JPS62176729A - Digitalizing method for copying locus - Google Patents

Digitalizing method for copying locus

Info

Publication number
JPS62176729A
JPS62176729A JP1855086A JP1855086A JPS62176729A JP S62176729 A JPS62176729 A JP S62176729A JP 1855086 A JP1855086 A JP 1855086A JP 1855086 A JP1855086 A JP 1855086A JP S62176729 A JPS62176729 A JP S62176729A
Authority
JP
Japan
Prior art keywords
copying
stylus
signal
speed
displacement signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1855086A
Other languages
Japanese (ja)
Inventor
Yuzo Matsunaga
松永 有三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1855086A priority Critical patent/JPS62176729A/en
Publication of JPS62176729A publication Critical patent/JPS62176729A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily perform a time constant change operation in the time of high speed copying by sliding model surface position data through a low speed passage region and by automatically changing time constant of a filter according to copying speed. CONSTITUTION:A displacement signal 13 of a stylus 11 is input in a displacement signal processing part 14, transferred from an analog signal to a digital signal and input in a copying speed control part 16 as a stylus displacement signal 15. The copying speed control part 16 is composed of a loop of the stylus displacement signal 15 and a copying speed instruction signal 17, and the stylus 11 honestly copies the surface of a prototype 12. A position detecting signal 24 from a machine position detector 22 is input in a stylus center position operation part 26 after being added with a machine position counter 25. A machine position and displacement of the stylus in the center position operation part 26 is input in a copying data processing part 27 as added and copying locus data, and digitalizing is performed through a low region passage type filter after being compensated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、倣い機械でモデル形状を近似軌跡であるN
Cブロックデータの連なりに変換し。
[Detailed description of the invention] [Industrial field of application] This invention is a method for converting a model shape to an approximate trajectory N using a copying machine.
Convert to a series of C block data.

そのデータを用いて加工機械でNC加工するように構成
した装置等における軌跡データのディジタイジング方法
に関する。
The present invention relates to a method for digitizing locus data in a device configured to perform NC processing using a processing machine using the data.

〔従来の技術〕[Conventional technology]

一般に上記のような装置におけるディジタイジング操作
は、ある許容量を持たせて直線近似し、許容量を外れた
時一つのブロックデータを切出し、この手続きの繰返し
でモデル表面位置を近似するブロックデータの連なりを
得ていた。
Generally, the digitizing operation in the above-mentioned device is to perform linear approximation with a certain tolerance, cut out one block of data when the tolerance is exceeded, and repeat this procedure to create block data that approximates the model surface position. I was getting a connection.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

10ミクロン程度の許容量で直線近似しても。 Even if it is approximated by a straight line with a tolerance of about 10 microns.

ブロックデータの増大を来たさないようにノイズ成分を
除去するため機械位置とトレーサヘッドの変位信号を加
算したデータの連なりに低域通過フィルタリング操作を
加え、フィルタ挿入の弊害として惹起する軌跡の「鈍(
なま)す」を防止する目的で、変位信号の微分値から求
まるモデル形状変化度合に応じて該フィルタの時定数を
自動的に変えてゆ(ように構成した従来法があるが、こ
れには次のような問題がある。
In order to remove noise components without causing an increase in block data, a low-pass filtering operation is applied to the series of data obtained by adding the machine position and tracer head displacement signals. Dull (
There is a conventional method in which the time constant of the filter is automatically changed according to the degree of change in the model shape determined from the differential value of the displacement signal in order to prevent has the following problems.

