JPS6217675A - Apparatus for ultrasonic measurement of position - Google Patents

Apparatus for ultrasonic measurement of position

Info

Publication number
JPS6217675A
JPS6217675A JP15663785A JP15663785A JPS6217675A JP S6217675 A JPS6217675 A JP S6217675A JP 15663785 A JP15663785 A JP 15663785A JP 15663785 A JP15663785 A JP 15663785A JP S6217675 A JPS6217675 A JP S6217675A
Authority
JP
Japan
Prior art keywords
transmitter
relative distance
receivers
ultrasonic wave
continuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15663785A
Other languages
Japanese (ja)
Other versions
JPH0684986B2 (en
Inventor
Ikuo Arai
郁男 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP15663785A priority Critical patent/JPH0684986B2/en
Publication of JPS6217675A publication Critical patent/JPS6217675A/en
Publication of JPH0684986B2 publication Critical patent/JPH0684986B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable the continuous measurement of a position and to attain to enhance measuring accuracy and resolving power, by transmitting a continuous ultrasonic wave with definite frequency to receive the same by three receivers and calculating the three-dimensional position coordinates of a transmitter. CONSTITUTION:A continuous ultrasonic wave with predetermined frequency is transmitted from a transmitter 3 moving from a reference position Z0 to a position Z through an oscillator 1 to be received by three receivers 4-6. Relative distance change measuring circuits 7-9 determine relative distance changes r1-r3 of the transmitter 3 and the receivers 4-6 on the basis of the phase change of receiving signals to supply the same to a position operator 11 which, in turn, operates the relative distance of the position Z on the basis of know relative distances R1-R3 and distance changes r1-r3 to the position Z0 to calculate the three- dimensional coordinates (x, y, z) of the position Z. Because the continuous ultrasonic wave with definite frequency is used, an amplifier with a narrow band can be used and external noise is hardly received and the effect of the variation in a receiving level is reduced by measurement based on phase change while information is continuously obtained even with respect to the movement of the transmitter and the continuous measurement of a position is enabled and measuring accuracy and resolving power are enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超音波を利用して人体又は物体等の各部の位
置を3次元的に測定する位置測定装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a position measuring device that three-dimensionally measures the position of each part of a human body, an object, etc. using ultrasonic waves.

〔従来の技術と問題点〕[Conventional technology and problems]

超音波を利用した位置測定装置は、例えば、人間や動物
の歩行軌跡又は頭、手、足等の各部の動きや位置を測定
する手段として広い応用分野がある。しかも、最近では
より高い精度と高分解能が要求される様になってきた。
2. Description of the Related Art Position measuring devices using ultrasonic waves have a wide range of applications, for example, as means for measuring the walking trajectory of humans and animals, or the movement and position of various parts such as their heads, hands, and feet. Moreover, in recent years, higher precision and higher resolution have been required.

しかし、現在使用されている方式は、パルス状の超音波
を用い、距離に対応した送受波器間の伝搬遅延時間の計
測によシ、対象とする位置を算出し決定するものである
However, the method currently in use uses pulsed ultrasonic waves to calculate and determine the target position by measuring the propagation delay time between the transducer and the transducer corresponding to the distance.

この為、次の様な不都合点があった。For this reason, there were the following disadvantages.

(イ) パルス波を用いているので送受波器や増幅器に
広帯域特性のものが必要で、外部雑音が混入し易く、誤
測定の原因となっていた。
(b) Since pulse waves are used, the transducer and amplifier must have broadband characteristics, which can easily be contaminated by external noise, causing measurement errors.

(ロ) ・ぐルス波の遅延時間の計測では、受信波形お
よヒ受信レベルの変動の影響が大きいので、測定精度が
低かった。
(b) ・Measurement of the delay time of the gust wave had low measurement accuracy because of the large influence of fluctuations in the received waveform and received level.

Cウノヤルス波の繰り返し周期内では送波器の動きを検
知できないので、送波器の移動に対する分解能が悪く、
連続的な測定が不可能であった。
Since the movement of the transmitter cannot be detected within the repetition period of the C unoyalus wave, the resolution of the movement of the transmitter is poor.
Continuous measurements were not possible.

