JPS62176558A - Dust removing device - Google Patents

Dust removing device

Info

Publication number
JPS62176558A
JPS62176558A JP61013729A JP1372986A JPS62176558A JP S62176558 A JPS62176558 A JP S62176558A JP 61013729 A JP61013729 A JP 61013729A JP 1372986 A JP1372986 A JP 1372986A JP S62176558 A JPS62176558 A JP S62176558A
Authority
JP
Japan
Prior art keywords
dust
gas
tube
negatively charged
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61013729A
Other languages
Japanese (ja)
Inventor
Tatsuo Hara
原 辰夫
Kosuke Yoshida
吉田 幸輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP61013729A priority Critical patent/JPS62176558A/en
Publication of JPS62176558A publication Critical patent/JPS62176558A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the lowering in dust removing capacity, by opposedly arranging a negative discharge electrode and a positive electrode in order in a gas flowing direction and providing an ionization part forming an unequal electric field in a gas flow passage and a volume part wherein the cross-sectional area of a powder passage increases from the ionization part between both electrodes. CONSTITUTION:The dust in the gas introduced into an ionization part 2 from a gas inlet 6 is negatively charged in the ionization part 2 and flocculated to be grown into coarse particles in a volume part 3 by the abrupt decrease in a gas flow speed within said part 3 to enter the filter cylinder 12 made of conductive ceramics of a filtering part 4. The negatively charged dust is repelled from the inner peripheral surface of the negatively charged filter cylin der 12 and only clean gas passes through a filter wall to be exhausted from a clean gas outlet 14. A positive electrode rod 15 attracts the negatively charged dust to promote the removal of dust. The dust separated from the gas is fallen to a dust discharge part 5 to be attracted to and accumulated on the bottom part thereof by electrostatic force and appropriately discharged from a dust discharge port 16.

Description

【発明の詳細な説明】 本発明は、微細な塵を含む気体を通過させて除塵する除
塵器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a dust remover that removes dust by passing a gas containing fine dust through it.

従来技術 石炭燃焼ガス、石炭ガス化気体等、微細な粉塵を含む気
体の除塵装置としては、コロナ放電を利用してガス中の
塵に電荷を与え、これを静電的に捕集する電気集塵器(
electrostattc precipitato
r;EP)が良く知られている。
Conventional technology As a dust removal device for gases containing fine dust, such as coal combustion gas and coal gasification gas, an electric collector uses corona discharge to charge the dust in the gas and electrostatically collect it. Dust container (
electrostat precipitato
r; EP) is well known.

この装置は、放電極を負、塵を付着させる集塵極板を正
として敵方ボルトの直流電圧を印加することにより不平
等電界を形成し、コロナ放電を発生させる。正イオンは
直ちに放電極で電荷を失なうが、負イオンは集塵極方向
に流れ、電界中を流れる気流中の塵に付着し、クーロン
力により集塵極板上に付着する。極板上の塵は定期的に
ハンマリングされてホッパに落される。
This device forms an unequal electric field by applying a DC voltage of opposing volts, with the discharge electrode being negative and the dust collecting electrode plate on which dust is attached being positive, to generate a corona discharge. The positive ions immediately lose their charge at the discharge electrode, but the negative ions flow toward the dust collection electrode, attach to dust in the airflow flowing in the electric field, and adhere to the dust collection electrode plate due to Coulomb force. Dust on the electrode plates is periodically hammered and dropped into a hopper.