そもそも、フィルタ挿入によって除去しだい倣い機械の
位置検出系の数ミクロン程度のゆらぎや、トレーサヘッ
ドの変位信号にあるノイズ成分等を、許容量に対して無
視できる程度に抑制しようとすると、該フィルタの時定
数はかなり大きいものにせざるをえない。従って1時定
数を変化させるモデル形状の変化度合検出を速やかに行
わなければ本来目的とする取得軌跡の「鈍り」防止は的
確なものとならない。ところが、モデル形状の変化度合
検出に用いている変位信号は2種々の外乱により刻々と
変化するものであるので、前段でローパスフィルタリン
グして微分するのが妥当であり、このために先の検出の
「速やかさ」を失ってしまう。また、変化度合の速やか
な検出を狙って微分時定数を短かくすると、形状変化の
緩やかなモデル形状に対しては無防備になってしまう。
In the first place, if we try to suppress fluctuations of several microns in the position detection system of the copying machine and noise components in the displacement signal of the tracer head to a level that can be ignored with respect to the allowable amount, it is necessary to remove the filter by inserting the filter. The time constant must be made quite large. Therefore, unless the degree of change in the model shape that changes the time constant is detected promptly, the originally intended prevention of "blurring" of the acquired trajectory cannot be achieved accurately. However, since the displacement signal used to detect the degree of change in the model shape changes from moment to moment due to two types of external disturbances, it is appropriate to perform low-pass filtering and differentiation in the first stage. You will lose your "speediness". Furthermore, if the differential time constant is shortened with the aim of quickly detecting the degree of change, it becomes vulnerable to model shapes whose shapes change slowly.

このように従来法は、微分器前段のフィルタの時定数の
選定、微分器の時定数の選定等が難しく、倣い速度が低
い場合には比較的容易に対応できるものの、高速倣い時
には取扱いが問題なしとは言えなかった。具体的には、
中程度の倣い速度に合わせて上記のような時定数類を選
定するが、第2図にあるような真の軌跡(イ)に対して
(ロ)のような鈍り、あるいは第3図における円盤のよ
うに緩やかな形状変化のモデルについては9図のような
速度によるディジタイジング結果のばらつきを生起した
りしていた。
As described above, in the conventional method, it is difficult to select the time constant of the filter before the differentiator, the time constant of the differentiator, etc., and although it can be handled relatively easily when the scanning speed is low, there are problems in handling when scanning at high speed. I couldn't say no. in particular,
The above time constants are selected according to the medium tracing speed, but the true trajectory (a) as shown in Fig. 2 is blunted as shown in (b), or the disc as shown in Fig. 3. Models with gradual shape changes, such as the one shown in Figure 9, cause variations in digitizing results due to speed, as shown in Figure 9.

以上のように、近年倣い加工における高精度化、高速化
の要求はますます強まっているにも拘らず、従来はこれ
に応える有効な手法がなかった0 〔問題点を解決するだめの手段〕 この発明は、前記の点に鑑みてなされたもので、高精度
かつ高速な倣い加工を可能にする倣軌跡のディジタイジ
ング方法を提供することを目的とする。
As mentioned above, although the demand for higher precision and higher speed in copying machining has been increasing in recent years, there has been no effective method to meet these demands. The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide a method for digitizing a tracing trajectory that enables highly accurate and high-speed tracing machining.

この目的を達成する本発明の構成は、倣い機械でモデル
を倣って軌跡データを得、該データでNC加工を行わせ
るようにした装置において。
The configuration of the present invention achieves this object in an apparatus that copies a model using a copying machine to obtain locus data, and performs NC processing using the data.

倣い動作時、サンプリング時間毎に機械位置とトレーサ
ヘッドの変位信号を加算したデータを。
Data obtained by adding the machine position and tracer head displacement signal at each sampling time during copying operation.

低域通過フィルタを通して滑らかにするとともに、倣い
速度に応じて該フィルタの時定数を開側と変えてゆくよ
うにしたことを特徴とする。
It is characterized in that it is smoothed through a low-pass filter, and the time constant of the filter is changed from the open side depending on the scanning speed.

〔作 用〕[For production]

低域通過フィルタの時定数を、倣い速度が遅いときは太
きくシ、また速いときは小さくすることにより、速度差
による「鈍り」度合のバラツキをなりシ、正確な倣いを
行う。
By increasing the time constant of the low-pass filter when the scanning speed is slow and decreasing it when the scanning speed is fast, the variation in the degree of "dullness" due to the speed difference is eliminated and accurate scanning is performed.

〔実施例〕〔Example〕

この発明の一実施例を図面を参照して説明する。第1図
は、実施例の構成ブロック図である。
An embodiment of the invention will be described with reference to the drawings. FIG. 1 is a block diagram of the configuration of the embodiment.

