JPS62176915A - Preparation of fine particle of bi2ti2o7 - Google Patents

Preparation of fine particle of bi2ti2o7

Info

Publication number
JPS62176915A
JPS62176915A JP1895186A JP1895186A JPS62176915A JP S62176915 A JPS62176915 A JP S62176915A JP 1895186 A JP1895186 A JP 1895186A JP 1895186 A JP1895186 A JP 1895186A JP S62176915 A JPS62176915 A JP S62176915A
Authority
JP
Japan
Prior art keywords
water
fine particles
reaction
compd
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1895186A
Other languages
Japanese (ja)
Other versions
JPH0651569B2 (en
Inventor
Akira Kamihira
上平 暁
Hiroshi Yamanoi
山ノ井 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1895186A priority Critical patent/JPH0651569B2/en
Publication of JPS62176915A publication Critical patent/JPS62176915A/en
Publication of JPH0651569B2 publication Critical patent/JPH0651569B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inorganic Chemistry (AREA)

Abstract

PURPOSE:To obtain the titled fine particles having uniform particle size distribution, little variation of composition, and high purity in high yield without requiring heat-treatment, by allowing a hydrolyzed product of a Ti compd. etc., with a water-soluble Bi compd. to react by the wet process under a specified pH and specified temp. CONSTITUTION:A hydrolyzed product of a Ti compd. or a water-soluble Ti compd. (e.g. TiCl4) is mixed with a water-soluble Bi compd. (e.g. BiCl3) in 0.2-0.7 molar ratio of Bi/Ti, and the mixture is dissolved in water. Alkali such as KOH is added to the aq. soln. to prepare aq. soln. of strong alkali having >=12.0pH, which is subjected to wet reaction at >=220 deg.C in an autoclave, etc. The reaction product is washed with water, filtered and dried.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えばコンデンサ等の電子部品の強誘電体材
料として用いられるBi 2Ti 207微粒子の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing Bi 2Ti 207 fine particles used as a ferroelectric material for electronic components such as capacitors.

〔発明の概要〕[Summary of the invention]

本発明は、強誘電体材料であるBi 2Ti 207微
粒子を合成するにあたり、この合成をpH12,0以上
の強アルカリ水溶液中でBi とTiのモル比(以下B
i /Ti  と略す)0.2〜0.7、反応温度22
0℃以上の条件で行い、合成反応により得られた沈澱物
を水洗、f過、乾燥することにより、粒子サイズが微小
かつ粒度分布が均一なりi 2Ti 207微粒子を湿
式合成し得るようにしたものである。
In the present invention, when synthesizing Bi 2Ti 207 fine particles, which are ferroelectric materials, this synthesis is carried out in a strongly alkaline aqueous solution with a pH of 12.0 or more by adjusting the molar ratio of Bi and Ti (hereinafter referred to as B
abbreviated as i/Ti) 0.2 to 0.7, reaction temperature 22
The precipitate obtained by the synthesis reaction is washed with water, filtered, and dried at a temperature of 0°C or higher, so that the particle size is small and the particle size distribution is uniform, making it possible to wet-synthesize i 2Ti 207 fine particles. It is.

〔従来の技術〕[Conventional technology]

近年、半導体分野においては、高度な微細加工技術によ
り、より小型化された集積回路(IC)や大規模集積回
路(LS I )の実現が可能となってきている。また
、信号処理速度の速いGaA s系の材料が活発に使用
されるようになってきている。
In recent years, in the semiconductor field, advanced microfabrication techniques have made it possible to realize smaller integrated circuits (ICs) and large-scale integrated circuits (LSI). In addition, GaAs-based materials, which have a high signal processing speed, are being actively used.

これに伴って、これらに付帯使用されるコンデンサにつ
いては従来品に比べより高品質で小型・軽量化されたも
のが必要となってきている。
Along with this, the capacitors used in these devices are required to be of higher quality, smaller, and lighter than conventional products.

また、電気機器の小型・軽量化、例えば従来ビデオを大
幅に小型化したいわゆる8朋ビデオへの発展等によって
も使用される電子部品、特にコンデンサは小型・軽量化
された高品質なものが強く望まれている。
In addition, due to the miniaturization and weight reduction of electrical equipment, such as the development of the so-called 8-video video, which is a significantly smaller version of the conventional video, the electronic components used, especially capacitors, are becoming smaller and lighter and of high quality. desired.

