JPS62176989A - Production of semiconductor single crystal - Google Patents

Production of semiconductor single crystal

Info

Publication number
JPS62176989A
JPS62176989A JP1673186A JP1673186A JPS62176989A JP S62176989 A JPS62176989 A JP S62176989A JP 1673186 A JP1673186 A JP 1673186A JP 1673186 A JP1673186 A JP 1673186A JP S62176989 A JPS62176989 A JP S62176989A
Authority
JP
Japan
Prior art keywords
single crystal
gaas
semiconductor
base plate
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1673186A
Other languages
Japanese (ja)
Inventor
Kunishige Oe
尾江 邦重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1673186A priority Critical patent/JPS62176989A/en
Publication of JPS62176989A publication Critical patent/JPS62176989A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain semiconductor single crystal which is excellent in quality and available in a semiconductor laser or the like by providing the means inhibiting epitaxial growth to one part of a silicon base plate and subjecting a compd. semiconductor to epitaxial growth. CONSTITUTION:The means inhibiting epitaxial growth is provided by sticking the Si3N4 films 2 having 2mum breath in a striped shape at 2mum interval in the direction of (20-45 deg.) angle theta crossed with the base plate <100> direction on an Si base plate 1 by a chemical vapor deposition method. Then the base plate 1 is heated at 350-400 deg.C and 200Angstrom amorphous GaAs is grown thereon by introducing 4l/min trimethylgallium and arsine in 3.2X10<-5>/min and 1.7X10<-3>/min molar fraction respectively with H2 as a carrier gas. Then after heating the base plate 1 at 630 deg.C and subjecting GaAs to single crystallication, the growth is continues and a GaAs epitaxial film 3 is grown so as to cover the Si3N4 films 2 and thereby the single crystalline film having >=1mum thickness is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体単結晶薄膜の製造方法に関するもので
ある。さらに詳しくは、シリコン基板を用いたm−v族
化合物半導体の単結晶薄膜又はその混晶の単結晶薄膜か
ら成る半導体単結晶の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor single crystal thin film. More specifically, the present invention relates to a method for manufacturing a semiconductor single crystal made of a single crystal thin film of an m-v group compound semiconductor or a single crystal thin film of a mixed crystal thereof using a silicon substrate.

〔従来の技術〕[Conventional technology]

シリコン基板上にGaAsやAffiGaAsの■−■
族化合物半導体や混晶半導体をエピタキシャル成長させ
、それを用いて作製した半導体装置については、従来よ
りいくつかの報告があり、例えば、アプライド・フィジ
ックス・レターズ(静pt。
■-■ of GaAs or AffiGaAs on a silicon substrate
There have been several reports on semiconductor devices fabricated by epitaxially growing group compound semiconductors and mixed crystal semiconductors, such as those published in Applied Physics Letters.

Phys、 Letters) 、 1984.45−
10.1107には電界効果型トランジスタの例、ジャ
パニーズ・ジャーナル・オプ・アプライド・フィジック
ス(Jpn、 J。
Phys, Letters), 1984.45-
10.1107 includes examples of field-effect transistors, Japanese Journal of Applied Physics (Jpn, J.

Appl、  Phys、 ) 、 1985.24−
8. L666には半導体レーザの例が記載されている
Appl, Phys, ), 1985.24-
8. L666 describes an example of a semiconductor laser.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のいずれの報告においても、半導体装置の動作確認
はなされているが、その特性は実用に供するのには不十
分なものであった。これは、SiとGaAsやAj!G
aAsの熱膨張係数が大きく異なるために、成長温度で
うまく互いの格子定数不整合を調整するようにエピタキ
シャル成長しても、室温に下がった時の格子定数の違い
により、GaAsやAIGaASのエピタキシャル成長
薄膜が歪を受けた状態でいるためであった。つまり、こ
のような状態では、GaAsの単結晶薄膜はひっばり応
力を受けており、膜厚が6μm以上ある場合にはひび割
れが入るなど、信頼性のある半導体装置を製作しえる状
況ではなかった。
In all of the above reports, although the operation of the semiconductor device was confirmed, its characteristics were insufficient for practical use. This is Si, GaAs and Aj! G
Because the thermal expansion coefficients of aAs are greatly different, even if epitaxial growth is done to adjust the lattice constant mismatch between them at the growth temperature, the difference in lattice constants when the temperature drops to room temperature will cause the epitaxially grown thin film of GaAs or AIGaAS to This was to remain in a distorted state. In other words, under these conditions, the GaAs single crystal thin film was under intense stress, and if the film was thicker than 6 μm, it would crack, making it impossible to manufacture reliable semiconductor devices. .