したがって、本発明は、送波器からieルス波ではなく
・一定周波数の連続した超音波を送信することにより・
連続した位置の測定を可能にすると共に・高い測定精度
と高分解能を有する超音波位置測定装置を提供しようと
するものである。
Therefore, the present invention is capable of transmitting continuous ultrasonic waves of a constant frequency from a transmitter instead of an IE pulse wave.
The present invention aims to provide an ultrasonic position measuring device that enables continuous position measurement and has high measurement accuracy and high resolution.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明は、送波器から送信される信号として、一定周波
数の連続した超音波を使用し、これを3個の受波器で受
信し、この各々の受信信号の位相変化から、夫々送受波
器間の相対距離変化量を求め、これらの相対距離変化量
を演算することにより、送波器の3次元位置を決定し、
上述の問題点を解決し目的を達成した。
The present invention uses continuous ultrasonic waves with a constant frequency as a signal transmitted from a transmitter, receives this with three receivers, and determines whether the transmitted or received signals are transmitted or received based on the phase change of each received signal. The three-dimensional position of the transmitter is determined by calculating the relative distance change between the transmitters and calculating the relative distance change.
The above problems were solved and the objective was achieved.

〔作用〕 測定対象となる空間に3次元座標を設定し、この座標上
の任意の位置に送波器の基準点及び3個0′・;:)の
位置を予め決めておきこれらの座標値を記憶しておく。
[Operation] Set three-dimensional coordinates in the space to be measured, predetermine the reference point of the transmitter and the positions of three 0', ;:) at any position on these coordinates, and set these coordinate values. Remember.

また、送波器の基準点と各受波器間の距離は計算によっ
て求められるので、これらの各距離も既知のIとして記
憶しておくものとする。次に送波器から一定周波数の連
続した超音波を送信し、この超音波を3個の受波器で受
信して電気信号に変換する。これら電気信号の位相は送
波器の動きに従って変化するので、この位相変化量を検
出すれは送波器と各受波器間の相対距離変化量が算出で
き、これら各相対距離変化量と、前述の予め記憶された
送波器の基準点の座標及びこの基準点から各受波器迄の
距離とに基づいて送波器の3次元位置が求められる。
Further, since the distance between the reference point of the transmitter and each receiver is determined by calculation, each of these distances is also stored as a known I. Next, the transmitter transmits continuous ultrasonic waves at a constant frequency, and the three receivers receive the ultrasonic waves and convert them into electrical signals. The phase of these electrical signals changes according to the movement of the transmitter, so by detecting this amount of phase change, the relative distance change between the transmitter and each receiver can be calculated. The three-dimensional position of the transmitter is determined based on the previously stored coordinates of the reference point of the transmitter and the distance from this reference point to each receiver.

〔実施例〕〔Example〕

以下、図面を用いて本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail using the drawings.