ところで、このように小型・軽量化を望まれる電子部品
にあっては、その性能の確保が大きな課題で例えば主要
部品の一つであるチップ型コンデンサにおいては、大容
量化や耐高周波特性等の向上を図るべく研究が進められ
ている。一般にチップ型コンデンサとして広く使用され
ているセラミック積層コンデンサの電気特性は、使用す
る誘電体の誘電率や誘電体層の厚さ、積層、段数等に依
存するため誘電体材料の組成、微粒子化、焼結性等なお
一層の改良が望まれている。
By the way, in the case of electronic components that are desired to be smaller and lighter, ensuring their performance is a major issue.For example, in chip capacitors, which are one of the main components, it is necessary to increase the capacity and to withstand high frequency characteristics. Research is underway to improve this. The electrical characteristics of ceramic multilayer capacitors, which are generally widely used as chip capacitors, depend on the dielectric constant of the dielectric material used, the thickness of the dielectric layer, the lamination, the number of stages, etc. Further improvements such as sinterability are desired.

これらの要望に応えるために、さまざまな研究機関にお
いて強誘電体材料に関する研究が種々の角度から行われ
ており、その中で数々の優れた特性を有する誘電体材料
の一つとしてB’ 2Ti 207が注目を集めている
In order to meet these demands, research on ferroelectric materials is being conducted from various angles at various research institutions, and B' 2Ti 207 is one of the dielectric materials with many excellent properties. is attracting attention.

従来、このチタン酸ビスマスの微粒子を製造する方法と
しては、酸化ビスマス(Biz03)と酸化チタン(T
iOz)とをボールミル中で粉砕混合し、1.200〜
1,300℃の高温中で固相反応させた後、ボールミル
等を使用して微粉砕し、篩分けるという方法が知られて
いる0 〔発明が解決しようとする問題点〕 しかしながら、このような製法で得られるチタン酸ビス
マス微粒子は、高温で長時間境成し、更に長時間粉砕す
ることから、不純物である金属酸化物の混入があり、粒
度分布が悪い上に粗大粒子の混入が避けられないという
欠点があった0本発明は、上述の実情に鑑みて提案され
たものであって、粒子サイズが微小で、しかも粒度分布
が均一で、かつ不純物の混入がないBi 2Ti 20
7微粒子を湿式反応で合成できるBi zTi 207
微粒子の製造方法を提供することを目的とする。
Conventionally, as a method for producing fine particles of bismuth titanate, bismuth oxide (Biz03) and titanium oxide (T
iOz) in a ball mill, 1.200~
A known method is to carry out a solid phase reaction at a high temperature of 1,300°C, then pulverize using a ball mill etc. and sieve.0 [Problems to be solved by the invention] However, such methods The bismuth titanate fine particles obtained by the manufacturing method are formed at high temperatures for a long time and then ground for an even longer time, so they are contaminated with impurities such as metal oxides, have a poor particle size distribution, and are difficult to avoid including coarse particles. The present invention was proposed in view of the above-mentioned circumstances, and has the disadvantage that Bi 2Ti 20 has a small particle size, a uniform particle size distribution, and no contamination with impurities.
7 fine particles can be synthesized by wet reaction BizTi 207
The present invention aims to provide a method for producing fine particles.

〔問題を解決するための手段〕[Means to solve the problem]

本発明者等は、微細、かつ粒度分布が良好なり12Ti
2(h微粒子を湿式合成することが可能な合成法を開発
せんものと長期に亘り鋭意研究の結果、チタン化合物の
加水分解生成物または水溶性チタン塩と水溶性ビスマス
化合物とを水溶液中で湿式反応する際、この水溶液のp
H及び反応温度を所定の範囲に設定することによりBi
 zTi 207微粒子が単相で得られ、その粒径も微
細で均一であることを見出した。
The present inventors have discovered that 12Ti is fine and has a good particle size distribution.
2 (h) As a result of long-term intensive research to develop a synthesis method that can wet-synthesize microparticles, we have found that a hydrolysis product of a titanium compound or a water-soluble titanium salt and a water-soluble bismuth compound are wet-synthesized in an aqueous solution. During the reaction, the p of this aqueous solution
Bi by setting H and reaction temperature within predetermined ranges.
It was found that zTi 207 fine particles were obtained in a single phase, and the particle size was fine and uniform.