電気集塵器は、微粒子の捕捉が容易であり、気体の圧力
損失が少なく、取扱うことのできる気体(煤煙)性状の
範囲が広い(例えば粒子径0.001/’ %ガス温度
500℃、ガス圧力S Okq/an2程度迄処理可能
)という長所を有するが、その反面、敵方ポルFの直流
電圧を印加するための装置が大規模になり、集塵極に堆
積した塵が電荷を放出して塵が集塵極から離れる現象が
あり、この場合集塵性能は大幅に低下する。又、集塵極
に塵が堆積することにより、電気的に放電作用が落ち、
又、ある程度高温になると、電気抵抗が不安定になり、
集塵性能が劣化する。又、集塵極に堆積した塵を回収す
るのに周期的にハンマリング等機械的な剥廖処理が必要
になると云った欠点がある。
Electrostatic precipitators can easily capture fine particles, have little gas pressure loss, and can handle a wide range of gas (soot) properties (for example, particle size 0.001/'% gas temperature 500°C, gas However, on the other hand, the device for applying the DC voltage of the enemy Pol F becomes large-scale, and the dust accumulated on the dust collection electrode releases electric charge. There is a phenomenon in which dust separates from the dust collection electrode, and in this case, dust collection performance is significantly reduced. In addition, due to the accumulation of dust on the dust collecting electrode, the electrical discharge action decreases,
Also, when the temperature reaches a certain level, the electrical resistance becomes unstable,
Dust collection performance deteriorates. Another drawback is that mechanical peeling such as hammering is periodically required to collect the dust accumulated on the dust collecting electrode.

排ガス中の粉塵を除去する除塵器としては、この他、耐
熱性セラミック製多孔質炉筒を罐体内に設置した集塵装
置が実用に供されようとしている。
In addition to the above-mentioned dust remover for removing dust from exhaust gas, a dust collector in which a porous furnace tube made of heat-resistant ceramic is installed inside a housing is about to be put into practical use.

この型の集塵器は、高温ガス、例えば500℃以上1.
100℃位迄の気体を処理することが出来ると云われて
おり、石炭燃焼ガスや石炭ガス化気体のような高温気体
の除塵に適している。又、集塵率が高く10μm以下で
も捕塵が可能であり、又ア簡の数を増すことにより処理
容量を簡単に増すことが出来、大容量の気体の処理を小
さい設備費で行なうことができると云う長所を有する。
This type of precipitator is suitable for handling high temperature gases such as 500°C or higher.
It is said to be able to process gases up to about 100°C, making it suitable for removing dust from high-temperature gases such as coal combustion gas and coal gasification gas. In addition, the dust collection rate is high and it is possible to collect dust of less than 10 μm, and the processing capacity can be easily increased by increasing the number of plates, making it possible to process large volumes of gas with small equipment costs. It has the advantage of being able to do so.

しかし、欠点として、炉筒の気孔内に塵が詰ったり、特
に石炭燃焼ガスの場合はタール分が付着し、集塵性能が
低下する。目詰り除去のだめにはパルス逆洗の方法が採
られるが、タール分の付着に対しては充分の効果が得ら
れない。又、電気集塵器に比して圧力損失が1桁から2
桁も大きく、それだけ動力を余分に消費する。
However, the drawback is that the pores of the furnace tube become clogged with dust, and especially in the case of coal combustion gas, tar adheres, reducing the dust collection performance. Pulse backwashing is used to remove clogging, but it is not sufficiently effective against tar adhesion. Also, the pressure loss is 1 to 2 digits lower than that of an electrostatic precipitator.
The order of magnitude is also large, and that much extra power is consumed.

目   的 本発明は、現在最も集塵性能が良いとされている電気集
塵器と、高温、大容量のガスの除塵に適していると云わ
れるセラミック製炉筒を使用した集塵装置の長所を部分
的に兼ね備えるとともに欠点を除去した除塵装置を提供
することを目的とするO 構  成 本発明による集塵装置は、上記の目的を達成させるため
、除塵すべき気体の流動方向の順に、負の放電極と旧極
とが対置され、両極間に直流電圧を印加することにより
、該気体の流路に不平等電界を形成するmm部と、上記
gm部より気体の流路の断面積が増大する容積部と、気
体が筒壁を透過する多孔質炉筒とその筒壁を負に帯電さ
せる手段とを有するア過部とより形成されている。
Purpose The present invention utilizes the advantages of an electrostatic precipitator, which is currently considered to have the best dust collection performance, and a dust collector using a ceramic furnace tube, which is said to be suitable for removing dust from high-temperature, large-capacity gases. The purpose of the dust collector according to the present invention is to provide a dust removing device that partially combines the above features and eliminates the drawbacks. The discharge electrode and the old electrode are placed opposite each other, and by applying a DC voltage between the two electrodes, the cross-sectional area of the gas flow path is increased from the mm part that forms an unequal electric field in the gas flow path and the gm part. A porous furnace tube through which gas passes through the tube wall and a means for negatively charging the tube wall.