[問題点を解決するための手段〕 このような問題点を解決するために本発明は、シリコン
基板上に化合物半導体または混晶半導体をエピタキシャ
ル成長させる半導体単結晶の製造方法において、シリコ
ン基板の一部にエピタキシャル成長を妨げる手段を施し
て、シリコン基板上にエピタキシャル成長を行なうよう
にするものである。
[Means for Solving the Problems] In order to solve these problems, the present invention provides a semiconductor single crystal manufacturing method in which a compound semiconductor or a mixed crystal semiconductor is epitaxially grown on a silicon substrate. In this method, epitaxial growth is performed on a silicon substrate by applying means to prevent epitaxial growth.

〔作用〕[Effect]

本発明を適用して製造された半導体単結晶には、ひび割
れが入るなどの不具合を生じることがない。
Semiconductor single crystals manufactured by applying the present invention do not suffer from defects such as cracks.

〔実施例〕〔Example〕

本発明に係わる半導体単結晶の製造方法の一実施例につ
いて説明する。シリコン基板上に有機金属気相法により
GaAs単結晶薄膜を成長させるために、その上に2μ
m間隔で2μm幅のSi3N4が付着しているSi基板
を用意する。このためには、(001)シリコン基板上
の全面にCVD法により5fiNaを0.3μm付着さ
せホトリソグラフィーによりシリコン基板の<110>
方向からある角度θの方向に2μm間隔で2μm幅を持
つストライプ状のレジストマスクを作り、エツチングに
より、第1図に示すようなストライプ状のSi:lN4
膜2をシリコン基板1上に得る。
An embodiment of the method for manufacturing a semiconductor single crystal according to the present invention will be described. In order to grow a GaAs single crystal thin film on a silicon substrate by an organometallic vapor phase method, a 2μ
A Si substrate on which Si3N4 with a width of 2 μm is attached at m intervals is prepared. For this purpose, 0.3 μm of 5fiNa is deposited on the entire surface of the (001) silicon substrate by the CVD method, and the <110>
A striped resist mask with a width of 2 μm is made at 2 μm intervals in the direction of a certain angle θ from the etching direction, and etched to form a striped resist mask of Si:lN4 as shown in Fig. 1.
A membrane 2 is obtained on a silicon substrate 1.

上記ストライプ状のSi、N、膜2が形成されたシリコ
ン基板1を基板としてGaAsを成長させると、Si、
N、膜2の上では結晶成長しないで、結晶核はマイグレ
ートしてSi、IN、膜2のないシリコン基板l上にだ
け結晶成長する。この際に結晶成長条件を適切に選んで
やると、GaAsエピタキシャル113は、第1図に示
すように、Si3N4膜2上におおいかぶさるように成
長し、1μm以上成長した後は平坦な膜が得られる。な
お、第1図のGaAsエピタキシャル膜3は、一部を切
断除去したものを示す。
When GaAs is grown using the silicon substrate 1 on which the striped Si, N, film 2 is formed as a substrate, Si,
Crystals do not grow on the N, film 2, but the crystal nuclei migrate and grow only on the silicon substrate 1 without the Si, IN, film 2. If the crystal growth conditions are appropriately selected at this time, the GaAs epitaxial layer 113 will grow to cover the Si3N4 film 2, as shown in FIG. It will be done. Note that the GaAs epitaxial film 3 shown in FIG. 1 is shown after being partially cut and removed.