第1図は本発明の全体を示す構成図である。(1)は、
例えば周波数40kHzの連続波信号を発生する発振器
で、伝送線路(2)を介して3次元の位置Zにある送波
器(3)に接続され、前記連続波信号は送波器(3)よ
り超音波として空中に送信される。この超音波は、夫々
予め任意の位置に設定された3つの受波器(4) 、 
(5) 、 (6)で受信され、リード線を介して夫夫
対応する相対距離変化測定回路(7) 、 (s) 、
 (9)に接続されている。ここで、送波器(3)と各
受波器(4)、(5)、(6)の位置及び座標値は図の
様な関係に設定しておくものとする。zoは受波器(3
)の基準点を示すものである。前記3つの相対距離変化
測定回路(7) 、 (8) 、 (9)は、前記発振
器(1)の連続波信号を基準として前記3つの受波器で
受信された音波に対応した各電気信号の位相変化量を検
出することにより、送波器(3)と受波器(4) 、 
(s) 、 (6)との間の相対距離変化量r1+r2
+r3を算出するものである。00はリセット回路で、
送波器(3)が予め定めた基準点Z。上に来たとき、相
対距離変化測定回路(7) 、 (8) 、 (9)と
位置演算装置Uにリセット信号を加える様になっている
。α■は相対距離変化測定回路(7) 、 (8) 、
 (9)の出力r1+r2+r5に基づいて、送波器(
3)の3次元位置を算出する位置演算装置である。
FIG. 1 is a block diagram showing the entire structure of the present invention. (1) is
For example, an oscillator that generates a continuous wave signal with a frequency of 40 kHz is connected to a transmitter (3) located at a three-dimensional position Z via a transmission line (2), and the continuous wave signal is transmitted from the transmitter (3). Sent into the air as ultrasound waves. This ultrasonic wave is transmitted to three receivers (4), each of which is set at an arbitrary position in advance.
(5), (6) and the corresponding relative distance change measuring circuit (7), (s),
(9). Here, it is assumed that the positions and coordinate values of the transmitter (3) and each of the receivers (4), (5), and (6) are set in a relationship as shown in the figure. zo is the receiver (3
) indicates the reference point. The three relative distance change measuring circuits (7), (8), and (9) each measure electrical signals corresponding to the sound waves received by the three receivers using the continuous wave signal of the oscillator (1) as a reference. By detecting the phase change amount of the transmitter (3) and the receiver (4),
Relative distance change amount r1+r2 between (s) and (6)
+r3 is calculated. 00 is the reset circuit,
Reference point Z predetermined by the transmitter (3). When it reaches the top, a reset signal is applied to the relative distance change measuring circuits (7), (8), (9) and the position calculation device U. α■ is the relative distance change measurement circuit (7), (8),
Based on the output r1+r2+r5 of (9), the transmitter (
3) is a position calculation device that calculates the three-dimensional position.

次に第1図の動作について説明する。Next, the operation shown in FIG. 1 will be explained.

(a)、測定を行う領域に3次元座標を設定し、受波器
(3)の基準点zo及び3つの受波器(4) 、 (5
) 、 (6)の予め設定した位置2..22,2.の
座標値を位置演算装置Ql)内の例えばRAM等のメモ
リー(図示せず)に記憶させておき、またこれらの各座
標値よシ送波器(3)の基準点と各受波器間の距離R1
・R2・R3も演算して既知の量として上記メモリーに
記憶しておくものとする。
(a), Set three-dimensional coordinates in the area to be measured, and set the reference point zo of the receiver (3) and the three receivers (4) and (5
), (6) preset position 2. .. 22,2. The coordinate values of are stored in a memory (not shown) such as a RAM in the position calculation device Ql), and these coordinate values are also stored between the reference point of the transmitter (3) and each receiver. distance R1
- R2 and R3 are also calculated and stored in the memory as known quantities.

(b)0発振器(1)よシ伝送線路(2)を介して送ら
れた一定周波数の連続波信号は、送波器(3)より超音
波として空中に送信され、3つの受波器で受信される。
(b) A continuous wave signal of a constant frequency sent from the oscillator (1) to the transmission line (2) is transmitted into the air as an ultrasonic wave from the transmitter (3), and is sent to three receivers. Received.

受信された超音波は電気信号に変換されてリード線を介
し、夫々相対距離変化測定回路(7) 、 (8) 、
 (9)へ送られる。
The received ultrasonic waves are converted into electrical signals and sent through lead wires to relative distance change measurement circuits (7), (8), respectively.
Sent to (9).

(C)、相対距離変化測定回路(7) 、 (s) 、
 (9)では、受波器(4) 、 (5) 、 (6)
からの電気信号の位相が送波器(3)の移動に伴って変
化するので、これを検出して送波器(3)と各受波器間
の相対距離変化量r1.r2+r3を算出し出力する。
(C), relative distance change measurement circuit (7), (s),
In (9), the receivers (4), (5), (6)
Since the phase of the electrical signal from the transmitter (3) changes as the transmitter (3) moves, this is detected and the amount of change in relative distance between the transmitter (3) and each receiver r1. Calculate and output r2+r3.