上記の構成により、不平等電界を形成された電離部には
コロナ放電が発生し、正イオンは直ちに放電極に中和さ
れ、負イオンは正極に向って走行し、この電界を通過す
る塵を含んだガス、例えば煤煙中の煤塵粒子は負電荷を
得て負帯電体となる。
With the above configuration, corona discharge occurs in the ionized part where an uneven electric field is formed, positive ions are immediately neutralized by the discharge electrode, and negative ions travel toward the positive electrode, killing dust passing through this electric field. The contained gas, for example, soot dust particles in soot and smoke, acquire a negative charge and become a negatively charged body.

電離部ではガスの流速は高くしており、負帯電体たる塵
粒子は正極には付着することなくガスと共に容積部に導
かれる。容積部では、流路の断面積が増大するので、流
速は低下し、負帯電した塵粒子は相互付着し凝集粗粒化
を起す。
The gas flow rate is set high in the ionization section, and the dust particles, which are negatively charged bodies, are guided into the volume section together with the gas without adhering to the positive electrode. In the volume part, the cross-sectional area of the flow path increases, so the flow velocity decreases, and negatively charged dust particles adhere to each other, causing agglomeration and coarsening.

次に5濾過部に導かれた粗粒化した煤塵はガスと共に炉
筒に引かれるが、炉筒は負に帯電しているので、負に帯
電した粗粒煤塵は静電的に反撥し、ガスのみが炉筒の気
孔を通過し、除塵され、クリーンガスのみが炉筒壁を通
過することになる。反撥された負帯電塵粒子は重力で落
下し、ダスト排出部に導かれる。ダスト排出部は通常ア
ースされているので負帯電塵粒子は静電気力によっても
排出部に吸着される。
Next, the coarse particulate dust led to the filtration section 5 is drawn into the furnace cylinder together with the gas, but since the furnace cylinder is negatively charged, the negatively charged coarse particulate dust is electrostatically repelled. Only gas passes through the pores of the furnace cylinder to remove dust, and only clean gas passes through the walls of the furnace cylinder. The repulsed negatively charged dust particles fall by gravity and are guided to the dust discharge section. Since the dust discharge section is normally grounded, negatively charged dust particles are also attracted to the discharge section by electrostatic force.

以下に本発明の実施例を図面に基づいて詳細に説明する
Embodiments of the present invention will be described in detail below based on the drawings.

第1図に示す本発明の実施例では、除塵装rケーシング
1の内部は上から電離部2、容債部乙、ア過部4、ダス
ト排出部5に区分されている。尤も?[E前部2と容積
部6との間には仕切壁がある訳ではなく、容積部3の断
面積が電離部2の[i77面積より拡大していることに
よって区別されている。
In the embodiment of the present invention shown in FIG. 1, the inside of the dust removal casing 1 is divided into an ionization section 2, a container section B, an aperture section 4, and a dust discharge section 5 from the top. Of course? There is no partition wall between the front part 2 and the volume part 6, and they are distinguished by the fact that the cross-sectional area of the volume part 3 is larger than the [i77 area of the ionization part 2].

電離部1の上端はダストを含んだガス人口6となってお
り、処理すべきガスの導管が接続される。
The upper end of the ionization section 1 is a gas conduit 6 containing dust, to which a conduit for the gas to be treated is connected.

電離部2内には、電源部7に接続された負の放電極8と
接地された正極9とが対置され、両極間には数千乃至敵
方ポルトの直流電圧を印加することができるようになっ
ている。
Inside the ionization section 2, a negative discharge electrode 8 connected to the power supply section 7 and a grounded positive electrode 9 are placed opposite each other, and a DC voltage of several thousand to an enemy voltage can be applied between the two electrodes. It has become.

