点距離をf、レンズの各面の曲
率半径を瞳側より順にr_1〜r_4、レンズ面間隔を
瞳側より順にd_1〜d_3とするとき、(1)r_2
<f (2)2<r_2/r_1<2.6 (3)2f<r_3<4f (4)0.04f<d_2<0.08f なる条件を満足する等速度走査用レンズ。[Claims] Two groups 2 in which the first lens is a negative lens and the second lens is a positive lens.
A lens system consisting of a lens system, which has an entrance pupil in front of the lens system, the focal length of the entire system is f, the radius of curvature of each surface of the lens is r_1 to r_4 in order from the pupil side, and the distance between lens surfaces is When d_1 to d_3 in order from the pupil side, (1) r_2
<f (2) 2<r_2/r_1<2.6 (3) 2f<r_3<4f (4) 0.04f<d_2<0.08f A constant velocity scanning lens that satisfies the following conditions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15629685A JPH0638131B2 (en) | 1985-07-16 | 1985-07-16 | Lens for constant speed scanning |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15629685A JPH0638131B2 (en) | 1985-07-16 | 1985-07-16 | Lens for constant speed scanning |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6217720A true JPS6217720A (en) | 1987-01-26 |
JPH0638131B2 JPH0638131B2 (en) | 1994-05-18 |
Family
ID=15624709
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15629685A Expired - Lifetime JPH0638131B2 (en) | 1985-07-16 | 1985-07-16 | Lens for constant speed scanning |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0638131B2 (en) |
-
1985
- 1985-07-16 JP JP15629685A patent/JPH0638131B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0638131B2 (en) | 1994-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8331044B2 (en) | Fixed focal length optical lens system | |
JPS6226444B2 (en) | ||
JP4208209B2 (en) | Collimator lens and optical scanning device using the same | |
JPS6125129B2 (en) | ||
JP4208210B2 (en) | Collimator lens and optical scanning device using the same | |
JPS61172109A (en) | Ftheta lens for scanner | |
JPH11271606A (en) | Collimator lens and optical scanning device using the same | |
JPH0310924B2 (en) | ||
JPS6233565B2 (en) | ||
JP3339934B2 (en) | f / θ lens | |
JPH0462562B2 (en) | ||
JPS6217720A (en) | Equal speed scanning lens | |
JPH0990216A (en) | Telecentric ftheta lens | |
JPS61175607A (en) | Scanning optical system | |
JPS62262812A (en) | Ftheta lens | |
JPS6130244B2 (en) | ||
JPH07104483B2 (en) | Constant velocity scanning lens | |
JPH0646258B2 (en) | Wide-angle fθ lens system | |
JP2001281603A (en) | Collimator lens and optical scanner using the same | |
JPH0827426B2 (en) | Lens for constant speed scanning | |
JPH02176619A (en) | Uniform speed lens scanner | |
JP4445059B2 (en) | Scanning imaging lens and optical scanning device | |
JPH1068876A (en) | Ftheta lens | |
JPS6327684B2 (en) | ||
JP2840340B2 (en) | Telecentric fθ lens |