JPS62176688A - Adaptive control method in resistance welding machine - Google Patents

Adaptive control method in resistance welding machine

Info

Publication number
JPS62176688A
JPS62176688A JP1749186A JP1749186A JPS62176688A JP S62176688 A JPS62176688 A JP S62176688A JP 1749186 A JP1749186 A JP 1749186A JP 1749186 A JP1749186 A JP 1749186A JP S62176688 A JPS62176688 A JP S62176688A
Authority
JP
Japan
Prior art keywords
resistance
welding
current
value
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1749186A
Other languages
Japanese (ja)
Inventor
Masao Hiruma
昼間 正夫
Masato Koyakata
古舘 正人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dengensha Toa Co Ltd
Original Assignee
Dengensha Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dengensha Manufacturing Co Ltd filed Critical Dengensha Manufacturing Co Ltd
Priority to JP1749186A priority Critical patent/JPS62176688A/en
Publication of JPS62176688A publication Critical patent/JPS62176688A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding Control (AREA)

Abstract

PURPOSE:To accurately detect and measure the resistance or voltage between electrode chips by disusing the lead wire for measuring voltage between electrodes for the electrode chip, by finding a voltage displacement factor and current displacement factor, by taking the resistance value between the electrode chips by multiplying this difference by the reference resistance value and by performing adaptive control with repeating this measurement extending over all electrifying period. CONSTITUTION:An arc ignition circuit 11 performs the constant current control which adjusts an ignition phase angle to a thyristor 8 by finding the variation in the welding current. A division circuit 14 finds a power source voltage displacement factor by detecting the welding power source voltage. A division circuit 16 finds the welding current displacement factor by dividing the welding current by the reference current value by detecting it. A substraction circuit 17 finds the resistance value between the electrode chips by substracting the power source voltage displacement factor fed from the division circuit 14 from the circuit 16. A multiplication the resistance displacement factor between electrode chips by the reference resistance value. The arc ignition circuit 11 monitors the resistance between electrode chips fed from the multiplication circuit 18 with performing the constant current control and performs the adaptive control by controlling the welding current and/or welding time according to the prescribed algorithm from the propulsion thereof.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、スポット溶接過程中の時々刻々変化する電極
チップ間抵抗を継続的に検出して、適当な大きさのナゲ
ツトを生成すべく、溶接電流および/または通電時間等
をコントロールする適応制御方法に関し、さらに詳しく
は、電極チップ間電圧を検出測定するためのリード線を
不要とすることができる電極チップ間抵抗測定方法を用
いた適応制御方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention continuously detects the resistance between electrode tips that changes from moment to moment during the spot welding process, and generates a nugget of an appropriate size. Regarding an adaptive control method for controlling welding current and/or energization time, etc., more specifically, an adaptive control method using an electrode tip resistance measurement method that eliminates the need for a lead wire for detecting and measuring the electrode tip voltage. Regarding the method.

(従来の技術) 最近では、スポット溶接の品質を保証するための制御方
法として溶接ナゲツト生成中に刻々変化する電極チップ
間電圧又は抵抗等の推移を継続的に監視しながら、溶接
電流、および/または通電時間を自動的にコントロール
してナゲツトの大きさを保証する適応制御方法が実用化
されている。
(Prior Art) Recently, as a control method to guarantee the quality of spot welding, welding current and/or Alternatively, an adaptive control method has been put into practical use that guarantees the size of the nugget by automatically controlling the energization time.

電極チップ間電圧を検出測定するためには、通常、スポ
ット溶接ガンの場合は、その大半がチップホルタの附近
に小さなタップ孔を設けて、その小さな孔へ絶縁被覆さ
れたリード線の一端をビス留めして、そのリード線の所
々をアームに沿って固定して配線している。
In order to detect and measure the voltage between electrode tips, most spot welding guns usually have a small tapped hole near the tip holder, and one end of the insulated lead wire is screwed into that small hole. Then, the lead wires are fixed and wired along the arm.

(発明が解決しようとする問題点) しかしながら、上記のようなリード線を用いた電極チッ
プ間電圧測定方法は、スポット溶接ガンのハンドリング
や外部機器との機械的干渉によってリード線の破損や断
線がしばしば起こる。さらにリード線を強大な溶接電流
の流れる二次ケーブル近傍へ配線することになるので、
電磁誘導によるノイズが大きく、電極チップ間電圧を精
密に検出測定することが難しくなるという欠点があった
(Problems to be Solved by the Invention) However, in the electrode tip voltage measurement method using lead wires as described above, the lead wires may be damaged or disconnected due to handling of the spot welding gun or mechanical interference with external equipment. Happens often. Furthermore, since the lead wire will be routed near the secondary cable where a powerful welding current flows,
The drawback is that the electromagnetic induction generates a large amount of noise, making it difficult to accurately detect and measure the voltage between the electrode tips.