電離部2に続く容積部3は、截頭円錐形の拡大部と大径
部とより成り、この中でガスの流速は急激に低下する。
The volume section 3 following the ionization section 2 consists of a truncated conical enlarged section and a large diameter section, in which the gas flow rate decreases rapidly.

濾過部4の上下には、隔壁10.11が設けられ、複数
本の導電性耐熱材料(通常セラミック素材が用いられる
)製多孔質ア筒12がその上下端部を電気的絶縁体15
を介して上記隔壁10.11に支持されている。ア過部
4の側壁には、炉筒12により5濾過されたクリーンガ
スの出口14が設けられている。導電性セラミック製炉
筒12には、前記の電源部7の負極が接続され、数千乃
至敵方ボルトの負の電圧が印加可能となっている。各炉
筒12の中心線には、接地された正極棒15が設けられ
ている。
Partition walls 10.11 are provided above and below the filtration section 4, and a plurality of porous tubes 12 made of a conductive heat-resistant material (usually a ceramic material are used) connect the upper and lower ends with electrical insulators 15.
It is supported by the partition wall 10.11 via. An outlet 14 for the clean gas that has been filtered by the furnace tube 12 is provided on the side wall of the chamber 4 . The conductive ceramic furnace cylinder 12 is connected to the negative electrode of the power supply section 7, so that a negative voltage of several thousand to volts can be applied thereto. A grounded positive electrode rod 15 is provided at the center line of each furnace cylinder 12 .

ダスト排出部5の下部はホッパ状になっており、その下
端には開閉可能なダスト排出口16が設けられている。
The lower part of the dust discharge part 5 is shaped like a hopper, and a dust discharge port 16 that can be opened and closed is provided at the lower end of the hopper.

ダスト排出部のホッパ部の壁は電気的に中性とされてい
るが下端の排出口近傍の壁は正極性とされている。
The wall of the hopper part of the dust discharge section is electrically neutral, but the wall near the discharge port at the lower end is of positive polarity.

この装置は以上の如く構成されているので1.電離部2
にガス人口6より導入されたガス中のダストは前述の如
く、電離部2内で負帯電され、容積部s内でガス流速が
急激に低下することにより凝集粗粒化し、ア過部4の炉
筒12内に入り、負帯電したダストは負帯電した炉筒の
内周面で反撥され、クリーンガスのみが炉筒壁を透過し
てクリーンガス出口14より出て行く、正極棒15は負
帯電したダストを引き付は除塵を促進する。ガスから分
離されたダストは、ダスト排出一部5に落下し、静電気
力によってその底部に吸着され堆積し、適宜ダスト排出
口16より排出される。
Since this device is configured as described above, 1. Ionization part 2
As mentioned above, the dust in the gas introduced from the gas population 6 is negatively charged in the ionization section 2, and as the gas flow rate rapidly decreases in the volume section s, it becomes agglomerated into coarse particles, and the dust in the atomization section 4 is The negatively charged dust that enters the furnace cylinder 12 is repelled by the negatively charged inner peripheral surface of the furnace cylinder, and only the clean gas passes through the furnace cylinder wall and exits from the clean gas outlet 14. Attracting charged dust promotes dust removal. The dust separated from the gas falls into the dust discharge part 5, is attracted and deposited on the bottom part by electrostatic force, and is discharged from the dust discharge port 16 as appropriate.

ア過部の導電性セラミック製多孔質炉筒12を負帯電さ
せる手段としては、第2図に示す如く、導電性セラミッ
ク製多孔質炉筒12の外周面と適当な間隙を以て囲繞し
、上下端部で電気的絶縁物17を介在させて孔明き金属
管18を設け、多孔質炉筒12に負の電圧を印加し、金
属管18を接地することにより、多孔質炉筒12に負の
誘導電荷を発生させるようにしてもよい。
As a means for negatively charging the conductive ceramic porous furnace tube 12 in the aperture section, as shown in FIG. A perforated metal tube 18 is provided with an electrical insulator 17 interposed therebetween, a negative voltage is applied to the porous furnace tube 12, and the metal tube 18 is grounded, thereby creating a negative induction in the porous furnace tube 12. An electric charge may be generated.