上記成長条件の中で特に大切なものは、基板の成長温度
とSi3N4膜2が基板<110>方向からなす角度θ
とであり、この場合、630℃。
Among the above growth conditions, the most important ones are the growth temperature of the substrate and the angle θ that the Si3N4 film 2 makes from the <110> direction of the substrate.
In this case, the temperature is 630°C.

30度に設定した。角度としては20〜45度であれば
よい。また、原料にはトリメチルガリウムとアルシンを
用い、そのモル分率は、それぞれ、3.2X 10−’
/m i !−1と1.7X 10−”7m i nと
し、水素のキャリアガス4//minで成長室に送り込
んだ。
It was set at 30 degrees. The angle may be 20 to 45 degrees. In addition, trimethyl gallium and arsine are used as raw materials, and their molar fractions are 3.2X 10-'
/mi! -1 and 1.7 x 10-''7min, and were fed into the growth chamber with a hydrogen carrier gas of 4/min.

もう1つの大切な手法は、成長初期にまず基板温度を3
50℃〜400℃にして、アモルファス状のGaAsを
200人成長させ、次に基板温度を630℃として上記
アモルファス状GaAsを単結晶させた後、成長を続け
ることである。
Another important method is to first increase the substrate temperature to 3.
The method is to grow 200 pieces of amorphous GaAs at a temperature of 50° C. to 400° C., then raise the substrate temperature to 630° C., make the amorphous GaAs a single crystal, and then continue the growth.

このようにして得た厚さ3μmのGaAs単結晶膜の7
7にのホト・ルミネッセンスを第2図の特性曲線IOに
示す。第2図において、横軸は波長、縦軸はホト・ルミ
ネッセンス強度である。特性曲線10で示すように、ピ
ーク波長は817nmで通常のGaAsのそれと同じ値
であり、従来行なわれてきたシリコン基板上に成長させ
たGaAsのピーク波長840nm(特性曲線20)と
異なっている。また、その強度も強い。これは、従来の
手法では、SiとGaAsの熱膨張係数の違いに起因す
る歪がGaAs層に残っているため、本来の値からずれ
ていたものであり、本実施例により歪のない良質のGa
As膜が得られていることがわかる。また、本実施例で
8μm厚のGaAs膜を成長させても、できた膜にひび
割れ等は生ぜず、半導体装置にこの膜を使用するとこと
により、信頼性のある装置を作ることができる。
7 of the GaAs single crystal film with a thickness of 3 μm thus obtained.
The photoluminescence of 7 is shown in the characteristic curve IO in FIG. In FIG. 2, the horizontal axis is wavelength and the vertical axis is photoluminescence intensity. As shown by characteristic curve 10, the peak wavelength is 817 nm, which is the same value as that of ordinary GaAs, and is different from the peak wavelength of 840 nm (characteristic curve 20) of GaAs grown on a conventional silicon substrate. Also, its strength is strong. This is because in the conventional method, the strain caused by the difference in thermal expansion coefficient between Si and GaAs remains in the GaAs layer, which deviates from the original value, but with this example, it was possible to obtain a high-quality strain free of strain. Ga
It can be seen that an As film was obtained. Further, even if a GaAs film with a thickness of 8 μm is grown in this example, no cracks or the like will occur in the formed film, and by using this film in a semiconductor device, a reliable device can be manufactured.

第3図は本発明に係わる半導体単結晶の製造方法の他の
実施例を説明するための構成図であり、第1図の例と同
様に、2μm幅、2μm間隔のストライプ状のSi3N
、膜をシリコン基板1上に残した後、酸素イオンを50
keVでlXl0”/cm”イオン注入し、Si3N、
膜をエツチングにより除去することにより、2μm幅、
2μm間隔の酸素イオン注入ストライプ領域4を持つシ
リコン基板1を得る。この基板1を用いて、第2図と同
じ結晶成長条件でGaAsを成長させると、イオン注入
された部分は、Siの結晶性がそこなわれているため、
その上に結晶成長しないで、結晶核はマイグレートして
注入された原子のないシリコン基板1上にだけ成長する
。そして1μm以上成長した後は平坦な膜が得られる。
FIG. 3 is a block diagram for explaining another embodiment of the method for manufacturing a semiconductor single crystal according to the present invention, in which, like the example in FIG.
, after leaving the film on the silicon substrate 1, 50% of oxygen ions were added.
Si3N,
By removing the film by etching, the width of 2μm,
A silicon substrate 1 having oxygen ion implantation stripe regions 4 at intervals of 2 μm is obtained. When GaAs is grown using this substrate 1 under the same crystal growth conditions as shown in FIG. 2, the crystallinity of Si is impaired in the ion-implanted areas, so
No crystal grows thereon, but the crystal nucleus migrates and grows only on the silicon substrate 1 without implanted atoms. After growing to a thickness of 1 μm or more, a flat film is obtained.