(問題点を解決するための手段) 本発明は、上記の問題点を解決するものであって、その
具体的な方法は、溶接過程中の時々刻々変化する電極チ
ップ間抵抗を検出し、適正ナゲツト径が得られるように
、溶接電流および/または通電時間等の諸条件を、電極
チップ間抵抗の推移を継続的に監視しながら自動的にコ
ントロールするいわゆる抵抗溶接適応制御方法において
、iff電圧を半サイクルまたは所定サイクル毎に検出
し。
(Means for Solving the Problems) The present invention solves the above problems, and its specific method is to detect the resistance between the electrode tips that changes from time to time during the welding process, and to In the so-called resistance welding adaptive control method, which automatically controls various conditions such as welding current and/or current application time while continuously monitoring the transition of the resistance between electrode tips, so as to obtain the nugget diameter, the IF voltage is Detected every half cycle or predetermined cycle.

その検出した電圧値を予め設定された基準電圧値で除し
て電圧変位率を求めると共に、溶接トランスの1次側又
は2次側の電流値を検出し、かつその検出した電流値を
予め設定された基準電流値で除して電流変位率を求め、
さらにその電流変位率から上記電圧変位率をさし引いて
求めた値に、予め設定された基準抵抗値を乗じ、これに
よって得られた値を溶接中の電極チップ間抵抗値と看做
し、以降全通電時間にわたってこの測定を繰返しながら
適応制御を行うという、技術的手段を提供する。
The detected voltage value is divided by a preset reference voltage value to obtain the voltage displacement rate, and the current value on the primary side or secondary side of the welding transformer is detected, and the detected current value is set in advance. Find the current displacement rate by dividing by the reference current value,
Furthermore, the value obtained by subtracting the voltage displacement rate from the current displacement rate is multiplied by a preset reference resistance value, and the value obtained thereby is regarded as the inter-electrode tip resistance value during welding, The present invention provides a technical means of performing adaptive control while repeating this measurement over the entire energization time.

(作用) 次に本発明の原理及び作用を第1図及び第2図とともに
説明する。
(Operation) Next, the principle and operation of the present invention will be explained with reference to FIGS. 1 and 2.

スポット溶接は、たとえば第1図の主構成回路に示すよ
うに、溶接トランス1の二次導体2に接続された一対の
電極チップ3,4により、被溶接物5を両側から挾み、
加圧装置6によって溶接に必要な加圧力を電極チップ・
3,4間に支えると共に、溶接トランスと溶接電源7と
の間に挿入されたサイリスク8などの電子制御素子を、
制御装置9に含まれる点弧回路を制御することによって
主電流の開閉を行ない、溶接に必要な電流を電極チップ
間に一定時間流して溶接部にナゲツト10を生成して接
合する。
In spot welding, for example, as shown in the main circuit shown in FIG.
The pressure device 6 applies the pressure necessary for welding to the electrode tip.
3 and 4, and an electronic control element such as Cylisk 8 inserted between the welding transformer and the welding power source 7.
The main current is opened and closed by controlling the ignition circuit included in the control device 9, and the current necessary for welding is passed between the electrode tips for a certain period of time to form a nugget 10 at the welding part and join.

ナゲツト生成中に電流変動を引き起こす要因は、大別し
て電源変動によるものと負荷変動によるものがある。
Factors that cause current fluctuations during nugget generation can be roughly divided into power supply fluctuations and load fluctuations.

そのうち、負荷変動の方は、■二次ケーブルの抵抗値、
■電極チップ間抵抗値の変動に分けられる。
Of these, for load fluctuation, ■resistance value of secondary cable,
■Divided into variations in resistance between electrode tips.

上記の電源変動は、溶、接過程中も不規則に発生する可
能性がある。二次ケーブルの抵抗値は、長期の使用によ
る二次ケーブルの損耗に伴って次第に上昇してくるもの
で、溶接過程中にダイナミックに抵抗値が変化するとい
うことはない。
The above power fluctuations may also occur irregularly during the welding process. The resistance value of the secondary cable gradually increases as the secondary cable wears out due to long-term use, and the resistance value does not dynamically change during the welding process.