間、これら回路の構成については第2図に示し詳細につ
いては後述する。
The configuration of these circuits is shown in FIG. 2 and will be described in detail later.

(d)、算出された相対距離変化量ri+r2+r5は
位置演算装置(ロ)に送られる。ここでこれら各位と、
前受波器(4) 、 (5) 、 (6)間の距離R1
、R2r Jを基にして演算を行い、送波器(3)の任
意の3次元位置2が求められる、 次ニ、第2図で前述の相対距離変化測定回路(7)。
(d), the calculated relative distance change amount ri+r2+r5 is sent to the position calculation device (b). Here, with these people,
Distance R1 between front receivers (4), (5), (6)
, R2r J to obtain an arbitrary three-dimensional position 2 of the transmitter (3).Next, the relative distance change measuring circuit (7) described above in FIG.

(8) 、 (9)について詳細に説明する。尚、各回
路は同一構成のため、(7)のみについて説明する。
(8) and (9) will be explained in detail. Note that since each circuit has the same configuration, only (7) will be explained.

aカは増幅器で、送波器(3)の送信波に応じた受波器
(11)の出力信号e1を増幅する。α]は一方のNて
い倍回路で、増幅器(6)の出力信号e′1の周波数を
N倍に高めるものである。α尋は発振器(1)からの出
力信号eoの周波数をN倍する他方のNてい倍回路であ
る。
A is an amplifier that amplifies the output signal e1 of the receiver (11) according to the transmitted wave of the transmitter (3). [alpha]] is one N multiplier circuit, which increases the frequency of the output signal e'1 of the amplifier (6) by N times. αhiro is the other N multiplier circuit that multiplies the frequency of the output signal eo from the oscillator (1) by N times.

αGは90°移相回路でNてい倍回路(14の出力信号
eNの位相を90°シフトさせる。(IQ及びα→は掛
算器で、一方の掛算器αQはNてい倍回路α1及びα→
の出力信号e′、NとeNを乗算し、他方の掛算器0樟
はNてい倍回路01の出力信号”’INと90°移相回
路αυの出力信号e′Nを乗算する。αη及び0Iはロ
ー・ンスフィルタで掛算器α0とロー・ンスフィルタ0
ηで一方の相関回路(1−測点線内)を構成し、掛算器
0eとロー・ぞスフイル′!的で他方の相関回路(下側
点線内)を構成している。翰及び(ハ)は上記2つの相
関回路の出力信号波形を整形する波形整形回路で夫々ア
ップグランカウンタ(イ)に接続されている。このアッ
プダウンカウンタ(2)の出力はD/A変換変換器子え
られ、このD/A変換変換器子、送波器(3)の動きに
よる相対距離変化量r、が出力される。
αG is a 90° phase shift circuit that shifts the phase of the output signal eN of 14 by 90°. (IQ and α→ are multipliers, and one multiplier αQ is a N multiplier circuit α1 and α→
The other multiplier 01 multiplies the output signal "'IN" of the N multiplier circuit 01 and the output signal e'N of the 90° phase shift circuit αυ. αη and 0I is a low-ns filter, multiplier α0 and low-ns filter 0
η constitutes one correlation circuit (within the 1-point line), multiplier 0e and low-zoosfil'! and constitutes the other correlation circuit (inside the lower dotted line).翰 and (c) are waveform shaping circuits that shape the output signal waveforms of the two correlation circuits, and are connected to up-grain counters (a), respectively. The output of this up/down counter (2) is input to a D/A converter, and a relative distance change r due to the movement of the D/A converter and the transmitter (3) is output.