このように構成することにより、炉筒12の内部に入っ
たガス中のダストは第1図の実施例と同様炉筒12の内
面で反撥されて下方に落下し、クリーンガスは炉筒12
の壁を透過し、さらに孔明き金属管18の孔を通過した
後クリーンガス出口より排出される。セラミツクル筒1
2は脆性があるので、金属管18は補強材の役目も果す
ことになる。云う迄もないことであるが、処理されるガ
スが高温の場合は孔明き金属管18は耐熱性金属としな
ければならない。
With this configuration, dust in the gas that has entered the inside of the furnace tube 12 is repelled by the inner surface of the furnace tube 12 and falls downward, similar to the embodiment shown in FIG.
After passing through the wall of the perforated metal tube 18, the gas is discharged from the clean gas outlet. Ceramic tube 1
2 is brittle, so the metal tube 18 also serves as a reinforcing material. Needless to say, if the gas being treated is at a high temperature, the perforated metal tube 18 must be made of a heat-resistant metal.

なお、多孔質ろ筒の外側にダストを含むガスを導入し、
クリーンガスを多孔質炉筒の内側に透過させて回収する
構造の除塵装置の場合は、孔明き金属管は炉筒の内側に
間隙をおいて設ければよい。
In addition, by introducing a gas containing dust to the outside of the porous filter cylinder,
In the case of a dust removal device having a structure in which clean gas is permeated into the inside of a porous furnace tube and recovered, the perforated metal tube may be provided with a gap inside the furnace tube.

又、炉筒12が非導電性セラミックで作られる場合は、
第3図に示す如く、炉筒12の内周面に接触させて導電
性の巻線19を設け、これに数千ボルト乃至1万ボルト
の負の電圧を印加すればよい。その他の構成は第1図に
示す実施例と同様である。
Moreover, when the furnace cylinder 12 is made of non-conductive ceramic,
As shown in FIG. 3, a conductive winding 19 is provided in contact with the inner circumferential surface of the furnace cylinder 12, and a negative voltage of several thousand volts to 10,000 volts is applied thereto. The rest of the structure is the same as the embodiment shown in FIG.

この場合も、第4図に示す如く、?筒12の外側に電気
的絶縁物17を介して孔明き金属’C?18を設けこれ
に正の電圧を印加することにより巻線19に負の誘導電
荷を発生させるようにしてもよい0 第5図に示す実施例の如く、非導電性セラミック製の多
孔質炉筒12の外側から内側にクリーンガスを濾過させ
る型の除塵器では、導電性巻線1゛2はp筒12の外周
面に接して設ければよい。なお、第5図では説明上1本
の多孔質炉筒を設けた構造を示したが実際の装置では複
数本とされる。この実施例では5炉筒12は容積部を兼
ねるガス入口室6内に設けられ、下端が閉塞されたs炉
筒12の上端を支持する@壁10の上側がクリーンガス
の通過する5濾過室4となっている。ガス入口室3への
ガス導入路には電離部2が設けられ、ダストを含んだガ
スが電雛部に導入される。濾過室4にはクリーンガス出
口14が設けられている。又ガス入口室3の下端にはダ
スト排出口16が設けられている。
In this case as well, as shown in Figure 4, ? A perforated metal 'C? 18, and by applying a positive voltage thereto, a negative induced charge may be generated in the winding 19. As in the embodiment shown in FIG. 5, a porous furnace tube made of non-conductive ceramic In a type of dust remover that filters clean gas from the outside to the inside of the p-tube 12, the conductive winding 12 may be provided in contact with the outer peripheral surface of the p-tube 12. Although FIG. 5 shows a structure in which one porous furnace tube is provided for the sake of explanation, in an actual apparatus, a plurality of porous furnace tubes are provided. In this embodiment, the 5 furnace cylinder 12 is provided in the gas inlet chamber 6 which also serves as a volume part, and the upper side of the wall 10 supporting the upper end of the s furnace cylinder 12 whose lower end is closed is the 5 filtration chamber through which clean gas passes. It is 4. An ionization section 2 is provided in the gas introduction path to the gas inlet chamber 3, and gas containing dust is introduced into the chick section. A clean gas outlet 14 is provided in the filtration chamber 4 . Further, a dust outlet 16 is provided at the lower end of the gas inlet chamber 3.