本発明は、このような知見に基づいて完成されたもので
あって、チタン化合物の加水分解生成物または水溶性チ
タン塩と水溶性ビスマス化合物とを、旧とTi  のモ
ル比が0.2〜0.7となるように配合しpH12,0
以上の強アルカリ水溶液中、反応温度220℃以上で反
応させることを特徴とするものである。
The present invention was completed based on such knowledge, and the present invention is based on the fact that a hydrolysis product of a titanium compound or a water-soluble titanium salt and a water-soluble bismuth compound are mixed at a molar ratio of 0.2 to 10% Ti. Blend so that the pH is 0.7 and the pH is 12.0.
The method is characterized in that the reaction is carried out in the above strong alkaline aqueous solution at a reaction temperature of 220° C. or higher.

すなわち本発明においてBi zTi 207微粒子を
製造するには、チタン化合物の加水分解生成物または、
水溶性チタン塩と水溶性ビスマス化合物とを、オートク
レーブ等を使用して高温度、アルカリ水溶液中で湿式反
応させて微粒子沈澱を生成し、得られた微粒子沈澱を水
または温水で洗浄してだ。
That is, in order to produce BizTi 207 fine particles in the present invention, a hydrolysis product of a titanium compound or,
A water-soluble titanium salt and a water-soluble bismuth compound are subjected to a wet reaction in an alkaline aqueous solution at high temperature using an autoclave or the like to produce a fine particle precipitate, and the obtained fine particle precipitate is washed with water or hot water.

Na  、 Li等のアルカリ金属イオンを除去してf
過・乾燥を施せば良い0この場合、得られる微粒子沈澱
は、既に結晶状態となっており結晶化のための特別な熱
処理工程も不要である0 ここで上記湿式反応時の水溶液のpHと温度が重要であ
って、p)(12,0〜13.8、反応温度220℃以
上の範囲に設定することにより、Bi2Ti207微粒
子が単相として得られる0 本発明者等の実験によれば上記湿式反応において、Bi
  とTiのモル比(Bi /Ti  )を1:2とし
水溶液のpHを変えてオートクレーブ中で反応温度25
0℃、反応時間3.5時間の湿式反応を行い水洗、f過
、乾燥して得た13i2Ti207  微粒子の相対生
成量を測定したところ、第1図に示すような結果を得た
。なお、ここでBizTizOy微粒子の相対生成量は
、銅ターゲツト、ニッケルフィルタを使用してX線回折
を行い得られた回折X線のピーク(800)のピーク面
積から求めた値である(以下同じ)0この第1図より、
pH12,0〜13.8の範囲であればBi 2Ti 
207微粒子が単相として高収率で合成されることが確
認された0なお、pH13,8のアルカリ溶液は、およ
そ1.54d−/jのKOH溶液に相当する。
By removing alkali metal ions such as Na and Li, f
It is sufficient to carry out over-drying. In this case, the obtained fine particle precipitate is already in a crystalline state and a special heat treatment step for crystallization is not necessary. Here, the pH and temperature of the aqueous solution during the above wet reaction. is important, and by setting the reaction temperature in the range of p) (12,0 to 13.8 and 220°C or higher, Bi2Ti207 fine particles can be obtained as a single phase.0 According to the experiments of the present inventors, the above wet method In the reaction, Bi
The molar ratio of Bi and Ti (Bi/Ti) was 1:2, the pH of the aqueous solution was changed, and the reaction temperature was 25°C in an autoclave.
A wet reaction was carried out at 0° C. for a reaction time of 3.5 hours, followed by washing with water, filtration, and drying. The relative production amount of 13i2Ti207 fine particles was measured, and the results shown in FIG. 1 were obtained. Note that the relative production amount of BizTizOy fine particles here is a value determined from the peak area of the diffraction X-ray peak (800) obtained by performing X-ray diffraction using a copper target and a nickel filter (the same applies hereinafter). 0From this figure 1,
Bi 2Ti if the pH is in the range of 12.0 to 13.8
It was confirmed that 207 fine particles were synthesized as a single phase in a high yield.0 Note that an alkaline solution with a pH of 13.8 corresponds to a KOH solution of approximately 1.54 d-/j.