図中の10はトレーサヘッド、11は倣い検出器のスタ
イラス、12は原型、13はスタイラス11の変位信号
(3軸分)、14は変位信号処理部(アナログ−ディジ
タル変換器など)、15は処理されたスタイラス変位信
号(3軸分)、16は倣い速度制御部、17は倣い速度
指令信号、18はディジタル−アナログ変換器、19け
サーボアンプ。
In the figure, 10 is a tracer head, 11 is a stylus of a scanning detector, 12 is a prototype, 13 is a displacement signal (for 3 axes) of the stylus 11, 14 is a displacement signal processing unit (analog-digital converter, etc.), and 15 is a Processed stylus displacement signal (for 3 axes), 16 a scanning speed control section, 17 a scanning speed command signal, 18 a digital-to-analog converter, and 19 servo amplifiers.

20は倣い機械の駆動モータ、21は速度検出器。20 is a drive motor for the copying machine, and 21 is a speed detector.

22は機械位置検出器、23は速度フィードバック信号
、24は位置検出信号、25は機械位置カウンタ、26
はスタイラス中心位置演算部、27は倣いデータ処理部
、28はトレーサヘッド変位信号。
22 is a machine position detector, 23 is a speed feedback signal, 24 is a position detection signal, 25 is a machine position counter, 26
27 is a stylus center position calculation unit, 27 is a scanning data processing unit, and 28 is a tracer head displacement signal.

29は原型形状データ受信部(例えばメモリ媒体あるい
は加工機械)、30は加工機械へ与える原型形状データ
である。図中には、サーボ系に関する所は1軸分のみを
記載しているが、現実にはこの部分は3軸分おく必要が
ある。
Reference numeral 29 denotes a prototype shape data receiving section (for example, a memory medium or a processing machine), and 30 denotes prototype shape data to be given to the processing machine. In the figure, only one axis is shown for the servo system, but in reality, this part needs to be for three axes.

次に、この実施例の作用を説明する。第1図において、
スタイラス11の変位信号13は、変位信号処理部14
に入力され、アナログ信号からディジタル信号に変換さ
れ、スタイラス変位信号15として倣い速度制御部16
へ入力される。倣い速度制御部16は、このスタイラス
変位信号15と操作信号である倣い速度指令信号17で
ループな構成し、スタイラス11が原型120表面を忠
実になぞるように働く。すなわち、スタイラス11の3
軸分の変位(εX、εy、ε2)から求まる原型形状を
示す法線ベクトルε=Vεノ+67+εz2  がある
一定値になるように各軸のモータに速度指令が与えられ
る。同様に機械位置検出器22からの位置検出信号24
は9機械位置カウンタ25で積算されてスタイラス中心
位置演算部26に入力される。
Next, the operation of this embodiment will be explained. In Figure 1,
The displacement signal 13 of the stylus 11 is transmitted to a displacement signal processing section 14.
The analog signal is converted into a digital signal and sent to the scanning speed control unit 16 as a stylus displacement signal 15.
is input to. The copying speed control section 16 forms a loop with this stylus displacement signal 15 and a copying speed command signal 17 which is an operation signal, and operates so that the stylus 11 traces the surface of the master model 120 faithfully. That is, the stylus 11-3
A speed command is given to the motor of each axis so that the normal vector ε=Vε+67+εz2 indicating the prototype shape determined from the displacements of the axes (εX, εy, ε2) becomes a certain constant value. Similarly, the position detection signal 24 from the machine position detector 22
is accumulated by the 9 machine position counter 25 and input to the stylus center position calculation section 26.

中心位置演算部26で機械位置(X + Y + Z 
)およびスタイラスの変位(εX、εy、ε2)は、加
算され倣い軌跡データ(X+εX、Y+ξy、Z+ε2
)として倣いデータ処理部27へ入力される。ここで、
低域通過型フィルタを通してf(X+εx)。
The center position calculation unit 26 calculates the machine position (X + Y + Z
) and the displacement of the stylus (εX, εy, ε2) are added to form the tracing trajectory data (X+εX, Y+ξy, Z+ε2).
) is input to the scanning data processing section 27. here,
f(X+εx) through a low-pass filter.

f(Y十εy)、f(Z+62)と補正した後、ディジ
タイジングを行って正確なスタイラス中心位置を得るこ
とが可能になる。
After correcting f(Y1εy) and f(Z+62), it becomes possible to perform digitizing to obtain an accurate stylus center position.