この実施例の作用はこれ迄の説明より明らがであるから
説明を省略する。
Since the operation of this embodiment is clear from the explanation up to this point, the explanation will be omitted.

セラミック製多孔質炉筒の断面構造を模式的に示せば第
6図の如く、セラミック実質6oの中に多数の数十μ程
度の空所31がちりばめられ、これらの空所を互いに直
径数μの多数の通路32で連通された構造となっている
。炉筒の表面にはこれらの空所31や通路32の断面が
露出している。
If the cross-sectional structure of a porous ceramic furnace cylinder is schematically shown in FIG. 6, a large number of cavities 31 of about several tens of micrometers are interspersed within the ceramic substance 6o, and these voids are separated by a diameter of several micrometers from each other. It has a structure in which the passages 32 communicate with each other through a large number of passages 32. The cross sections of these cavities 31 and passages 32 are exposed on the surface of the furnace cylinder.

従来のセラミック製多孔質炉筒を使用した除塵器てでは
、ダストを含むガスをろ筒壁の一方の側から他方の側に
上記の通路32及び空所31を通過させる際、これらが
フィルタとなって通路径より大きいダストが通過を阻止
されて除塵される。
In a conventional dust remover using a porous ceramic furnace tube, when gas containing dust passes through the passage 32 and cavity 31 from one side of the filter tube wall to the other side, these filters and As a result, dust larger than the passage diameter is blocked from passing through and removed.

したがって、除去すべきダストの最小粒径を小さくしよ
うとすれば通路32の直径を小さくすることが必要であ
り、これに伴ってガスが通過する場合の圧力損失が増加
し、送風機の容量が増加し、あるいは炉筒の数を増加さ
せることが必要となり、コストの上昇を招くことになる
Therefore, in order to reduce the minimum particle size of the dust to be removed, it is necessary to reduce the diameter of the passage 32, which increases the pressure loss when gas passes through, and increases the capacity of the blower. Alternatively, it may be necessary to increase the number of furnace tubes, leading to an increase in cost.

これに反して、本発明の除塵装置では、ガス中のダスト
の除去は、ダストを負帯電させるとともに、炉筒をも負
帯電させ、静電気的に反撥させて行なうので、ア筒壁の
セラミック実質30内の通路32の直径を、除去すべき
ダストの最小粒径よりもかなり大きくすることができる
。しかも、ア渦部にくるダストは粗粒化されているので
その結果、ガスの通過の際の圧力損失が小さくなり、逆
に云えば通過流速を大きくとることができるので、炉筒
の数を減らすことができ、コストの低減を計ることがで
きる。
On the other hand, in the dust removal device of the present invention, the dust in the gas is removed by negatively charging the dust, and also by negatively charging the furnace cylinder and electrostatically repelling it. The diameter of the passageway 32 within 30 can be significantly larger than the minimum particle size of the dust to be removed. Moreover, since the dust that comes to the vortex part is coarse-grained, the pressure loss when the gas passes through is reduced, and conversely, the passing flow rate can be increased, so the number of furnace tubes can be reduced. It is possible to reduce costs.

効  果 以上説明した如く、本発明による除塵装置は、処理すべ
きガスがある程度高温になった場合にもセラミック製多
孔質炉筒の脱塵機能はおとろえず、又ダストが正確に付
着しないので、電気集塵器の場合よりも除塵能力の低下
は少ない。
Effects As explained above, in the dust removal device according to the present invention, even when the gas to be treated reaches a certain high temperature, the dust removal function of the ceramic porous furnace tube does not deteriorate, and dust does not adhere accurately. The drop in dust removal ability is less than in the case of an electric precipitator.