また、上記湿式反応において、反応温度は220℃以上
にすれば良い。例えばpHを13.5、Bi/Ti  
= 1/2とし反応温度を変えながらオートクレーブ中
で3.5時間湿式反応を行い水洗、r過、乾燥して得た
Bi2Ti207微粒子の相対生成量を測定したところ
第2図に示すような結果を得た。この第2図よりBi 
2T i 207微粒子の生成量は反応温度が高くなる
に従って増加し、反応温度は、220℃以上にすれば良
いことが確認された。なお、上記反応温度の上限として
は、オートクレーブ等を使用した場合には、400℃程
度までは可能であると考えられるが実用的には、250
℃程度である0 一方、出発原料に含まれるBi  とTiのモル比Bi
/Tiは、Bi /Ti  =0.2〜0.7の範囲内
であることが好ましい。Bi /Ti の比が前述の範
囲外である場合、Bi・2Ti207の生成量は極端に
低下する。例えば水溶液のpHを13.5とし、出発原
料のBi とTiの混合モル比を変えてオートクレーブ
中で250℃で3.5時間湿式反応を行い、水洗・r過
・乾燥して得たl3i2Ti20y微粒子の相対生成量
を測定したところ、第3図に示すような結果を得た。本
発明者等の分析によれば13i/Tiが0.8以上では
B14(Ti04)3が存在し、B’2Ti207微粒
子の生成が行われないことがわかった0これに対してB
i /Ti =0.2〜0.7の範囲内とすれば、Bi
2Ti207ム  微粒子が単相でしかも高収率で合成
でき特にBi / Ti =0.5近傍で生成量が最大
になることが確認された。
Further, in the above wet reaction, the reaction temperature may be set to 220° C. or higher. For example, pH 13.5, Bi/Ti
= 1/2, a wet reaction was carried out in an autoclave for 3.5 hours while changing the reaction temperature, and the relative production amount of Bi2Ti207 fine particles obtained by washing with water, filtration, and drying was measured, and the results shown in Figure 2 were obtained. Obtained. From this figure 2, Bi
It was confirmed that the amount of 2T i 207 fine particles produced increased as the reaction temperature became higher, and that the reaction temperature should be set to 220° C. or higher. The upper limit of the reaction temperature is considered to be about 400°C if an autoclave or the like is used, but for practical purposes it is 250°C.
On the other hand, the molar ratio of Bi and Ti contained in the starting materials Bi
/Ti is preferably within the range of Bi /Ti =0.2 to 0.7. If the Bi /Ti ratio is outside the above range, the amount of Bi.2Ti 207 produced is extremely reduced. For example, the pH of the aqueous solution is set to 13.5, the mixing molar ratio of Bi and Ti as starting materials is changed, a wet reaction is carried out at 250°C for 3.5 hours in an autoclave, and l3i2Ti20y fine particles are obtained by washing with water, filtration, and drying. When the relative production amount of was measured, the results shown in FIG. 3 were obtained. According to the analysis by the present inventors, it was found that when 13i/Ti is 0.8 or more, B14(Ti04)3 exists and B'2Ti207 fine particles are not generated.
If i/Ti is within the range of 0.2 to 0.7, then Bi
It was confirmed that 2Ti207m microparticles could be synthesized in a single phase and at a high yield, and that the production amount reached its maximum especially when Bi/Ti = 0.5.

さらに、上記湿式反応において、Bi/Ti  =1/
2、水溶液のpHを13.5とし、反応時間を変えなが
ら、オートクレーブ中で250℃で湿式反応させた後、
水洗、−過、乾燥したBizTizO7微粒子の相対生
成量を測定したところ、第4図に示すような結果を得た
0この第4図より、微粒子の相対生成量は、時間に依存
して増加し、反応時間が約60分以上になると相対生成
量は85 %、以上となることがわかった。
Furthermore, in the above wet reaction, Bi/Ti =1/
2. After adjusting the pH of the aqueous solution to 13.5 and performing a wet reaction at 250°C in an autoclave while changing the reaction time,
When we measured the relative production amount of BizTizO7 fine particles that had been washed, filtered, and dried, we obtained the results shown in Figure 4.From this Figure 4, we can see that the relative production amount of fine particles increases with time. It was found that when the reaction time was about 60 minutes or more, the relative production amount was 85% or more.