一方、電極チップ間抵抗については、周知のように、一
般的なスポット溶接においては、溶接過程中の電極チッ
プ間抵抗は第2図に示すような推移を示すのが代表的で
ある。
On the other hand, regarding the resistance between electrode tips, as is well known, in general spot welding, the resistance between electrode tips during the welding process typically shows a transition as shown in FIG.

同図に示されたC区間は、通電開始直後の不安定領域で
、この間の電極チップ間抵抗の挙動は被溶接材のあたり
具合(なじみ)や油、サビ等の被溶接物表面の汚染状況
等に依存する。この表面接触抵抗は、通電開始後1〜2
サイクルで消滅し、電極チップ間抵抗は急速に低下する
Section C shown in the figure is an unstable region immediately after the start of energization, and the behavior of the resistance between the electrode tips during this period is determined by the contact condition of the welded material (fitting in) and the contamination of the surface of the welded material such as oil and rust. Depends on etc. This surface contact resistance is 1 to 2 after the start of energization.
It disappears in cycles, and the resistance between the electrode tips rapidly decreases.

次にb区間では、溶接部の温度上昇による被溶接物の固
有抵抗の上昇と溶接部の軟化、圧潰による通電路面積の
拡大が同時に進行する。この間は固有抵抗の上昇による
溶接部抵抗の上昇の方が通電路面積の拡大による抵抗値
低下を上廻るので結果として電極チップ間抵抗は上昇し
、この過程の終了付近で極大値となる。この間のナゲツ
トの生成開始および成長初期にあたる。
Next, in section b, the resistivity of the welded object increases due to the temperature rise of the weld, and the current carrying path area increases simultaneously due to softening and crushing of the weld. During this period, the increase in weld resistance due to the increase in specific resistance exceeds the decrease in resistance value due to the expansion of the current carrying path area, and as a result, the inter-electrode tip resistance increases, reaching a maximum value near the end of this process. During this period, nuggets begin to form and are in the early stages of growth.

次にC区間においては、通電路面積はナゲツトの成長と
ともに拡大を続けるが、固有抵抗は飽和値に達してはシ
一定となるので電極チップ間抵抗は低下する。
Next, in section C, the current carrying path area continues to expand as the nugget grows, but the resistivity remains constant after reaching the saturation value, so the resistance between the electrode tips decreases.

溶接過程中の電流変動は、その大部分が電源変動と電極
チップ間抵抗合算結果である。従ってたとえば交流溶接
の場合は、半サイクル毎、また直流溶接の場合は予め規
定された時間間隔毎に、電源電圧を検出し、この検出値
を予め設定された基準電圧値、すなわち変動のない状態
での電源電圧、で除算することにより基準電圧値からの
電圧変位率を求めると共に、溶接電流を検出し、その検
出値を基準電流値、すなわち、負荷変動などの外乱のな
い状態での電流値で除することにより基準電流値からの
電流変位率を求めさらに上記電流変位率から電圧変位率
を差し引けば電極チップ間抵抗の変位率が算出できる。
Most of the current fluctuations during the welding process are the result of power supply fluctuations and the sum of the resistance between the electrode tips. Therefore, for example, in the case of AC welding, the power supply voltage is detected every half cycle, and in the case of DC welding, at every predetermined time interval, and this detected value is set as a preset reference voltage value, that is, a state with no fluctuation. The voltage change rate from the reference voltage value is determined by dividing the power supply voltage at By dividing by , the current displacement rate from the reference current value is obtained, and by subtracting the voltage displacement rate from the current displacement rate, the displacement rate of the inter-electrode tip resistance can be calculated.

このようにして得られた電極チップ間抵抗の変位率に予
め定められた基準抵抗値、すなわち、溶接部の温度上昇
や軟化、圧潰などによる変動のない状態での電気抵抗値
を乗ずれば、電極チップ間抵抗の絶対値が得られる。か
くして、上記の動作を半サイクル毎、あるいは所定時間
間隔を以て時々刻々繰返せば溶接過程中の電極チップ間
抵抗の推移を監視することができる。
If the displacement rate of the inter-electrode tip resistance obtained in this way is multiplied by a predetermined reference resistance value, that is, the electrical resistance value in a state where there is no fluctuation due to temperature rise, softening, crushing, etc. of the welded part, then The absolute value of the inter-electrode tip resistance can be obtained. Thus, by repeating the above operation every half cycle or at predetermined time intervals, it is possible to monitor the change in resistance between the electrode tips during the welding process.

