JPS62176504A - Supercritical fluid extractor - Google Patents

Supercritical fluid extractor

Info

Publication number
JPS62176504A
JPS62176504A JP61016694A JP1669486A JPS62176504A JP S62176504 A JPS62176504 A JP S62176504A JP 61016694 A JP61016694 A JP 61016694A JP 1669486 A JP1669486 A JP 1669486A JP S62176504 A JPS62176504 A JP S62176504A
Authority
JP
Japan
Prior art keywords
fluid
extraction
supercritical
separation
supercritical fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61016694A
Other languages
Japanese (ja)
Other versions
JPH0620487B2 (en
Inventor
Hiroo Kato
加藤 宏夫
Nobuaki Nakajima
中島 信顕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP61016694A priority Critical patent/JPH0620487B2/en
Publication of JPS62176504A publication Critical patent/JPS62176504A/en
Publication of JPH0620487B2 publication Critical patent/JPH0620487B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Tea And Coffee (AREA)
  • Manufacture Of Tobacco Products (AREA)
  • Seasonings (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

PURPOSE:To provide an energy-saving and highly economical device by circulating an extracting fluid between an extraction area and a separation area. CONSTITUTION:A fluid used for supercritical extraction is circulated between an extraction container and a separation container. For example, the fluid for supercritical extraction flows as indicated by arrow marks 11 and 12, and a natural convection is generated variation of density (specific gravity). In a extraction area 3 heated up to a supercritical condition, the density of fluid, heated up by a heating spiral pipe 4 and having a high extracting capability, becomes less as temperature rises and the fluid rises up. When said fluid rises up to the top, the same is cooled in a separation area 7 to increase density (gravity), get heavier and generate a down flow. The cooled fluid gets rid of supercritical condition or condition close thereto and diminishes solvent power, and solvent (substance to be extracted) extracted into fluid is taken out of the range of fluid and separated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、改良された超臨界流体抽出装置に関する。特
に省エネルギー型の、経済性の高い超臨界流体抽出装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an improved supercritical fluid extraction device. In particular, the present invention relates to an energy-saving and highly economical supercritical fluid extraction device.

[従来の技術] 超臨界流体の有する特異な抽出特性を利用した抽出は、
従来、抽出槽において、所定の圧力、温度の条件のもと
に目的とする溶質を抽出し、この超臨界流体を分離槽へ
導き、減圧弁による減圧。
[Prior art] Extraction using the unique extraction characteristics of supercritical fluids is
Conventionally, the target solute is extracted in an extraction tank under predetermined pressure and temperature conditions, and this supercritical fluid is led to a separation tank, where the pressure is reduced by a pressure reducing valve.

又は、温度条件の変化(流体を加熱或いは冷却する)を
与えることにより、流体の溶解度を減少せしめることに
より、溶質を分離する処理方法で。
Alternatively, a treatment method in which solutes are separated by reducing the solubility of the fluid by applying a change in temperature conditions (heating or cooling the fluid).

超臨界流体による抽出1分離の処理を行なうものである
。このような処理法では、抽出槽2分離槽の間において
、流体を循環即ちリサイクルせしめ、或いは加圧、圧縮
せしめるために、ポンプ又は、フンブレ・/サーを必要
としている。
This process involves extraction and separation using supercritical fluid. Such processing methods require a pump or a heater to circulate or recycle or pressurize or compress the fluid between the two extraction tanks.

尚1本明細書において、[超臨界流体抽出]とは、超臨
界流体の存在下において、物質の蒸気圧の増加と、化学
的親和力の差とを利用して、物質を抽出する方法を云う
1 In this specification, [supercritical fluid extraction] refers to a method of extracting a substance by utilizing an increase in the vapor pressure of the substance and a difference in chemical affinity in the presence of a supercritical fluid. .