又、本発明の除塵装置では、セラミック製多孔質炉筒の
フィルター機能と静電気的反椀カとを併用しているので
、集塵効率は電気集塵器とセラミックフィルターとのい
ずれよりも優れているとともに、圧力損失が少なく又、
電気集塵器の場合の定期的なハンマリングやセラミック
フィルターの場合の逆洗も不要となる。
Furthermore, since the dust removal device of the present invention uses both the filter function of the ceramic porous furnace tube and the electrostatic repellent, the dust collection efficiency is superior to both an electric precipitator and a ceramic filter. At the same time, the pressure loss is small and
Periodic hammering in the case of electrostatic precipitators and backwashing in the case of ceramic filters are also unnecessary.

又、電離部印加電王は通常の電気集塵器の場合の数分の
1の値で済み装置がr山車になりコスト低減に寄与する
In addition, the voltage applied to the ionizing part is a fraction of that of a normal electrostatic precipitator, and the device becomes an r-shaped float, contributing to cost reduction.

以上の如く、本発明は、現在間も集塵性能が優れている
とされる電気集塵器と、セラミック製多孔質炉筒を用い
た除塵器との長所を併せ、欠点を相補なった優れた除塵
装置と云うことができる。
As described above, the present invention combines the advantages of an electric precipitator, which is currently considered to have excellent dust collection performance, and a dust remover using a ceramic porous furnace tube, and has advantages that compensate for the disadvantages. It can be said to be a dust removal device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の構造を示す断面図、第2図は
そのろ筒部の変形実施例を示す断面図、第3図は本発明
の他の実施例を示す断面図、第4図はその炉筒部の変形
実施例を示す断面図、第5図は更に他の実施例の構成を
示す断面図、第6図はセラミック製多孔質炉筒の断面構
造を模式的に示す図式図である。 2・・・電離部       6・・・容積部4・・・
p渦部       5・・・ダスト排出部6・・・ガ
ス人口      7・・・直流電源 。 8・・・負の放電極     9・・・正極10.11
・・・隔壁 12・・・セラミック多孔質炉筒 1:J、17・・・電気的絶縁体 14・・・クリーン
ガス出口16・・・ダスト排出口   18・・・孔明
き金属管19・・・導電性巻線 第2図 第4図
FIG. 1 is a sectional view showing the structure of an embodiment of the present invention, FIG. 2 is a sectional view showing a modified embodiment of the filter cylinder portion, and FIG. 3 is a sectional view showing another embodiment of the invention. Fig. 4 is a cross-sectional view showing a modified example of the furnace cylinder part, Fig. 5 is a cross-sectional view showing the configuration of yet another example, and Fig. 6 is a schematic cross-sectional view showing the cross-sectional structure of the porous ceramic furnace cylinder. It is a schematic diagram. 2...Ionization part 6...Volume part 4...
P vortex section 5... Dust discharge section 6... Gas population 7... DC power supply. 8... Negative discharge electrode 9... Positive electrode 10.11
... Partition wall 12 ... Ceramic porous furnace cylinder 1: J, 17 ... Electrical insulator 14 ... Clean gas outlet 16 ... Dust discharge port 18 ... Perforated metal tube 19 ...・Conductive winding Figure 2 Figure 4

Claims (4)