第2図の相対距離変化測定回路(7)の動作についてe
g=E□casωt(1) で表すことができ、受波器(4)の出力信号e、を入力
して増幅器(6)で増幅された出力信号el、は、で表
される。ここでτは音波の伝搬速度、Rは送波器(3)
と受波器(4)との距離を示す。(2)式に於いて分解
能を高めるために、Nてい倍回路α]で周波数をN倍(
N=2以上の整数)すれば、ω/v=2π/λ(λ:超
音波の波長)であるから、その出力信号”INは・ となる。
Regarding the operation of the relative distance change measuring circuit (7) in Fig. 2 e
It can be expressed as g=E□casωt(1), and the output signal el, which is inputted with the output signal e of the receiver (4) and amplified by the amplifier (6), is expressed as follows. Here, τ is the propagation speed of the sound wave, and R is the transmitter (3)
and the distance between the receiver (4) and the receiver (4). In order to increase the resolution in equation (2), the frequency is multiplied by N times (
N=an integer greater than or equal to 2), then ω/v=2π/λ (λ: wavelength of the ultrasonic wave), so the output signal ``IN'' becomes .

発振器(1)の連続波信号の出力信号e。の周波数をN
てい倍回路a4でN倍した出力信号eNは、eH= E
ocas Nωt(4) で表され、この出力信号を90°移相回路αυに加える
と、その出力信号e′Nは、 e3’s =EOsfn Nωt(5)となる。(4)
式及び(5)式で表される出力信号と、(3)式の出力
信号との相関をとって、一方の出力信号をEc、他方の
出力信号をE3とすればが得られる。(6)式及び(7
)式の(eNx e’、N〕と〔e′Nxe/、N〕は
平均を示す。この平均化は2つの相関回路内のロー・ぐ
スフィルタ(1′i)及び(至)で行われる。ここで(
6)式及び(7)式を組み合わせると となる。これは、送波器(3)と受波器(4)との距離
Rλ が艮変化するごとに1回転するベクトルを表しており、
Rが増加なら左回り、減少なら右回りの回転ベクトルで
ある。よってこのベクトルの位相変化を検出すれば送受
波器間の相対距離変化量が得られることになる。実際に
は、第2図に示す如く、2つの相関回路の出力信号Ec
及びE3を波形整形回路(ホ)及びぐpでi9ルス化し
てアップダウンカウンタ(2)で計数し、この計数出力
信号をD/A変換変換器子ナログ信号に変換されて出力
される。このアナログ信号出力は送波器(3)と受波器
(4)間の距離Rつて、送波器(3)をその基準点2゜
上に置いて、アップダウンカウンタ(イ)と第1図の位
置演算装置(11)をリセット回路α0の出力でリセッ
トさせることによリ、D/A変換器に)の出力が上記基
準点Z。を始点とした送波器(3)と受波器(4)間の
相対距離変化量r1を表わすことになる。同様にして他
の2つの相対距離変化測定回路(8) 、 (9)から
も、送波器(3)の基準点2゜を始点とした夫々の相対
距離変化量r2及びr3が得られる。
Output signal e of the continuous wave signal of the oscillator (1). the frequency of N
The output signal eN multiplied by N by the multiplier circuit a4 is eH=E
ocas Nωt (4), and when this output signal is applied to the 90° phase shift circuit αυ, the output signal e'N becomes e3's = EOsfn Nωt (5). (4)
By correlating the output signals expressed by equations and (5) with the output signal of equation (3), and setting one output signal to Ec and the other output signal to E3, the following can be obtained. Equation (6) and (7
) in the equation (eNx e', N] and [e'Nxe/, N] indicate the average. This averaging is performed by the low-gust filters (1'i) and (to) in the two correlation circuits. Here (
Combining equations (6) and (7) yields. This represents a vector that rotates once every time the distance Rλ between the transmitter (3) and the receiver (4) changes.
If R increases, it is a counterclockwise rotation vector, and if R decreases, it is a clockwise rotation vector. Therefore, by detecting the phase change of this vector, the relative distance change amount between the transducer and receiver can be obtained. Actually, as shown in FIG. 2, the output signal Ec of the two correlation circuits is
and E3 are converted into i9 pulses by the waveform shaping circuit (e) and gp and counted by the up/down counter (2), and this count output signal is converted into a D/A converter child analog signal and output. This analog signal output is output from the up/down counter (a) and the first By resetting the position calculation device (11) shown in the figure with the output of the reset circuit α0, the output of the D/A converter is set to the reference point Z. This represents the relative distance change amount r1 between the transmitter (3) and the receiver (4) starting from . Similarly, from the other two relative distance change measurement circuits (8) and (9), the respective relative distance change amounts r2 and r3 starting from the reference point 2° of the transmitter (3) are obtained.