[発明が解決しようとする問題点] 超臨界流体の有する特異な抽出特性を利用する超臨界流
体抽出装置は、広い応用面があるが、高圧条件下で、抽
出した溶質の回収のために、抽出槽と分離槽の間に流体
(ガス)を循環されるために高価なポンプ又はコンプレ
ッサを使用する必要があるが1本発明は、比重差のよる
自然循環による流れを利用し、これらのポンプ類を省略
した超臨界流体抽出装置を提供することを目的とする。
[Problems to be Solved by the Invention] A supercritical fluid extraction device that utilizes the unique extraction characteristics of supercritical fluid has a wide range of applications. Although it is necessary to use an expensive pump or compressor to circulate the fluid (gas) between the extraction tank and the separation tank, the present invention utilizes the flow caused by natural circulation due to the difference in specific gravity. It is an object of the present invention to provide a supercritical fluid extraction device that does not require any of the following.

更に9本発明は、このポンプ類の省略により、装置の簡
易化及び省エネルギーができる装置を提供することを目
的とする。
A further object of the present invention is to provide a device that can be simplified and energy-saving by omitting the pumps.

[問題点を解決するための手段] 本発明は、超臨界流体抽出装置において。[Means for solving problems] The present invention relates to a supercritical fluid extraction device.

超臨界点近傍における流体の比重の温度依存性を利用し
て、比重の軽い流体は上昇し、比重の重い流体は下降す
る自然の流体循環により、抽出処理を行なう抽出領域部
分及び分離処理を行なう分離領域部分の間を抽出流体を
循環させる構成をとることを特徴とする超臨界流体抽出
装置である。更に、超臨界流体抽出装置において、前記
の自然流体循環を効率的にさせるために、前記抽出領域
部分と前記分離領域部分を同一槽内に設けることができ
る。
Utilizing the temperature dependence of the specific gravity of the fluid near the supercritical point, the extraction region where the extraction process is carried out and the separation process are performed using the natural fluid circulation in which the fluid with a light specific gravity rises and the fluid with a heavy specific gravity descends. This is a supercritical fluid extraction device characterized by having a configuration in which an extraction fluid is circulated between separation region portions. Furthermore, in the supercritical fluid extraction device, the extraction region and the separation region can be provided in the same tank in order to make the natural fluid circulation more efficient.

[作用コ 本発明の超臨界流体抽出装置は、超臨界抽出に用いる流
体を抽出容器と分離容器との間で循環せしめるために、
超臨界領域及びその近傍における流体比重の温度依存性
を利用して、より高温にあり比重の軽い流体は上昇し、
比重の重い流体は下降する自然の流体循環により1円滑
に、経済的に処理操作を行なうものである。そのための
最も簡単な装置構成は、自然流体循環を効率的にさせる
ために、抽出容器と分離容器を同一槽内に、設け、同一
容器内で自然の対流を起こすことにより、効率的な装置
が得られた。
[Function] The supercritical fluid extraction apparatus of the present invention has the following steps in order to circulate the fluid used for supercritical extraction between the extraction container and the separation container.
Utilizing the temperature dependence of fluid specific gravity in and around the supercritical region, fluids at higher temperatures and with lighter specific gravity rise,
Fluids with a heavy specific gravity are processed smoothly and economically due to the natural downward circulation of the fluid. The simplest device configuration for this purpose is to place the extraction container and separation container in the same tank in order to make natural fluid circulation efficient, and by creating natural convection within the same container, an efficient device can be created. Obtained.

本発明の超臨界流体抽出装置は、1つは、超臨界状態の
流体が被抽出対象に対し、超臨界流体が効率的に循環さ
せ、抽出と分離がポンプ等のエネルギー消費の大きい運
転装置を用いることなく。
The supercritical fluid extraction device of the present invention has the following features: Firstly, the supercritical fluid can be efficiently circulated to the target to be extracted, and the extraction and separation can be carried out using operating devices such as pumps that consume a lot of energy. without using it.

経済的に、省エネルギー的に超臨界の流体抽出操作が行
なうことのできる超臨界近傍の流体抽出装置を確保する
ものである。効率的な超臨界流体の抽出操作を確保し、
その経済性を高めたものである。
The present invention provides a near-supercritical fluid extraction device that can economically and energy-savingly perform supercritical fluid extraction operations. Ensuring efficient supercritical fluid extraction operations,
This improves its economic efficiency.