【特許請求の範囲】[Claims] (1)微細な塵を含む気体を通過させて除塵する除塵器
において、該気体の流動方向の順に、負の放電極と正極
とが対置され、両極間に直流電圧を印加することにより
該気体の流路に不平等電界を形成する電離部と、上記電
離部より気体の流路の断面積が増大する容積部と、気体
が筒壁を透過する多孔質ろ筒とその筒壁を負帯電させる
手段とを有するろ過部とを有して成ることを特徴とする
除塵器。
(1) In a dust remover that removes dust by passing gas containing fine dust, a negative discharge electrode and a positive electrode are placed opposite each other in the order of the flow direction of the gas, and a DC voltage is applied between the two electrodes to remove the gas. an ionization section that forms an uneven electric field in the flow path; a volume section in which the cross-sectional area of the gas flow path increases from the ionization section; a porous filter tube through which gas passes through the tube wall; and a porous filter tube that negatively charges the tube wall. What is claimed is: 1. A dust remover comprising: a filtration section having means for filtering;
(2)上記の多孔質ろ筒が導電性の耐熱性材料で作られ
、その筒壁を負帯電させる手段が、該筒壁に負の電圧を
印加するものであることを特徴とする特許請求の範囲第
1項に記載の除塵器。
(2) A patent claim characterized in that the above-mentioned porous filter tube is made of an electrically conductive heat-resistant material, and the means for negatively charging the tube wall is one that applies a negative voltage to the tube wall. The dust remover described in item 1 of the scope.
(3)上記の多孔質ろ筒が導電性材料で作られ、その筒
壁を負帯電させる手段が、該ろ筒を適当な間隙を以て囲
繞し、これと電気的に絶縁して孔明き金属管を設け、こ
の金属管に正の電圧を印加するものであることを特徴と
する特許請求の範囲第1項に記載の除塵器。
(3) The above-mentioned porous filter tube is made of a conductive material, and the means for negatively charging the tube wall is a perforated metal tube that surrounds the filter tube with an appropriate gap and is electrically insulated from the filter tube. 2. The dust remover according to claim 1, wherein a positive voltage is applied to the metal tube.
(4)上記の多孔質ろ筒が非導電性材料で作られ、その
内側又は外側のうち気体が筒壁に侵入する方の側に導電
性巻線を設け負の電圧を印加するものであることを特徴
とする特許請求の範囲第1項に記載の除塵器。
(4) The above-mentioned porous filter tube is made of a non-conductive material, and a conductive winding is provided on the inside or outside of the tube, whichever side allows gas to enter the tube wall, and a negative voltage is applied thereto. A dust remover according to claim 1, characterized in that:
JP61013729A 1986-01-27 1986-01-27 Dust removing device Pending JPS62176558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61013729A JPS62176558A (en) 1986-01-27 1986-01-27 Dust removing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61013729A JPS62176558A (en) 1986-01-27 1986-01-27 Dust removing device

Publications (1)

Publication Number Publication Date
JPS62176558A true JPS62176558A (en) 1987-08-03

Family

ID=11841327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61013729A Pending JPS62176558A (en) 1986-01-27 1986-01-27 Dust removing device

Country Status (1)

Country Link
JP (1) JPS62176558A (en)

Similar Documents

Publication Publication Date Title
US6251171B1 (en) Air cleaner
US4354858A (en) Method for filtering particulates
US6096118A (en) Electrostatic separator for separating solid particles from a gas stream
US4481017A (en) Electrical precipitation apparatus and method
KR100348168B1 (en) Combination of filter and electrostatic separator
US4308036A (en) Filter apparatus and method for collecting fly ash and fine dust
US3733784A (en) Electro-bag dust collector
US4604112A (en) Electrostatic precipitator with readily cleanable collecting electrode
US4741746A (en) Electrostatic precipitator
KR20120027543A (en) An electrostatic filter
KR100710697B1 (en) Method and process for separating materials in the form of particles and/or drops from a gas flow
JPS571454A (en) Electrostatic type ultrahigh capacity filter
US20070000236A1 (en) Exhaust gas processing method and exhaust gas processing system
US4904283A (en) Enhanced fabric filtration through controlled electrostatically augmented dust deposition
JPS61153156A (en) Method and device for dusting gas current containing particle of solid or liquid under state of suspension by electric field
KR102562742B1 (en) Electrostatic sparying cyclone capable of controlling internal temperature
US4200440A (en) Filter construction
JPH0910625A (en) Electric precipitator
EP1480753A1 (en) Electrode mounting
JPS62176558A (en) Dust removing device
JP2002195618A (en) Kitchen exhaust system
SU768470A1 (en) Apparatus for cleaning dust-carrying gases
JPS6287262A (en) Air cleaner
RU2192927C2 (en) Double-zone electric filter
JPS62286563A (en) Cyclone type electrostatic precipitator