なお本実施例では、材料をGaAs、AfGaAsにつ
いて記したが、これに限らず、シリコン基板上のGa 
InAs、Af InAs、l np等の他の化合物、
混晶でも同様の利点があることはいうまでのない。また
、成長を妨げる物質や混入させる異物質についても本実
施例に限らず、SiO□等の他の絶縁膜又はタングステ
ン等の金属。
In this example, materials such as GaAs and AfGaAs are described, but the materials are not limited to these.
Other compounds such as InAs, Af InAs, l np,
Needless to say, mixed crystals have similar advantages. Further, the substances that inhibit growth and the foreign substances to be mixed are not limited to those in this embodiment, but may include other insulating films such as SiO□ or metals such as tungsten.

タングステン等の合金、タングステンシリサイド等の半
導体又は金属の化合物、混合物でもよいことも当然であ
る。
It goes without saying that alloys such as tungsten, semiconductors such as tungsten silicide, or compounds or mixtures of metals may also be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、シリコン基板のL部にエ
ピタキシャル成長を妨げる手段を施して、シリコン基板
上にエピタキシャル成長を行なうことにより、良質の歪
のない単結晶膜を得ることができる効果がある。従って
、この単結晶膜もしくはこの単結晶膜上に成長したA 
I G a A s / G aAsヘテロ接合を用い
て、半導体レーザ、発行ダイオード、電界効果トランジ
スタ、方向性結合器等の半導体装置を製作すると、品質
のよい信鎖性のあるものを得られる効果がある。
As explained above, the present invention has the effect that a high-quality strain-free single crystal film can be obtained by applying a means to prevent epitaxial growth to the L portion of the silicon substrate and performing epitaxial growth on the silicon substrate. Therefore, this single crystal film or the A grown on this single crystal film
When semiconductor devices such as semiconductor lasers, light emitting diodes, field effect transistors, and directional couplers are manufactured using IGaAs/GaAs heterojunctions, it is effective to obtain products with good quality and reliability. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わる半導体単結晶の製造方法の一実
施例を説明するための一部断面斜視図、第2図は本発明
を適用して製造した半導体単結晶の特性を示す特性図、
第3図は他の実施例を示す一部断面斜視図である。 1・・・・シリコン基板、2・・・・5i3N4膜、3
・・・・GaAsエピタキシャル膜、4・・・・酸素イ
オン注入ストライプ領域。
FIG. 1 is a partially cross-sectional perspective view for explaining an embodiment of the method for manufacturing a semiconductor single crystal according to the present invention, and FIG. 2 is a characteristic diagram showing the characteristics of a semiconductor single crystal manufactured by applying the present invention. ,
FIG. 3 is a partially sectional perspective view showing another embodiment. 1...Silicon substrate, 2...5i3N4 film, 3
...GaAs epitaxial film, 4...Oxygen ion implantation stripe region.

Claims (5)