超臨界流体抽出について一般的に論じると次のようにで
ある。
A general discussion of supercritical fluid extraction is as follows.

超臨界の流体抽出では、超臨界ガスの溶剤としての能力
は、その密度に大きく依存している。即ち、超臨界状態
にあるガスの密度は、普通の気体状態のものよりかなり
大きく1、臨界温度付近では、液体状態の密度にほぼ匹
敵している。このような密度の増大が、溶質との化学的
親和力を大きくさせ、超臨界ガスを分離媒体として機能
きせるようになる。従って、温度一定の条件下では、高
圧になるにしたがって超臨界ガスの密度も大きくなるの
で、それだけ溶剤能力も増大していく、超臨界近傍の流
体抽出においては、このように、圧力が非常に高い場合
には、温度が上昇するにしたかって溶解度が大きくなっ
ていくが、これは、温度上昇にともなう超臨界ガスの密
度の低下よりも、被抽出物の蒸気圧の上昇の方が著しく
、蒸気圧上昇による超臨界ガスへの溶解が大きく寄与し
てくるからである。一方、これに対して、圧力がそれほ
ど高くない場合には、温度の上昇と共に溶解度が減少す
る。この場合は、被抽出物の蒸気圧上昇が僅かであるの
に対し、超臨界ガスの密度低下が著しいからである。こ
のように超臨界流体の溶剤能力は、著しい、亦、一方、
被抽出物を溶質として取り込んだ超臨界流体が容易に分
離1回収できるものである。
In supercritical fluid extraction, the ability of a supercritical gas as a solvent is highly dependent on its density. That is, the density of a gas in a supercritical state is considerably higher than that in an ordinary gas state, 1 and near the critical temperature, it is almost comparable to the density in a liquid state. Such an increase in density increases the chemical affinity with the solute, allowing the supercritical gas to function as a separation medium. Therefore, under conditions of constant temperature, the density of the supercritical gas increases as the pressure increases, and the solvent capacity increases accordingly. When the temperature is high, the solubility increases as the temperature rises, but this is because the vapor pressure of the extracted material increases more significantly than the decrease in the density of the supercritical gas as the temperature increases. This is because dissolution into supercritical gas due to an increase in vapor pressure greatly contributes. On the other hand, if the pressure is not very high, the solubility decreases with increasing temperature. In this case, while the vapor pressure of the material to be extracted is only slightly increased, the density of the supercritical gas is significantly decreased. Thus, the solvent capacity of supercritical fluids is remarkable;
A supercritical fluid that incorporates the substance to be extracted as a solute can be easily separated and recovered.

本発明は、第1図に示す如く、抽出槽及び分離槽を兼ね
る1つの容器内に、容器内空間を2つの分ける仕切り板
5を設け、その内側に被抽出物2を充填できるようにす
る。一方、その外側に1分離部分7を設け、充填剤又は
充填物を充填し1分離された溶質を付着若しくは吸着に
より保持する。即ち、被抽出物充填層内には、加熱手段
4を設置し、スチーム或いは電熱により加熱する。−方
、外側の分離領域部分には、クーラーを設置し、超臨界
流体を冷却し、溶質を分離する。
As shown in FIG. 1, the present invention provides a partition plate 5 that divides the internal space of the container into two parts in one container that also serves as an extraction tank and a separation tank, so that the material to be extracted 2 can be filled inside the partition plate 5. . On the other hand, a one-separation section 7 is provided on the outside thereof, filled with a filler or a filler, and the one-separated solute is retained by adhesion or adsorption. That is, a heating means 4 is installed in the packed layer of the material to be extracted, and heated by steam or electric heat. - On the other hand, a cooler is installed in the outer separation area to cool the supercritical fluid and separate the solute.

上記の説明に記したように、圧カ一定の場合。As mentioned in the explanation above, when the pressure is constant.

圧力条件によって、温度上昇で溶解度が減少するときと
、*制度が反対に上昇するときがある。
Depending on the pressure conditions, there are times when the solubility decreases as the temperature rises, and times when the solubility increases.