したがって、スポット溶接の適応制御を実施する場合l
こ、電極チップに電極間電圧検出用のリード線を接続す
ることなく、電極チップ間抵抗ないし電圧を容易かつ正
確に求めることができる。
Therefore, when implementing adaptive control of spot welding, l
In this way, the resistance or voltage between the electrode tips can be easily and accurately determined without connecting a lead wire for detecting the inter-electrode voltage to the electrode tip.

(実施例) 以下、本発明方法を実施するための装置に関する構成例
を第3図に基づいて説明する。
(Example) Hereinafter, a configuration example of an apparatus for carrying out the method of the present invention will be described based on FIG. 3.

第3図は一般的な単相交流溶接装置の電気ブロック図で
ある。なお、同図において第1図の主構成回路と同一構
成部品には同一符号を付し、詳細は省略する。
FIG. 3 is an electrical block diagram of a general single-phase AC welding device. In this figure, the same components as those of the main circuit shown in FIG. 1 are given the same reference numerals, and the details are omitted.

制御装置9の点弧回路11は、サイリスタ8に点弧信号
を送出しながら半サイクル毎に溶接トランス1の1次側
に設置されたCT12.もしくは溶接トランスの2次側
に設置されたトロイダルコイル13により溶接電流を検
出し、溶接電源の変動および負荷インピーダンスなどの
変動による溶接電流の変動を求め、これを補償するよう
、サイリスタ8への点弧位相角を調整する、いわゆる定
電流制御を行なう。
The ignition circuit 11 of the control device 9 sends an ignition signal to the thyristor 8 and connects the CT 12. Alternatively, the welding current is detected by the toroidal coil 13 installed on the secondary side of the welding transformer, and fluctuations in the welding current due to fluctuations in the welding power source and load impedance are determined, and a point to the thyristor 8 is set to compensate for this. Performs so-called constant current control to adjust the arc phase angle.

同時に除算回路14は半サイクル毎に溶接電源7と溶接
トランス1の間に挿入された電源電圧検出トランス15
により溶接電源電圧を検出し、これを予め設定された基
準電圧値、すなわち変動のない状態での電源電圧値で除
し、電源電圧変位率を求める。
At the same time, the divider circuit 14 inputs a power supply voltage detection transformer 15 inserted between the welding power source 7 and the welding transformer 1 every half cycle.
The welding power supply voltage is detected and divided by a preset reference voltage value, that is, the power supply voltage value in a state with no fluctuation, to obtain the power supply voltage change rate.

同時に除算回路16は半サイクル毎にCT12もしくは
トロイダルコイル13により溶接電流を検出し、これを
予め設定された基準電流値、すなわち負荷変動などの外
乱のない状態での電流値で除し、溶接電流変位率を求め
る。なお、これについて−言付加すれば前記のとおり、
溶接過程中宮に行なわれている定電流制御はサイリスタ
の点弧位相を制御することにより、溶接電流を半サイク
ル毎、設定値に補償するものであるが、これは検出した
溶接電流の誤差分を次の半サイクルlこおいて補償する
ものであるから、常に半サイクルの応答遅れを伴い、溶
接電流が常に設定値に保持されているものではない。
At the same time, the dividing circuit 16 detects the welding current by the CT 12 or the toroidal coil 13 every half cycle, divides this by a preset reference current value, that is, the current value in a state without disturbances such as load fluctuation, and calculates the welding current. Find the displacement rate. In addition, as mentioned above, if you add a word to this,
The constant current control performed during the welding process compensates the welding current to the set value every half cycle by controlling the firing phase of the thyristor. Since compensation is performed during the next half cycle, there is always a half cycle response delay and the welding current is not always maintained at the set value.

したがって瞬時瞬時の半サイクルについては、もし何ら
かの外乱が発生すれば、前記電流変位が発生する。
Therefore, for an instantaneous half cycle, if any disturbance occurs, the current displacement will occur.

次に、減算回路17は、前記の除算回路14から出力さ
れる電源電圧変位率を他方の除算回路16から減算する
。この演算値は電極チップ間抵抗変位率に相当する。
Next, the subtraction circuit 17 subtracts the power supply voltage change rate output from the division circuit 14 from the other division circuit 16. This calculated value corresponds to the resistance change rate between the electrode tips.