【特許請求の範囲】[Claims] (1)シリコン基板上に化合物半導体または混晶半導体
をエピタキシャル成長させる半導体単結晶の製造方法に
おいて、前記シリコン基板の一部にエピタキシャル成長
を妨げる手段を施して、シリコン基板上にエピタキシャ
ル成長を行なうことを特徴とする半導体単結晶の製造方
法。
(1) A method for manufacturing a semiconductor single crystal in which a compound semiconductor or a mixed crystal semiconductor is epitaxially grown on a silicon substrate, characterized in that the epitaxial growth is performed on the silicon substrate by applying a means to prevent epitaxial growth to a part of the silicon substrate. A method for manufacturing a semiconductor single crystal.
(2)エピタキシャル成長を妨げる手段は、シリコン基
板の一部に覆われた物質であることを特徴とする特許請
求の範囲第1項記載の半導体単結晶の製造方法。
(2) The method for manufacturing a semiconductor single crystal according to claim 1, wherein the means for inhibiting epitaxial growth is a substance covering a part of the silicon substrate.
(3)シリコン基板の一部に覆われた物質は、SiO_
2、Si_3N_4等の絶縁膜であることを特徴とする
特許請求の範囲第2項記載の半導体単結晶の製造方法。
(3) The material covered in a part of the silicon substrate is SiO_
2. The method for manufacturing a semiconductor single crystal according to claim 2, wherein the insulating film is made of Si_3N_4 or the like.
(4)エピタキシャル成長を妨げる手段は、シリコン基
板の一部に混入された異物質であることを特徴とする特
許請求の範囲第1項記載の半導体単結晶の製造方法。
(4) The method for manufacturing a semiconductor single crystal according to claim 1, wherein the means for inhibiting epitaxial growth is a foreign substance mixed into a part of the silicon substrate.
(5)シリコン基板の一部に混入された物質は、イオン
注入されたシリコン以外の元素であることを特徴とする
特許請求の範囲第4項記載の半導体単結晶の製造方法。
(5) The method for manufacturing a semiconductor single crystal according to claim 4, wherein the substance mixed into a part of the silicon substrate is an element other than ion-implanted silicon.
JP1673186A 1986-01-30 1986-01-30 Production of semiconductor single crystal Pending JPS62176989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1673186A JPS62176989A (en) 1986-01-30 1986-01-30 Production of semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1673186A JPS62176989A (en) 1986-01-30 1986-01-30 Production of semiconductor single crystal

Publications (1)

Publication Number Publication Date
JPS62176989A true JPS62176989A (en) 1987-08-03

Family

ID=11924406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1673186A Pending JPS62176989A (en) 1986-01-30 1986-01-30 Production of semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPS62176989A (en)

Similar Documents

Publication Publication Date Title
US5760426A (en) Heteroepitaxial semiconductor device including silicon substrate, GaAs layer and GaN layer #13
EP1997125B1 (en) Growth method using nanocolumn compliant layers and hvpe for producing high quality compound semiconductor materials
CA2170922C (en) Compound semiconductor light emitting device and method of preparing the same
KR101380717B1 (en) Semi-conductor substrate and method and masking layer for producing a free-standing semi-conductor substrate by means of hydride-gas phase epitaxy
JPH076950A (en) Manufacture of structural parts for electron, lightning and optical constituent
JPH01289108A (en) Heteroepitaxy
JP2002505519A (en) Method for producing gallium nitride semiconductor layer by lateral overgrowth through mask and gallium nitride semiconductor structure produced thereby
US5356510A (en) Method for the growing of heteroepitaxial layers
US6255004B1 (en) III-V nitride semiconductor devices and process for the production thereof
KR100450781B1 (en) Method for manufacturing GaN single crystal
KR20010026835A (en) Method for fabricating a thick GaN film
EP0241204B1 (en) Method for forming crystalline deposited film
KR100243623B1 (en) Epitaxial wafer and fabricating method thereof
US5262348A (en) Method for the growing of heteroepitaxial layers within a confinement space
JPH03132016A (en) Method of forming crystal
JPH05251339A (en) Semiconductor substrate and its manufacture
KR19990083174A (en) Method for growing nitride compound semiconductor
JPS62176989A (en) Production of semiconductor single crystal
JP3743013B2 (en) Epitaxial wafer manufacturing method
JP2001288000A (en) Method for producing semiconductor thin film crystal
KR101094409B1 (en) Preparation of single crystalline gallium nitride thick film
JP2003257879A (en) 3-5 group compound semiconductor and method for preparing the same
JPS62132312A (en) Manufacture of semiconductor thin film
US5940723A (en) Heteroepitaxial growth of III-V materials
JPS62238618A (en) Semiconductor wafer