従って、溶解度が温度上昇で減少する場合は、上記の説
明の加熱と冷却を逆にすることにより、超臨界抽出と回
収分離を能率的に行なうことが可使となる。
Therefore, when the solubility decreases with increasing temperature, it becomes possible to efficiently carry out supercritical extraction and recovery/separation by reversing the heating and cooling described above.

超臨界近傍の流体抽出操作は2例えば、超臨界抽出のた
めに炭酸ガス(COt)を用いた場合の第3図に示きれ
るように、臨界点の近傍で、比重(密度)が大きく変化
するので9本発明の装置は、非常に効率的に運転できる
。縦軸に圧力P1.横軸に比重ρ、をとる。T、は、 
T/Tc値、即ち絶対温度による臨界m度との比例値で
ある。斜線を引いた菱形部分は超臨界領域を示す。
Fluid extraction operation near supercritical point 2 For example, as shown in Figure 3 when carbon dioxide gas (COt) is used for supercritical extraction, the specific gravity (density) changes greatly near the critical point. Therefore, the apparatus of the present invention can be operated very efficiently. The vertical axis shows pressure P1. The specific gravity ρ is plotted on the horizontal axis. T, ha...
T/Tc value, that is, a value proportional to the critical m degree due to absolute temperature. The hatched rhombus indicates the supercritical region.

工業上の観点からも、即ち、抽出技術の経済性向上のた
めにも、超臨界流体抽出は、益々注目されている。この
点からも、超臨界流体抽出の技術の省エネ性が、望まれ
ている。
Supercritical fluid extraction is attracting increasing attention both from an industrial point of view, ie, to improve the economic efficiency of extraction techniques. From this point of view as well, the energy saving properties of supercritical fluid extraction technology are desired.

そして、超臨界流体抽出は、比較的に低温で操作される
ので、熱的に不安定な物質を処理するためにも用いられ
2食品、嗜好品工業でも利用され9本発明の超臨界流体
抽出装置が用いられ得る。即ち、コーヒー豆、紅茶から
のカフェインの抽出、ホップ、香辛料エキスの抽出或い
は、煙草葉からのニコチンの除去などに用いられ得る。
Since supercritical fluid extraction is operated at relatively low temperatures, it is also used to treat thermally unstable substances.2 It is also used in the food and luxury goods industries.9The supercritical fluid extraction of the present invention A device can be used. That is, it can be used for extracting caffeine from coffee beans and black tea, extracting hops and spice extracts, and removing nicotine from tobacco leaves.

また、更に、耐熱材料粉末などにより成形し成形体を形
成し、その焼成の前に、バインダー材料を成形体より除
去するための処理などに本発明装置を用いることができ
る。
Furthermore, the apparatus of the present invention can be used for processing such as forming a molded body by molding heat-resistant material powder or the like and removing the binder material from the molded body before firing the molded body.

[実施例コ 次に1本発明の1実施の態様について第1図の超臨界流
体抽出装置に関して、更に具体的に説明するが1本発明
は、その要旨を変えない限り次の実施例に限定されるも
のではない。
[Example] Next, an embodiment of the present invention will be described in more detail with respect to the supercritical fluid extraction apparatus shown in FIG. 1, but the present invention is limited to the following example unless the gist thereof is changed. It is not something that will be done.

本発明の構成において、超臨界流体抽出装置のうち、1
は、供給ポンプであり、2は、被抽出物で1例えば、3
は、抽出を行なう部分であり−、その領域内に加熱のた
め螺旋状パイプ4が配置され、スチーム或いは電熱線が
中に通される。この抽出領域部分3には、抽出されるべ
き被抽出物2が充填されている。超臨界流体は、この充
填された被抽出物の間を、加熱きれて軽くなったために
上昇し、同時に被抽出物から1例えば、カフェイン、バ
インダー剤などの溶質を抽出していく。
In the configuration of the present invention, one of the supercritical fluid extraction devices
is the feed pump, 2 is the extractant and 1, e.g. 3
is the area in which the extraction takes place - in which area a spiral pipe 4 is arranged for heating, through which steam or heating wires are passed. This extraction region portion 3 is filled with the substance 2 to be extracted. The supercritical fluid rises through the filled material to be extracted because it has been heated and becomes lighter, and at the same time, it extracts solutes such as caffeine and binder agents from the material to be extracted.