〔作 用〕[For production]

チタン化合物の加水分解生成物または水溶性チタン塩と
水溶性ビスマス化合物とをpH12,0以上のアルカリ
水溶液中でBi とTiのモル此種2〜0.7、反応温
度220℃以上の条件のもとて湿式反応させることによ
り、粒子サイズが微小かつ均一で、不純物の混入がない
Bi 2Ti 207微粒子が熱処理を施すことなく合
成される。
A hydrolysis product of a titanium compound or a water-soluble titanium salt and a water-soluble bismuth compound are prepared in an alkaline aqueous solution with a pH of 12.0 or higher, with a mole of Bi and Ti of 2 to 0.7, and a reaction temperature of 220°C or higher. By carrying out a wet reaction, Bi 2Ti 207 fine particles having a small and uniform particle size and containing no impurities are synthesized without heat treatment.

〔実施例〕〔Example〕

以下本発明をより具体的な実施例により説明する。なお
、本発明が以下の実施例に限定されるものでないことは
言うまでもない。
The present invention will be explained below using more specific examples. It goes without saying that the present invention is not limited to the following examples.

実施例1 50gの塩化チタン(TiCJ4)をビーカーに入れ、
これに純水を2〜3分かけて滴下して、塩化チタン水溶
液を調製した。この水溶液に水酸化カリウム(KOH)
を加えてpH7,0とした。次にこの溶液に塩化ビスマ
ス(BiCj3)を41.56 g加え、続いて水酸化
カリウム(KOH)を加えpH7,0とした後、さらに
純水を加えて500m/とじた。
Example 1 50g of titanium chloride (TiCJ4) was placed in a beaker,
Pure water was added dropwise to this over 2 to 3 minutes to prepare a titanium chloride aqueous solution. Potassium hydroxide (KOH) is added to this aqueous solution.
was added to adjust the pH to 7.0. Next, 41.56 g of bismuth chloride (BiCj3) was added to this solution, and then potassium hydroxide (KOH) was added to adjust the pH to 7.0, followed by further addition of pure water and the solution was closed at 500 m/m.

次にこの水溶液を5Qm/採取しこれに水酸化カリウム
(K OH)を加え純水を加えてpH13,5のIQQ
m/の水溶液を作成した。そしてこの水溶液を密閉容器
(オートクレーブ)中で攪拌しながら、250℃で3.
5時間反応させた。反応後生成した白色沈澱に対してデ
カンテーションを繰り返すことによりアルカリイオン等
の不純物を除去し、更に水洗、r過を行い、100℃で
一晩乾燥させた。
Next, collect 5Qm of this aqueous solution, add potassium hydroxide (KOH) to it, add pure water, and make an IQQ solution with a pH of 13.5.
An aqueous solution of m/m was prepared. Then, this aqueous solution was heated to 250°C while stirring in a closed container (autoclave) for 3.
The reaction was allowed to proceed for 5 hours. The white precipitate produced after the reaction was repeatedly subjected to decantation to remove impurities such as alkali ions, followed by washing with water, filtration, and drying at 100° C. overnight.

上述の操作で得られた微粒子をX線回折法で分析した結
果を第5図に示す。この第5図に示す回折パターンはA
 S T M (The American 5oci
ety forTesting Materials)
カードの32−118と一致しており立方晶系(キュー
ビック相)の13i 2Tizo7微粒子であることが
わかった0このBi2Ti207  微粒子の格子定数
をX線回折データより算出した結果、得られたBi2T
i207 微粒子はao =20.7201人の立方晶
系の結晶であることが確認された〇実施例2 509 (7)塩化f タフ (TiCx4) ヲ氷水
500m/中に3〜5分かけて滴下して塩化チタン水溶
液を調製した。この水溶液に濃アンモニア水(NH40
H)を加えて白色懸濁液を作りこの懸濁液にアンモニア
水(NH40H)を加えてpH7,0とした。
FIG. 5 shows the results of analyzing the fine particles obtained by the above-mentioned operation by X-ray diffraction method. The diffraction pattern shown in Fig. 5 is A
STM (The American 5oci)
ety forTesting Materials)
The lattice constant of this Bi2Ti207 fine particle was calculated from the X-ray diffraction data, and the Bi2T
It was confirmed that the i207 fine particles were cubic crystals with ao = 20.7201 〇Example 2 509 (7) Chloride f Tough (TiCx4) Dropped into 500 m of ice water over 3 to 5 minutes. A titanium chloride aqueous solution was prepared. Add concentrated ammonia water (NH40) to this aqueous solution.
H) was added to form a white suspension, and aqueous ammonia (NH40H) was added to this suspension to adjust the pH to 7.0.