第2図や第3図に示すフィルタによる「鈍り」のエラー
量E、は、倣い速度Vと比例関係にあり。
The error amount E of "dullness" caused by the filter shown in FIGS. 2 and 3 is proportional to the tracing speed V.

E、=に、 # v    (k、は比例定数)となる
E,=, #v (k, is a constant of proportionality).

またフィルタの時定数Tもエラー量E2と比例関係にあ
り。
Further, the time constant T of the filter is also proportional to the error amount E2.

E2”k2吻T    (k2は比例定数)となる。E2''k2 proboscis T (k2 is a proportionality constant).

従って、第4図のような関係で、倣い速度からフィルタ
時定数を定めてやると、エラー量のバラツキを一定にす
ることができる。第2図のような形状の急変化する原型
については、制御系の別機能として働(学習型倣い速度
制御によって、形状変化度合に応じた倣い速度として低
速度が選ばれ、滑らかな形状変化では高速度が選ばれる
ので2結局は時定数も急峻変化部で大きく、なだらかな
形状部で小さくという適切なフィルタリング効果が可能
となる。
Therefore, if the filter time constant is determined from the scanning speed using the relationship shown in FIG. 4, the variation in error amount can be made constant. For prototypes whose shape changes rapidly as shown in Figure 2, a separate function of the control system is used (Learning-type scanning speed control selects a low speed as the scanning speed according to the degree of shape change; Since a high speed is selected, it is possible to achieve an appropriate filtering effect in which the time constant is large in steeply changing portions and small in gently curved portions.

このようにする事で、従来フィルタリング時定数の適切
な自動変化ができなくて生じていた「鈍り」を抑え、か
つ倣い速度差による軌跡のバラツキをなくした高速・高
精度倣い動作を可能とする。
By doing this, we can suppress the "dullness" that conventionally occurs due to the inability to appropriately change the filtering time constant, and also enable high-speed, high-precision scanning operation that eliminates variations in trajectory due to differences in scanning speed. .

〔発明の効果〕〔Effect of the invention〕

以上説明したように、サンプリング時間毎に機械位置と
トレーサヘッドからの変位信号を加算して得るモデル表
面位置データを、低域通過フィルタを通して滑らかにす
るとともに、倣い速度に応じて該フィルタの時定数を自
動的に変化させる事で、従来特に高速倣い時に調整の困
難であった時定数変化操作が極めて簡単になり。
As explained above, the model surface position data obtained by adding the machine position and the displacement signal from the tracer head at each sampling time is smoothed through a low-pass filter, and the time constant of the filter is adjusted according to the scanning speed. By automatically changing the time constant, it becomes extremely easy to change the time constant, which was previously difficult to adjust, especially during high-speed copying.

さらに、倣い速度が変ったとしても軌跡データのバラツ
キを殆んどな(せる等、大幅な性能改善が可能となる。
Furthermore, even if the scanning speed changes, it is possible to substantially improve performance by eliminating most of the variation in trajectory data.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示すブロック図。 第2図及び第3図は従来法で問題であった軌跡エラーを
示す説明図、第4図は倣い速度に対する時定数の大きさ
を示す特性図である。図面中。 10はトレーサヘッド、11はスタイラス、12は原型
、13は変位信号、14は変位信号処理部、15はスタ
イラス変位信号、16は倣い速度制御部、17は倣い速
度指令信号、22は機械位置検出器、24は位置検出信
号、26はスタイラス中心位置演算部、27は倣いデー
タ処理部、28はトレーサヘッド変位信号、30は原型
形状データである。 第2図 第3図 一一一一一一一慇背 第4図 彷丈し1美管7酎 V
FIG. 1 is a block diagram showing an embodiment of the present invention. FIGS. 2 and 3 are explanatory diagrams showing the trajectory error that is a problem in the conventional method, and FIG. 4 is a characteristic diagram showing the size of the time constant with respect to the scanning speed. In the drawing. 10 is a tracer head, 11 is a stylus, 12 is a prototype, 13 is a displacement signal, 14 is a displacement signal processing section, 15 is a stylus displacement signal, 16 is a copying speed control section, 17 is a copying speed command signal, 22 is a machine position detection 24 is a position detection signal, 26 is a stylus center position calculating section, 27 is a scanning data processing section, 28 is a tracer head displacement signal, and 30 is original shape data. Figure 2 Figure 3 111111 11 tall Figure 4 Wandering 1 Beautiful tube 7 Shochu V