5は1円筒形仕切り板であり、超臨界流体の自然対流で
1昇流のある抽出部分3と、下降流の抽出物分離部分7
を分けるためのものである。その分離領域7内には、流
体を冷却するために螺旋状バイブロが配置され、その中
を冷却水が通されている。即ち、超臨界抽出のための流
体は、100示の如く、矢印11.12のように流れて
、該流体の密度(比ff1)変化に従い、自然対流が生
じる。m熱され超臨界状態にある抽出部分4では、加熱
きれ抽出能力の高い流体は、温度上昇とともに、その密
度が軽くなり2図示のように上昇する。上昇し容器の頂
部に達した流体は1図示のように、外側に出て、外側の
分離領域7で冷却された流体は、比!&(密度)を増加
し2重くなり2分離領域部分?では、下降流が生じる。
5 is a cylindrical partition plate, which has an extraction section 3 with upward flow and an extract separation section 7 with downward flow due to natural convection of supercritical fluid.
It is intended to separate. In the separation area 7 a spiral vibro is arranged for cooling the fluid, through which cooling water is passed. That is, the fluid for supercritical extraction flows as shown by arrows 11 and 12, and natural convection occurs as the density (ratio ff1) of the fluid changes. In the extraction part 4 which has been heated and is in a supercritical state, the heated fluid with high extraction ability becomes lighter in density as the temperature rises and rises as shown in Figure 2. The fluid that has risen and reached the top of the container exits to the outside, as shown in Figure 1, and the fluid that has been cooled in the outer separation area 7 has a ratio of ! & (density) increases and becomes 2 heavier and 2 separated area parts? Then, a downward flow occurs.

冷却された流体は、超臨界近傍の状態を脱し。The cooled fluid exits the near supercritical state.

溶解能を落とし1分離領域部分7では、流体中に抽出さ
れている溶質(被抽出物)が、流体中より出され1分離
される。この分離領域部分7には。
In the one-separation region portion 7 where the solubility is reduced, the solute (substance to be extracted) extracted into the fluid is taken out from the fluid and separated. In this separation area portion 7.

@着剤及び、或いは充填物を充填しである。WI解能力
を落とし超臨界近傍の状態を脱した流体から析出した抽
出物を付着、捕獲するためである。特に、吸着剤は、更
に、超臨界流体中の残存溶解しているものも吸着捕獲す
ることができる。
@Filled with adhesive and/or filler. This is to reduce the WI resolution ability and to attach and capture the extract precipitated from the fluid that has moved out of the near supercritical state. In particular, the adsorbent can also adsorb and capture residual dissolved matter in the supercritical fluid.

吸着剤は目的とする抽出物によって選定しなければなら
ないが9代表的なものとしては、活性炭、ゼオ2イト等
がある。亦、充填物は2析出抽出物を物理的に付着する
もので、有効面積が大きく、圧力損壊の少ないものが良
い0代表的なものとしては、ラシヒリング、ワイヤーメ
ツシュ、テラレットバッキング、ボールリング、ハニカ
ム状のもの等或いは住友重機械工業株式会社の製品のメ
ラバックなどを用いることができる。
The adsorbent must be selected depending on the target extract; typical examples include activated carbon and zeolite. In addition, the packing material is one that physically attaches the precipitated extract, and should have a large effective area and little pressure damage. Typical packing materials include Raschig rings, wire meshes, Terraret backings, and ball rings. , a honeycomb-like material, or Melabac, a product of Sumitomo Heavy Industries, Ltd., can be used.