次にこの溶液に塩化ビスマス(Bi CJ 3) ヲ4
1.56g加え続いて水酸化カリウム(KOH)を加え
、更に純水を加え、p)(13,0のlQQQm/溶液
に調整した。
Next, add bismuth chloride (Bi CJ 3) to this solution.
1.56 g was added, followed by potassium hydroxide (KOH), and then pure water was added to adjust to p) (13.0 lQQQm/solution.

次いでこの溶液を100m/採取し、密閉容器(オート
クレーブ)中で攪拌しながら250℃で3゜5時間反応
させた。反応後、生成した白色沈澱に対してデカンテー
ションを繰り返すことによりアルカリイオン等の不純物
を除去し更に水洗、濾過を行った後、100℃で一昼夜
乾燥させた。
Next, 100 m/100 m of this solution was collected and reacted in a closed container (autoclave) at 250° C. for 3.5 hours while stirring. After the reaction, the white precipitate produced was repeatedly subjected to decantation to remove impurities such as alkali ions, washed with water, filtered, and then dried at 100° C. for one day.

上述の操作により得られた微粒子をX線回折法により分
析したところ、第5図に示すチタン酸ビスマス微粒子の
回折パターンと全く同じであり、したがってこの微粒子
は、立方晶系のBi 2Ti 207であることがわか
った。
When the fine particles obtained by the above operation were analyzed by X-ray diffraction, the diffraction pattern was exactly the same as that of the bismuth titanate fine particles shown in FIG. 5, and therefore, the fine particles were cubic Bi 2Ti 207. I understand.

実施例3 50gの塩化チタ7 (Tick4)を氷水約Loom
/中に2〜3分かけて滴下して塩化チタン水溶液を調製
した。この水溶液に水酸化カリウム(KOH)を加えて
pH7,0とした後、純水を加えて500m/とじた。
Example 3 50g of titanium chloride 7 (Tick4) was soaked in ice water.
/ to prepare an aqueous titanium chloride solution. Potassium hydroxide (KOH) was added to this aqueous solution to adjust the pH to 7.0, and then pure water was added and the solution was closed at 500 m/s.

次にこの溶液を5Qm/採取し、塩化ビスマス(BiC
υを4.21加え、続いて水酸化カリウム(KOH)を
4.0g加えた後純水を加えて100m/とじた0 次いでこの水溶液を密閉容器(オートクレー7つ中で攪
拌しながら、250℃で8時間反応させた。
Next, this solution was sampled at 5Qm/bismuth chloride (BiC).
υ was added at 4.21 g, then 4.0 g of potassium hydroxide (KOH) was added, and pure water was added and the solution was closed at 100 m/0. The reaction was carried out at ℃ for 8 hours.

反応後生底した白色沈澱に対してデカンテーションを繰
り返すことによりアルカリイオン等の不純物を除去し、
更に水洗、濾過を行った後100℃で一昼夜乾燥させた
After the reaction, impurities such as alkali ions are removed by repeating decantation of the raw white precipitate.
After further washing with water and filtration, it was dried at 100°C for a day and a night.

上述の操作により得られた微粒子をX線回折法により分
析したところ、第5図に示すチタン酸ビスマスの回折パ
ターンと全く同じであり、したがってこの微粒子は、立
方晶系のBizTi 20?であることがわかった。
When the fine particles obtained by the above operation were analyzed by X-ray diffraction, the diffraction pattern was exactly the same as that of bismuth titanate shown in FIG. 5, and therefore, the fine particles were cubic BizTi20? It turned out to be.

実施例4 氷水200m1の中に3〜5分かけて塩化チタン(Ti
CJ4)を滴下して塩化チタン水溶液を調製した。
Example 4 Titanium chloride (Ti
CJ4) was added dropwise to prepare an aqueous titanium chloride solution.

この水溶液に水酸化ナトリウム(NaOH)溶液を加え
てpH7,9とした後、水を加えて500m/とした。
A sodium hydroxide (NaOH) solution was added to this aqueous solution to adjust the pH to 7.9, and then water was added to adjust the pH to 500 m/s.