前述の如く、各相対距離変化測定回路(7) 、 (8
) 、 (9)ではNてい倍回路a→、α◆を使用する
ことにより各受波器(4) 、 (5) 、 (6)か
らの電気信号の周波数がN倍になりその結果、相対距離
変化量の測定分解能もN倍に高められる。例えば、発振
器(1)の発振周波数:f=40kHz、空気の音速;
v=340m/sのとき、λ(波長) = 8.5 m
/mとなるから、N=4とすればその分解能はλの1、
すなわち約2m/mが得られる。
As mentioned above, each relative distance change measurement circuit (7), (8
), (9), by using the N multiplier circuit a→, α◆, the frequency of the electrical signal from each receiver (4), (5), (6) is multiplied by N, and as a result, the relative The measurement resolution of the amount of change in distance is also increased by N times. For example, oscillation frequency of oscillator (1): f = 40kHz, sound speed of air;
When v=340m/s, λ (wavelength) = 8.5 m
/m, so if N=4, the resolution is 1 of λ,
That is, approximately 2 m/m is obtained.

以上説明した様に、送波器(3)の基準点zoを始点と
する送波器(3)と3つの受波器(4) 、 (5) 
、 (6)との間の相対距離変化量r1.r2.r3が
測定されたので、これらの各位から送波器(3)の3次
元位置2を算出する手[ηを以下に示す。送波器(3)
が基準点zoにあるときは3つの受波器(4) 、 (
5) 、 (6)迄の距離は、既知の量として、 R1=lz+  zol           (9)
R2= 1z2−Zol           QOR
5= 12.−zol           (1+)
の様に計算によシ求められる。これらの値は予め位置演
算装置(11)内のメモリーに記憶しておく。次に送波
器(3)が基準点Zoからある点2へ移動したとき、そ
の後の送波器と夫々の受波器間の相対距離変化量r1.
r2.r3は夫々、 r1=lZ  ztl  R102 r2 =lz  221  R2α] r3=lZ  z、l−R,Q4 で表されるから、上式(2)、α→、(I4に各々座標
値を代入すれば次式が得られる。
As explained above, the transmitter (3) and the three receivers (4), (5) start from the reference point zo of the transmitter (3).
, (6) relative distance change amount r1. r2. Since r3 has been measured, the method for calculating the three-dimensional position 2 of the transmitter (3) from each of these points [η is shown below. Transmitter (3)
When is at the reference point zo, there are three receivers (4), (
5), the distance up to (6) is a known quantity, R1=lz+zol (9)
R2= 1z2-Zol QOR
5=12. -zol (1+)
It can be calculated as follows. These values are stored in advance in the memory within the position calculation device (11). Next, when the transmitter (3) moves from the reference point Zo to a certain point 2, the subsequent relative distance change amount r1. between the transmitter and each receiver.
r2. Since r3 is expressed as r1=lZ ztl R102 r2 = lz 221 R2α] r3=lZ z, l-R, Q4, the above formula (2), α→, (Substituting the coordinate values for I4) The following equation is obtained.

(x−a)2+ y2+ z2= (R,+ r、)2
   αυ(x+a)2+y2+z2=(R2+r2)
2aQx2+72+(z−c)2= (R5+rs)2
   α力よって、上式(ト)、 (IQ、 a’hか
ら送波器(3)の3次元位置2の座標値X + y+ 
Zは次式によシ求められる。
(x-a)2+ y2+ z2= (R, + r,)2
αυ(x+a)2+y2+z2=(R2+r2)
2aQx2+72+(z-c)2= (R5+rs)2
According to the α force, the above formula (g), (IQ, from a'h, the coordinate value of the three-dimensional position 2 of the transmitter (3) X + y +
Z can be found using the following formula.