加熱され超臨界状態で溶剤となる流体は、所定の圧力に
加ff、きれ、抽出部分4の中で被抽出物2の間を流れ
1通過しながら、被抽出物より、fB質を溶解していく
、そのような流体として用いるに好適なガス或いは流体
としては1次酸ガス、フロン(フレオン(商標))・ガ
ス等が挙げられる。
The fluid that is heated and becomes a solvent in a supercritical state is heated to a predetermined pressure, is turned off, flows between the materials to be extracted 2 in the extraction section 4, and dissolves the fB substance from the materials to be extracted. Examples of gases or fluids suitable for use as such fluids include primary acid gas, Freon (trademark) gas, and the like.

なお、流体を補充するために供給ポンプ1より、供給さ
れる。流体の流れは、何ら機械力を使用せずに、循環さ
れるので、非常に経済的な超臨界抽出操作ができる。
Note that the fluid is supplied from the supply pump 1 in order to replenish the fluid. The fluid stream is circulated without the use of any mechanical power, making supercritical extraction operations very economical.

第1図では、@−容器内に抽出及び分離槽を設けたが、
つぎの第2図では1図示の如く、独立した抽出槽(容器
)及び分離槽(容器)を設け、連通管により接続し、抽
出槽を加熱し1分離槽を冷却し、自然対流により、超臨
界近傍の流体を循環きせることができる。即ち、抽出槽
3の中に被抽出物2を充填し、その中に加熱媒体用パイ
プ4を配管して、水蒸気などの加熱媒体を流し、加熱す
ると、超臨界抽出のための流体は、加熱され超臨界状態
になりながら、抽出槽3の中を上昇し、充填された被抽
出物より溶質例えば、バインダー剤などを抽出する。上
昇し抽出槽3の上部に達した流体は、矢印11に示すよ
うに抽出槽3より排出され、冷却用熱交換器15を通し
て分離槽7に入る1分離槽7の中には冷却媒体導入バイ
ブロが配置されている。亦、第1図と同じく分離槽7の
中には吸着剤及び或いは充填物が充填されている。
In Figure 1, the extraction and separation tank was installed inside the @-container, but
In the following Figure 2, as shown in Figure 1, an independent extraction tank (container) and a separation tank (container) are provided, and they are connected by a communicating pipe, the extraction tank is heated, and the separation tank is cooled. Fluid near criticality can be circulated. That is, when the extraction tank 3 is filled with the material to be extracted 2 and the heating medium pipe 4 is installed therein, a heating medium such as steam is passed through the extraction tank 3 and heated, the fluid for supercritical extraction is heated. While being in a supercritical state, it rises in the extraction tank 3 and extracts solutes such as binder agents from the filled material to be extracted. The fluid that has risen and reached the upper part of the extraction tank 3 is discharged from the extraction tank 3 as shown by arrow 11 and enters the separation tank 7 through the cooling heat exchanger 15. is located. In addition, as in FIG. 1, the separation tank 7 is filled with an adsorbent and/or a filler.

冷却用バイブロにより冷却された流体は分[1中を下降
しながら、第1図と同じく、抽出された溶質を分離し、
落としながら、即ち溶質は吸着剤或いは充填剤の中に付
着され捕獲、される、超臨界状態でない流体は1分離槽
7の下部に下降し2次に、矢印12の如く、加熱用熱交
換器16を備える配管を通り抽出槽3の中に入る。即ち
、加熱用熱交換器16により超臨界状態にされ抽出処理
(二再びリサイクルされる。
As the fluid cooled by the cooling vibro moves down through the air, the extracted solute is separated as shown in Figure 1.
While dropping, that is, the solute is attached to the adsorbent or filler and captured.The non-supercritical fluid descends to the lower part of the separation tank 7 and then passes through the heating heat exchanger as shown by arrow 12. 16 and enters the extraction tank 3. That is, it is made into a supercritical state by the heating heat exchanger 16, subjected to extraction treatment (secondary), and then recycled again.