次にこの溶液に硝酸ビスマス(Bj(NO3)3・5H
20)63.9 g加え、続いて水酸化カリウム(KO
H)を加えてpH7,Qとし更に水酸化カリウム(KO
H)と純水を加えp)(13,0の溶液100ffi/
%作成した0 次いでこの溶液を100m/採取し、0れを密閉容器(
オートクレーブ)中で250 ’Cで3.5時間反応さ
せた。反応後、生成した白色沈澱に対してデカンテーシ
ョンを繰り返すことによりアルカリイオン等の不純物を
除去し、更に水洗・濾過を行った後80°Cで一昼夜乾
燥させた。
Next, bismuth nitrate (Bj(NO3)3.5H
20) Add 63.9 g, followed by potassium hydroxide (KO
Add potassium hydroxide (KO) to pH 7, Q.
Add H) and pure water p) (13,0 solution 100ffi/
Next, 100 m/ml of this solution was collected, and the 0 was placed in a sealed container (
The reaction was carried out for 3.5 hours at 250'C in an autoclave). After the reaction, the white precipitate produced was repeatedly subjected to decantation to remove impurities such as alkali ions, washed with water and filtered, and then dried at 80°C for one day.

上述の操作により得られた微粒子をX線回折法により分
析したところ第5図に示すチタン酸ビスマスの回折パタ
ーンと全く同じであった。したがってこの微粒子は、立
方晶系のBi 2Ti207 であることがわかった。
When the fine particles obtained by the above procedure were analyzed by X-ray diffraction, the diffraction pattern was exactly the same as that of bismuth titanate shown in FIG. Therefore, this fine particle was found to be cubic Bi2Ti207.

〔発明の効果〕〔Effect of the invention〕

以上の説明からも明らかなように、本発明においてはチ
タン化合物の加水分解生成物または水溶性チタン塩と水
溶性ビスマス化合物とを所定の比率で配合し、pH12
,0以上のアルカリ水溶液中、反応温度220℃以上の
条件のもとて湿式反応させているので、粒子サイズが微
小で、かつ粒度分布が均一なりi zTi 207微粒
子を熱処理を加えることなく合成することができる。得
られるBi2Ti5+Q7微粒子は、電歪材料、圧電材
料あるいは透明セラミック材料等の種々の電子材料に好
適なものである0 また従来のようにボールミル等を使用して機械的に微粒
子化する方法と異なり、湿式合成であるために不純物で
ある金属酸化物の混入がなく、組成変動の少ないBi 
2Ti 20?微粒子が得られる。
As is clear from the above explanation, in the present invention, a hydrolysis product of a titanium compound or a water-soluble titanium salt and a water-soluble bismuth compound are blended in a predetermined ratio, and the pH is 12.
Since the wet reaction is carried out in an alkaline aqueous solution with a concentration of 0 or more and a reaction temperature of 220°C or more, the particle size is minute and the particle size distribution is uniform. zTi 207 fine particles can be synthesized without heat treatment. be able to. The obtained Bi2Ti5+Q7 fine particles are suitable for various electronic materials such as electrostrictive materials, piezoelectric materials, and transparent ceramic materials. Also, unlike the conventional method of mechanically making fine particles using a ball mill etc., Because it is wet-synthesized, there is no metal oxide as an impurity, and Bi is produced with little compositional fluctuation.
2Ti 20? Fine particles are obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はBizTizO7微粒子の相対生成量のpH依
存性を示す特性図、第2図はBi zTi 207微粒
子の相対生成量の温度依存性を示す特性図、第3図はB
i zTi 20フ微粒子の相対生成量のBi/Ti(
モル比)依存性を示す特性図、第4図はBi 2Ti 
207微粒子の相対生成量の湿式反応時間依存性を示す
特性図、第5図は本発明の製造方法により製造されたB
i zTi 207微粒子の回折X線スペクトルである
Figure 1 is a characteristic diagram showing the pH dependence of the relative production amount of BizTizO7 fine particles, Figure 2 is a characteristic diagram showing the temperature dependence of the relative production amount of BizTi 207 fine particles, and Figure 3 is a B
i zTi 20 Relative production amount of fine particles Bi/Ti (
Figure 4 is a characteristic diagram showing the dependence on Bi2Ti (molar ratio).
Figure 5 is a characteristic diagram showing the wet reaction time dependence of the relative production amount of 207 fine particles.
It is a diffraction X-ray spectrum of i zTi 207 fine particles.