これら式a樟、(至)、四に基づき送波器(3)の位置
を算出する装置が第1図の位置演算装置aυとして示さ
れている。この位置演算装置(ロ)は、例えば、マイク
ロコンピュータ−を用いれば容易に実施可能で、リセッ
ト回路αOからの信号により、送波器(3)が基準点Z
o上に来たことを知り、相対距離変化測定回路(7) 
、 (8) 、 (9)の出力信号「1.r2.r3と
、予め記憶させておいた送受波器の各座標値及び所要値
とから送波器の3次元位置Zを演算する。
A device for calculating the position of the transmitter (3) based on these equations aυ, (to), and 4 is shown as a position calculation device aυ in FIG. This position calculation device (b) can be easily implemented using, for example, a microcomputer, and the transmitter (3) is moved to the reference point Z by a signal from the reset circuit αO.
Knowing that it has come above o, the relative distance change measurement circuit (7)
The three-dimensional position Z of the transmitter is calculated from the output signals "1.r2.r3" of , (8) and (9), and each coordinate value and required value of the transmitter/receiver stored in advance.

尚、上記説明では受波器を3個使用して、送波器(3)
の位置を3次元的に求めたが、受波器を2個にした場合
は2次元位置(平面位置)を、1個の場合は1次元位置
(直線距離)が求められることは勿論である。
In addition, in the above explanation, three receivers are used, and the transmitter (3)
The position of the receiver was determined three-dimensionally, but of course, if there are two receivers, the two-dimensional position (plane position) can be determined, and if there is one receiver, the one-dimensional position (straight line distance) can be determined. .

また・伝送線路(2)を使用する代わりに、テレメータ
方式で無線によって発振器(1)の連続波信号を送波器
(3)に伝送することもできる。
Also, instead of using the transmission line (2), the continuous wave signal of the oscillator (1) can be transmitted wirelessly to the transmitter (3) using a telemeter system.

〔発明の効果〕〔Effect of the invention〕

以上説明した通シ、本発明によれば次の如き種種の顕著
な効果が得られる。
As explained above, according to the present invention, the following various remarkable effects can be obtained.

(イ)送信信号は・ぐルス波でなく、一定周波数の連続
波信号を使用しているので、増幅器は狭帯域のものを使
用でき、外来雑音の影響を受けにくく、高いS7へ比が
得られる。
(b) Since the transmitted signal uses a continuous wave signal with a constant frequency instead of a gust wave, a narrow band amplifier can be used, which is less susceptible to external noise and provides a high S7 ratio. It will be done.

(ロ)一定周波数の連続波信号を使用した位相変化によ
る測定を行っているため、受信レベルの変動の影響は小
さく、高精度の位置測定ができる。
(b) Measurement is performed by changing the phase using a continuous wave signal with a constant frequency, so the influence of fluctuations in the reception level is small and highly accurate position measurement is possible.

H送波器の動きに対する情報が連続的に得られ分解能も
高い。
Information regarding the movement of the H transmitter can be obtained continuously and the resolution is high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の好適な実施例の概要を示すブロック図
、第2図は第1図の相対距離変化測定回路の詳細な構成
を示すブロック図である。 (3)・・・送波器、(4)〜(6)・・・受波器、(
7)〜(9)・・・相対距離変化測定回路、00)・・
・リセット回路、Ill・・・・位置演算装置、+13
1.圓・・・・Nてい倍回路、(19・・・・90°移
相回路、(221・・・・アップダウンカウンタ、23
)・・・・D/A変換器。
FIG. 1 is a block diagram showing an outline of a preferred embodiment of the present invention, and FIG. 2 is a block diagram showing a detailed configuration of the relative distance change measuring circuit of FIG. 1. (3)...Transmitter, (4)-(6)...Receiver, (
7) to (9)... Relative distance change measurement circuit, 00)...
・Reset circuit, Ill...Position calculation device, +13
1. Circle... N multiplier circuit, (19... 90° phase shift circuit, (221... Up/down counter, 23
)...D/A converter.