[発明の効果コ 本発明の超臨界抽出装置は、抽出溶媒たる流体の密度差
による自然対流循環を利用し、抽出と分離の間を循環さ
せるために高価な高圧ポンプ又はコンプレッサーを省略
できるものであり、それにより、第1に、装置の簡易化
及び省エネルギーが著しく達成できること、第2に、ポ
ンプ等を用いなく、単−檜でできるために、装置をコン
パクトにできること、第3に、単一槽内で抽出分離がで
きるために、?I易な操作で、超臨界抽出を行なうこと
ができることなどの技術的効果が得られた。
[Effects of the Invention] The supercritical extraction apparatus of the present invention utilizes natural convection circulation due to the density difference of the fluid that is the extraction solvent, and can omit an expensive high-pressure pump or compressor for circulation between extraction and separation. As a result, firstly, the device can be simplified and energy-saving can be achieved significantly, secondly, the device can be made compact because it can be made of single-cypress wood without using a pump, etc. Because extraction and separation can be done in the tank? Technical effects such as the ability to perform supercritical extraction with easy operation were obtained.

更に1本発明方法による超臨界流体抽出装置は。Furthermore, there is a supercritical fluid extraction device according to the method of the present invention.

前述の通り、従来装置と比較すると、格段に、X!!転
コストを下げることができ、省エネルギーに非常に有効
である。
As mentioned above, compared to conventional equipment, the X! ! It can reduce conversion costs and is very effective in saving energy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は2本発明の超臨界流体抽出装置の1実施例を示
す概略断面の説明図である。 第2図は9本発明の超臨界流体抽出装置の他の1実施例
を示す概略断面図を有する説明図である。 第3図は1本発明に用いる。超臨界抽出のための炭酸ガ
ス(COt>の臨界点の近傍での比重(密度)ρ、と圧
力P、と温度の関係を示すグラフである。 [主要部分の符号の説明コ 1 、、、、供給ポンプ; 2 、、、、被抽出物; 3 、、、、抽出領域部分(檀) 4 、、、、螺旋状パイプ(スチーム或いは電熱用);
加熱媒体用バイブ; 5 、、、、円筒形仕切り板; 6 、、、、螺旋状パイプ(冷却水用);冷却媒体用パ
イプ; 7 、、、、、 (抽出物の)分離領域部分(檀)11
、、、、、抽出流体の流れ; 12)、、、、抽出物を分離した流体の流れ;14、、
、、、冷却用熱交換器; 16、、、、加熱用熱交換器: 第2図
FIG. 1 is a schematic cross-sectional view showing one embodiment of the supercritical fluid extraction device of the present invention. FIG. 2 is an explanatory diagram with a schematic cross-sectional view showing another embodiment of the supercritical fluid extraction device of the present invention. FIG. 3 is used in the present invention. This is a graph showing the relationship between specific gravity (density) ρ, pressure P, and temperature near the critical point of carbon dioxide gas (COt>) for supercritical extraction. , Supply pump; 2. Material to be extracted; 3. Extraction area portion (dan) 4. Spiral pipe (for steam or electric heating);
Vibrator for heating medium; 5, Cylindrical partition plate; 6, Spiral pipe (for cooling water); Pipe for cooling medium; 7, Separation area (of extract) )11
, , , Flow of the extraction fluid; 12) , , Flow of the fluid that separated the extract; 14.
, Cooling heat exchanger; 16, Heating heat exchanger: Fig. 2

Claims (2)

【特許請求の範囲】[Claims] (1)超臨界流体抽出装置において、 超臨界点近傍における流体の比重の温度依存性を利用し
て、比重の軽い流体は上昇し、比重の重い流体は下降す
る自然の流体循環により、抽出処理を行なう抽出領域部
分及び分離処理を行なう分離領域部分の間を抽出流体を
循環させる構成をとることを特徴とする超臨界流体抽出
装置。
(1) In a supercritical fluid extraction device, the extraction process takes advantage of the temperature dependence of the specific gravity of the fluid in the vicinity of the supercritical point, allowing the natural fluid circulation in which fluids with lighter specific gravity rise and fluids with heavier specific gravity descend. A supercritical fluid extraction device characterized by having a configuration in which an extraction fluid is circulated between an extraction region portion for performing separation processing and a separation region portion for performing separation processing.
(2)特許請求の範囲第1項の超臨界流体抽出装置にお
いて、前記の自然流体循環を効率的にさせるために、前
記抽出領域部分と前記分離領域部分を同一槽内に設ける
ことを特徴とする超臨界流体抽出装置。
(2) The supercritical fluid extraction device according to claim 1, characterized in that the extraction region portion and the separation region portion are provided in the same tank in order to make the natural fluid circulation efficient. Supercritical fluid extraction equipment.
JP61016694A 1986-01-30 1986-01-30 Supercritical fluid extractor Expired - Lifetime JPH0620487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61016694A JPH0620487B2 (en) 1986-01-30 1986-01-30 Supercritical fluid extractor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61016694A JPH0620487B2 (en) 1986-01-30 1986-01-30 Supercritical fluid extractor