Claims (1)

【特許請求の範囲】[Claims] チタン化合物の加水分解生成物または水溶性チタン塩と
水溶性ビスマス化合物とを、BiとTiのモル比が0.
2〜0.7となるように配合し、pH12.0以上の強
アルカリ水溶液中、反応温度220℃以上で反応させる
ことを特徴とするBi_2Ti_2O_7微粒子の製造
方法。
A hydrolysis product of a titanium compound or a water-soluble titanium salt and a water-soluble bismuth compound are mixed in such a manner that the molar ratio of Bi to Ti is 0.
2 to 0.7, and reacting in a strong alkaline aqueous solution with a pH of 12.0 or higher at a reaction temperature of 220°C or higher.
JP1895186A 1986-01-30 1986-01-30 Bi (bottom 2) Ti (bottom 2) O (bottom 7) Method for producing fine particles Expired - Lifetime JPH0651569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1895186A JPH0651569B2 (en) 1986-01-30 1986-01-30 Bi (bottom 2) Ti (bottom 2) O (bottom 7) Method for producing fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1895186A JPH0651569B2 (en) 1986-01-30 1986-01-30 Bi (bottom 2) Ti (bottom 2) O (bottom 7) Method for producing fine particles

Publications (2)

Publication Number Publication Date
JPS62176915A true JPS62176915A (en) 1987-08-03
JPH0651569B2 JPH0651569B2 (en) 1994-07-06

Family

ID=11985952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1895186A Expired - Lifetime JPH0651569B2 (en) 1986-01-30 1986-01-30 Bi (bottom 2) Ti (bottom 2) O (bottom 7) Method for producing fine particles

Country Status (1)

Country Link
JP (1) JPH0651569B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301875A (en) * 1988-05-31 1989-12-06 Murata Mfg Co Ltd Production of fine compound oxide powder
US7300806B2 (en) * 2003-03-20 2007-11-27 Asahi Glass Company, Limited Process for producing fine particles of bismuth titanate
CN103466703A (en) * 2013-09-29 2013-12-25 安徽工业大学 Bismuth titanate nanoneedle and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301875A (en) * 1988-05-31 1989-12-06 Murata Mfg Co Ltd Production of fine compound oxide powder
US7300806B2 (en) * 2003-03-20 2007-11-27 Asahi Glass Company, Limited Process for producing fine particles of bismuth titanate
CN103466703A (en) * 2013-09-29 2013-12-25 安徽工业大学 Bismuth titanate nanoneedle and preparation method thereof

Also Published As

Publication number Publication date
JPH0651569B2 (en) 1994-07-06

Similar Documents

Publication Publication Date Title
US4677083A (en) Method for manufacturing dielectric fine powder of Ba1-x Srx TiO3
JPS5945928A (en) Preparation of fine particle from strontium titanate
GB2163142A (en) A process for producing a composition which includes perovskite compound
Huizing et al. Hydrates of manganese (II) oxalate
JPS627160B2 (en)
EP0187383B1 (en) Method for producing bismuth titanate fine powders
JPS62176915A (en) Preparation of fine particle of bi2ti2o7
US5366718A (en) Process for producing columbite-type niobate and process for producing perovskite-type compound therefrom
JPH0339014B2 (en)
JP3509491B2 (en) Shape anisotropic ceramic powder and method for producing the same
JPH05262518A (en) Preparation of ammonium pare earth double oxalate, use thereof for production of rare earth oxide, and obtained rare earth oxide
JPS63260822A (en) Polycrystalline barium titanate fiber having oriented crystallographic axis
JPS62128923A (en) Production of fine particle of bismuth sodium titanate
US4889706A (en) Method of manufacturing fine powder of lead stannate
CN108238609B (en) Preparation method of sodium octaborate tetrahydrate
KR100264229B1 (en) Metal niobates and(or) tantalates, process for their preparation and its use
JP2716197B2 (en) Method for producing barium titanate powder
JPH0873219A (en) Production of powdery ceramic
JPS61247622A (en) Production of fine grain of bismuth titanate
EP0163739A1 (en) Process for preparing fine particles of ba (zrx ti 1-x)o3-solid solution
JPS62216917A (en) Production of fine lead zirconate particle
JPH0583487B2 (en)
JPS61158824A (en) Production of bismuth titanate fine powder
JPS6086024A (en) Production of titanic acid salt
KR20060102928A (en) Manufacturing method of barium titanate powder

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term