次に、乗算回路18は減算回路17から出力される演算
結果、すなわち電極チップ間抵抗変位率に予め設定され
た基準抵抗値、すなわち溶接部の温度上昇や軟化、圧潰
などによる変動のない状態での電極チップ間抵抗値を乗
する。この演算値は電極チップ間抵抗値に相当する。
Next, the multiplier circuit 18 uses the calculation result output from the subtraction circuit 17, that is, the reference resistance value set in advance for the resistance displacement rate between the electrode tips, that is, in a state where there is no fluctuation due to temperature rise, softening, crushing, etc. of the welded part. multiplied by the resistance value between the electrode tips. This calculated value corresponds to the inter-electrode tip resistance value.

点弧回路11は前述したように定電流制御を行ないなが
ら、更に乗算回路18から出力される・電極チップ間抵
抗を監視し、その推移から所定のアルゴリズムに従って
溶接電流、および/または通電時間を制御し、適応制御
を行なう。
The ignition circuit 11 performs constant current control as described above, and also monitors the inter-electrode tip resistance output from the multiplier circuit 18, and controls the welding current and/or energization time based on the transition according to a predetermined algorithm. and performs adaptive control.

なお、その所定のアルゴリズムについては周知の如く、
電極チップ間抵抗の推移の波形を積分し、これがあらか
じめ設定された値に到達したら通電を打切る方式、電極
チップ間抵抗の推移の最高値から、これがあらかじめ設
定された値だけ降下した時点で通電を打切る方式、ある
いは電極チップ間抵抗の推移の波形があらかじめ実験に
より求められた適正ナゲツトが得られる波形に一致する
よう溶接電流を半サイクル毎に調整する方法など多くの
方式があり、本実施例はそのいずれにも適用可能である
As is well known, the predetermined algorithm is
A method that integrates the waveform of the transition of the resistance between electrode tips and stops energization when it reaches a preset value, and energizes when the transition of the resistance between electrode tips drops by a preset value from the highest value of the transition of the electrode tip resistance. There are many methods, such as a method in which the welding current is truncated, or a method in which the welding current is adjusted every half cycle so that the waveform of the transition of the electrode tip resistance matches the waveform that yields the appropriate nugget determined in advance by experiment. The example is applicable to either.

以上、本発明の方法により下記の実験値に基づいて実施
した結果、第4図に示すような電極チップ間抵抗値の変
化が見られた。
As described above, as a result of carrying out the method of the present invention based on the following experimental values, changes in the inter-electrode tip resistance value as shown in FIG. 4 were observed.

◎ 被溶接材 合金化溶融亜鉛メッキ鋼板(45g/4
5 g )板  厚 ;  0.7tX2 ◎ 溶接条件 加圧力 ;  250kgf電  流 
:  11.0OOA 通電時間 ; 10〜 (発明の効果) 以上のとおり本発明の方法によれば、抵抗゛溶接機の電
極チップに電極間電圧測定用のリード線を接続する必要
がないので、従来に見られたようなリード線の断線劣化
や電磁誘導によるノイズの影響に関係なく、溶接過程中
の電極チップ間抵抗ないし電圧を検出、測定することが
でき、抵抗溶接の品質向上に大きく寄与する。
◎ Material to be welded Alloyed hot-dip galvanized steel plate (45g/4
5g) Plate thickness: 0.7tX2 ◎ Welding conditions Pressure: 250kgf current
: 11.0OOA Current application time; 10~ (Effects of the invention) As described above, according to the method of the present invention, there is no need to connect a lead wire for measuring interelectrode voltage to the electrode tip of a resistance welding machine, which is different from the conventional method. It is possible to detect and measure the resistance or voltage between the electrode tips during the welding process, regardless of the effects of breakage of lead wires and noise caused by electromagnetic induction, as seen in .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、抵抗溶接機の主構成回路図。 第2図は、電極チップ間抵抗の代表的推移を示す図。 第3図は、本発明にかかる方法を実施するための構成例
を示す電気ブロック図。 第4図は、実験値に基づく電極チップ間抵抗の変化を示
す図。 1・・・溶接トランス    2・・・二次導体3.4
・・・電極チップ   5・・・被溶接物6・・・加圧
装置     ゛ 7・・・溶接電源9・・・制御装置
      10・・・ナゲツト11・・・点弧回路 
    12・・・CT13・・・トロイダルコイル 
 14.16・・・除算回路第2図        第
4図 第3回
FIG. 1 is a main configuration circuit diagram of a resistance welding machine. FIG. 2 is a diagram showing a typical change in resistance between electrode tips. FIG. 3 is an electrical block diagram showing a configuration example for implementing the method according to the present invention. FIG. 4 is a diagram showing changes in inter-electrode tip resistance based on experimental values. 1... Welding transformer 2... Secondary conductor 3.4
... Electrode tip 5 ... Welded object 6 ... Pressure device ゛ 7 ... Welding power source 9 ... Control device 10 ... Nugget 11 ... Ignition circuit
12...CT13...Troidal coil
14.16...Division circuit Figure 2 Figure 4 Part 3