Claims (1)

【特許請求の範囲】[Claims] 一定周波数の連続波信号を発生する発振器と、この信号
を超音波として送信する送波器と、この送波器からの超
音波を受信する予め任意の位置に定められた3個の受波
器と、これら3個の受波器で受信された上記超音波に対
応した電気信号の位相変化を前記発振器の連続波信号を
基準として測定することにより、前記送受波器間の相対
距離変化量を演算する相対距離変化測定手段と、これら
の相対距離変化量から、前記送波器の3次元座標位置を
演算する位置演算手段と、前記送波器が予め定めた位置
に来たとき、前記各相対距離変化測定手段をリセットさ
せるリセット手段とから成ることを特徴とする超音波位
置測定装置。
An oscillator that generates a continuous wave signal of a constant frequency, a transmitter that transmits this signal as an ultrasonic wave, and three receivers that are preset at arbitrary positions to receive the ultrasonic wave from this transmitter. By measuring the phase change of the electric signal corresponding to the ultrasonic wave received by these three receivers with reference to the continuous wave signal of the oscillator, the amount of change in the relative distance between the transducer can be calculated. a relative distance change measuring means for calculating, a position calculating means for calculating a three-dimensional coordinate position of the transmitter from these relative distance changes; An ultrasonic position measuring device comprising a reset means for resetting the relative distance change measuring means.
JP15663785A 1985-07-16 1985-07-16 Moving position measuring device Expired - Lifetime JPH0684986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15663785A JPH0684986B2 (en) 1985-07-16 1985-07-16 Moving position measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15663785A JPH0684986B2 (en) 1985-07-16 1985-07-16 Moving position measuring device

Publications (2)

Publication Number Publication Date
JPS6217675A true JPS6217675A (en) 1987-01-26
JPH0684986B2 JPH0684986B2 (en) 1994-10-26

Family

ID=15632021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15663785A Expired - Lifetime JPH0684986B2 (en) 1985-07-16 1985-07-16 Moving position measuring device

Country Status (1)

Country Link
JP (1) JPH0684986B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186328A (en) * 1992-12-21 1994-07-08 Fujitsu Ltd Ultrasonic range-finding device
WO2016104521A1 (en) * 2014-12-25 2016-06-30 三菱電機株式会社 Frequency conversion device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103832905A (en) * 2012-11-20 2014-06-04 日立电梯(中国)有限公司 Position detection device for elevator cab

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186328A (en) * 1992-12-21 1994-07-08 Fujitsu Ltd Ultrasonic range-finding device
WO2016104521A1 (en) * 2014-12-25 2016-06-30 三菱電機株式会社 Frequency conversion device

Also Published As

Publication number Publication date
JPH0684986B2 (en) 1994-10-26

Similar Documents

Publication Publication Date Title
US5280457A (en) Position detecting system and method
US10051599B2 (en) Range-finding and object-positioning systems and methods using same
JPS6222091A (en) Distance measuring method
JPS6457112A (en) Portable measuring apparatus
JPH02102477A (en) Ultrasonic distance measuring instrument
US3614226A (en) Phase-locked pulsed distance-measuring equipment utilizing a coarse scale and fine scale measurement
JPS6217675A (en) Apparatus for ultrasonic measurement of position
KR20140118242A (en) High resolution distance measuring method by phase shifted value of ultrasonic signal
JPS5550173A (en) Method of measuring distance by ultrasonic wave
JPH06186328A (en) Ultrasonic range-finding device
JP3117372B2 (en) Ultrasonic distance measuring device
JPS631987A (en) Ultrasonic distance measuring device
JPS56124072A (en) Optical wave distance measurement instrument
JPS5910513B2 (en) Obstacle detection method using ultrasound
JPH0262991A (en) Doppler radar device
Wobschall et al. An ultrasonic/optical pulse sensor for precise distance measurements
JPH0452694Y2 (en)
JPS63266376A (en) Acoustic wave positioning system
Aoyagi et al. Development of indoor mobile robot navigation system using ultrasonic sensors
JP2002372578A (en) Range finder
JP2983768B2 (en) Ultrasonic remote water temperature measurement device
JPH0126496B2 (en)
JPS60119485A (en) Microwave distance measuring equipment
JPH01263514A (en) Acoustic wave measuring system
JPS6365897B2 (en)