Claims (1)

【特許請求の範囲】[Claims] 倣い機械でモデルを倣ってモデル形状の軌跡データを得
、該データに基づいてNC加工を行わせるように構成し
た装置において、倣い動作時、サンプリング時間毎に倣
い機械位置とトレーサヘッドからの変位信号とを加算し
て得るモデル表面位置データを、低域通過フィルタを通
して滑らかにするとともに、倣い速度に応じて該フィル
タの時定数を変えるようにしたことを特徴とする倣い軌
跡のディジタイジング方法。
In a device configured to copy a model with a copying machine to obtain locus data of the model shape and perform NC machining based on the data, the copying machine position and displacement signal from the tracer head are recorded at each sampling time during copying operation. A method for digitizing a scanning trajectory, characterized in that model surface position data obtained by adding the above is smoothed through a low-pass filter, and the time constant of the filter is changed in accordance with the scanning speed.
JP1855086A 1986-01-30 1986-01-30 Digitalizing method for copying locus Pending JPS62176729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1855086A JPS62176729A (en) 1986-01-30 1986-01-30 Digitalizing method for copying locus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1855086A JPS62176729A (en) 1986-01-30 1986-01-30 Digitalizing method for copying locus

Publications (1)

Publication Number Publication Date
JPS62176729A true JPS62176729A (en) 1987-08-03

Family

ID=11974738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1855086A Pending JPS62176729A (en) 1986-01-30 1986-01-30 Digitalizing method for copying locus

Country Status (1)

Country Link
JP (1) JPS62176729A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990008624A1 (en) * 1989-02-03 1990-08-09 Fanuc Ltd Digitizing method
JPH0386448A (en) * 1989-08-31 1991-04-11 Mitsubishi Heavy Ind Ltd Digitizing method for copying locus
US5007288A (en) * 1988-12-02 1991-04-16 Yazaki Corporation Heat-radiation type level sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5007288A (en) * 1988-12-02 1991-04-16 Yazaki Corporation Heat-radiation type level sensor
WO1990008624A1 (en) * 1989-02-03 1990-08-09 Fanuc Ltd Digitizing method
JPH0386448A (en) * 1989-08-31 1991-04-11 Mitsubishi Heavy Ind Ltd Digitizing method for copying locus

Similar Documents

Publication Publication Date Title
US4026031A (en) Surface measurement instruments
US4296473A (en) Profile control system
JP3389417B2 (en) How to compensate for lost motion
JPS61269710A (en) Digitizing method for profile track
US4143310A (en) Apparatus for positioning
GB1572237A (en) Numerically controlled turning machines
US3870941A (en) Method and circuit for sampling position data
JPS63123107A (en) Position control system
JPS62176729A (en) Digitalizing method for copying locus
JPH0738136B2 (en) Positioning control device
US5115401A (en) Method for automatically correcting deflection of stylus in digitizing device
EP0156918B1 (en) Method of automatically adjusting tracer head
CN111880283A (en) Control system of zoom optical system
US3579268A (en) Automatic quadrature and amplitude stabilizer
JP2793804B2 (en) Pulse distribution method
JP2902005B2 (en) Digitizing method of scanning locus
KR890001353B1 (en) Numerical control device
JPH03290705A (en) Numerical controller
JPS6327140B2 (en)
JPS5942254A (en) Profiling system
JPH0230460A (en) Profile control method
SU1700567A1 (en) Circular interpolator
SU975298A2 (en) Photocopying tracking apparatus
JPS61125756A (en) Control method for profile machine
JPS6195858A (en) Synchronized operation method of copying machining