Claims (1)

【特許請求の範囲】[Claims] 溶接過程中の電極チップ間抵抗を検出し、適正ナゲット
径が得られるように、溶接電流および/または通電時間
等の諸条件を、電極チップ間抵抗の推移を継続的に監視
しながら自動的にコントロールするいわゆる抵抗溶接適
応制御方法において、電源電圧を半サイクルまたは所定
サイクル毎に検出し、その検出した電圧値と予め設定さ
れた基準電圧値とを演算して電圧変位率を求めると共に
、溶接トランスの1次側又は2次側の電流値を検出し、
かつその検出した電流値と予め設定された基準電流値と
を演算して電流変位率を求め、さらにその電流変位率か
ら上記電圧変位率をさし引いて求めた値に、予め設定さ
れた基準抵抗値を乗じ、これによって得られた値を溶接
中の電極チップ間抵抗値と看做し、以降全通電時間にわ
たってこの測定を繰返すようにしたことを特徴とする抵
抗溶接機に於ける適応制御方法。
The resistance between the electrode tips during the welding process is detected, and various conditions such as welding current and/or energization time are automatically adjusted while continuously monitoring the transition of the resistance between the electrode tips so that the appropriate nugget diameter can be obtained. In the so-called resistance welding adaptive control method, the power supply voltage is detected every half cycle or every predetermined cycle, the detected voltage value and a preset reference voltage value are calculated to determine the voltage displacement rate, and the welding transformer is Detects the current value on the primary side or secondary side of
Then, calculate the current displacement rate by calculating the detected current value and a preset reference current value, and further subtract the voltage displacement rate from the current displacement rate, and set the preset standard to the value obtained by subtracting the voltage displacement rate from the current displacement rate. Adaptive control in a resistance welding machine, characterized in that the value obtained by multiplying the resistance value is regarded as the inter-electrode tip resistance value during welding, and thereafter this measurement is repeated over the entire energization time. Method.
JP1749186A 1986-01-29 1986-01-29 Adaptive control method in resistance welding machine Pending JPS62176688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1749186A JPS62176688A (en) 1986-01-29 1986-01-29 Adaptive control method in resistance welding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1749186A JPS62176688A (en) 1986-01-29 1986-01-29 Adaptive control method in resistance welding machine

Publications (1)

Publication Number Publication Date
JPS62176688A true JPS62176688A (en) 1987-08-03

Family

ID=11945473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1749186A Pending JPS62176688A (en) 1986-01-29 1986-01-29 Adaptive control method in resistance welding machine

Country Status (1)

Country Link
JP (1) JPS62176688A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0454576U (en) * 1990-09-17 1992-05-11

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0454576U (en) * 1990-09-17 1992-05-11

Similar Documents

Publication Publication Date Title
RU2223849C2 (en) Method of control of electric arc welding process and welding set for realization of this method
US6512200B2 (en) Welding control system
US4201906A (en) Method and apparatus for arc welding
CA1175496A (en) Pulse arc welding machine
US9895764B2 (en) Resistance spot welding system
US8237088B2 (en) Tandem pulse arc welding control apparatus and system therefor
EP1666183A1 (en) Method and system for reducing spatter in short circuit transition procedure for gas-shielded welding
JPH0341757B2 (en)
US4456810A (en) Adaptive schedule selective weld control
JPH0130595B2 (en)
JPS591073A (en) Method and device for controlling resistance spot welding process
JPS6218273B2 (en)
JPH07284956A (en) Method and device for controlling current for resistance welding
JPS6317032B2 (en)
JP2001518017A (en) Resistance welding control system with line impedance compensation
JPS62176688A (en) Adaptive control method in resistance welding machine
US5589088A (en) Method of regulating DC current in resistance welders
KR100650611B1 (en) apparatus and method for weld-time control
US4577086A (en) Monitoring in-service resistance of AC conductors
JP2767328B2 (en) Resistance welding control device and resistance welding measuring device
US3575572A (en) Welding control
RU2164846C1 (en) Resistance welding process control method
JPS6325876B2 (en)
JP3320509B2 (en) High frequency heating equipment
KR100928533B1 (en) Power control method for resistance welding