Publications (2)

Publication Number Publication Date
JPS62176504A true JPS62176504A (en) 1987-08-03
JPH0620487B2 JPH0620487B2 (en) 1994-03-23

Family

ID=11923401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61016694A Expired - Lifetime JPH0620487B2 (en) 1986-01-30 1986-01-30 Supercritical fluid extractor

Country Status (1)

Country Link
JP (1) JPH0620487B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994013377A1 (en) * 1992-12-11 1994-06-23 Geert Feye Woerlee Process and device for separating a mixture or extracting a material
JP2005338022A (en) * 2004-05-31 2005-12-08 Jasco Corp Supercritical fluid hydrometry apparatus and supercritical fluid apparatus
CN112697638A (en) * 2021-01-11 2021-04-23 贵州省林业科学研究院 Automatic continuous dynamic measurement system and method for in-situ shrub transpiration amount
US11766067B2 (en) 2017-05-15 2023-09-26 Nicoventures Trading Limited Ground tobacco composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994013377A1 (en) * 1992-12-11 1994-06-23 Geert Feye Woerlee Process and device for separating a mixture or extracting a material
JP2005338022A (en) * 2004-05-31 2005-12-08 Jasco Corp Supercritical fluid hydrometry apparatus and supercritical fluid apparatus
US11766067B2 (en) 2017-05-15 2023-09-26 Nicoventures Trading Limited Ground tobacco composition
CN112697638A (en) * 2021-01-11 2021-04-23 贵州省林业科学研究院 Automatic continuous dynamic measurement system and method for in-situ shrub transpiration amount

Also Published As

Publication number Publication date
JPH0620487B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
US2880818A (en) Processes and apparatus for recovering hydrocarbons from gas streams
CN1138583C (en) Separation of solutes in gaseous solvents
CN103272455B (en) Device and method for recycling organic solvents from painting waste gas
JPH11207104A (en) Device for extracting component from raw material
WO2019102399A2 (en) Solvent extraction equipment, allowing efficient energy usage through the reuse of the solvent(s)
JP2019089009A (en) Extraction device and method thereof
CN108018118B (en) Device for extracting oleoresin from capsicum particles and application method thereof
US2152665A (en) Oil extraction
JPS62176504A (en) Supercritical fluid extractor
AU2002366390A1 (en) Apparatus for drying a particulate product with superheated steam
US2765868A (en) Methods of and apparatus for removing liquid
KR100983656B1 (en) Evaporation condensation appratus for wastewater
US3132929A (en) Apparatus for freeze drying
JPH05500473A (en) Controlled release system and method for liquid compositions with volatile components
JP2003190892A (en) Method and apparatus for performing multiple operations of cleaning and vacuum drying in enclosed vessel
CN1217724C (en) Reduction method for essence extractive and obtained extractive
WO2017006153A1 (en) Extracting essential oils and volatile water
JPH0631107A (en) Solvent extraction/solvent recovery apparatus
CN109053819A (en) A kind of ferrocene continuous separating refining device and technique
JPH11343976A (en) Oil separating system
US2390167A (en) Dehydrating method and apparatus
US8460550B2 (en) Continuous processing and solids handling in near-critical and supercritical fluids
JP2005291598A (en) Fluidized bed drying and sterilizing apparatus using depressurized superheated steam
US1849648A (en) Treatment of gases and the like
US3443623A (en) Apparatus for reconcentrating liquid desiccant