JPS62176454A - Bone analogous molded article - Google Patents

Bone analogous molded article

Info

Publication number
JPS62176454A
JPS62176454A JP61015862A JP1586286A JPS62176454A JP S62176454 A JPS62176454 A JP S62176454A JP 61015862 A JP61015862 A JP 61015862A JP 1586286 A JP1586286 A JP 1586286A JP S62176454 A JPS62176454 A JP S62176454A
Authority
JP
Japan
Prior art keywords
bone
glucomannan
molded article
artificial
cartilage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61015862A
Other languages
Japanese (ja)
Other versions
JPH0360272B2 (en
Inventor
桜井 勝清
亨 中島
雅裕 佐藤
吉田 義一
森松 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Seikagaku Corp
Original Assignee
Seikagaku Corp
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikagaku Corp, Asahi Kogaku Kogyo Co Ltd filed Critical Seikagaku Corp
Priority to JP61015862A priority Critical patent/JPS62176454A/en
Publication of JPS62176454A publication Critical patent/JPS62176454A/en
Publication of JPH0360272B2 publication Critical patent/JPH0360272B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、形成外科材料として有用な骨類似成形物に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a bone-like molded article useful as a plastic surgery material.

[従来技術及びその問題点] 近年、医療福祉の向上のため、生体と直接あるいは間接
に接触するような条件のもとで機能する材料「生医学材
料又はバイオマテリアル」の開発か期待されている。生
体は生体を構成する種々の器官が、相互に関連を保ちな
がら独自の機能を果たし継続維持されて始めて生命が存
在することとなるが、これら生体を構成する構造材料の
機能欠損を補う目的で、生体高分子をモデルとじた生医
学材料の開発が行われて来た。
[Prior art and its problems] In recent years, in order to improve medical welfare, there are expectations for the development of "biomedical materials or biomaterials" that function under conditions of direct or indirect contact with living organisms. . A living body can only exist when the various organs that make up the living body perform their unique functions while maintaining relationships with each other, and are continuously maintained. , biomedical materials based on biopolymer models have been developed.

生医学材料には、使用目的から、永久埋植を目標とした
り、材料の表面に偽内膜の形成を促して本来の機能を行
わせたり、本来の器官が自刃で再生するまでの間、機能
を代行させ、再生後は崩壊消滅することによるもの等、
目的応用により種々の性質が望まれる。
Depending on the purpose of use, biomedical materials may be used for permanent implantation, for promoting the formation of a pseudoendometrium on the surface of the material to perform its original function, or for the period until the original organ regenerates on its own. Things that take over functions and collapse and disappear after regeneration, etc.
Various properties are desired depending on the intended application.

また、生医学材料には、一般的に直接あるいは間接に、
生体ないし生体由来物質との接触が行われることから、
生体親和性、生体内劣化性、抗血栓性、安全性に対する
配慮が求められる0人工材料を生体と接触させると、生
体は1人工材料から影響を受けると同時に1人工材料も
生体から影響を受ける。生体は一般に異物との接触を嫌
い、異物の侵入を拒絶し、昂じては、異物反応のために
生体組繊細胞の壊死を招く、また、人工材料の側では材
料の生体内劣化、分解が問題となり、その劣化分解過程
の生成物に対する安全性の検討が重要である。
In addition, biomedical materials generally include direct or indirect
Because it comes into contact with living organisms or biologically derived substances,
When an artificial material that requires consideration for biocompatibility, biodegradability, antithrombotic properties, and safety comes into contact with a living body, the living body is affected by the artificial material, and at the same time, the artificial material is also affected by the living organism. . Living organisms generally dislike contact with foreign substances and reject the invasion of foreign substances, leading to necrosis of biological tissue cells due to foreign body reactions.Also, on the side of artificial materials, in-vivo deterioration and decomposition of the material has become a problem, and it is important to consider the safety of the products of the deterioration and decomposition process.

現在、生医学材料として用いられているものは多種挙げ
られるが、本発明に係る生医学材料は、形成を目的とし
、人工鼻1人工耳殻1人工乳房等の補綴材料、経皮的ア
クセスデバイスや骨、関節の硬組織に付随した軟骨の置
換のために生体内埋植を目的とする骨類似成形物である
Currently, there are many types of biomedical materials used, but the biomedical materials according to the present invention are used for forming artificial noses, artificial ear shells, prosthetic materials such as artificial breasts, and percutaneous access devices. It is a bone-like molded product intended for in-vivo implantation to replace cartilage attached to hard tissues of bones, joints, etc.

これまで、形成を目的とした医用高分子材料としては、
シリコーンやテフロンのように、生体に対して不活性と
考えられて来た材料や、各種ヒドロゲルのように材料表
面に高エネルギーを与えたり1表面修飾により生体親和
性の優れたハイブリッド複合材料の開発の試みがなされ
て来た。
Until now, medical polymer materials for the purpose of forming
Development of materials that were thought to be inert to living organisms, such as silicone and Teflon, and hybrid composite materials that have excellent biocompatibility by applying high energy to the material surface or by surface modification, such as various hydrogels. Attempts have been made.

しかし、いずれも生体適合性及び安全性の面から充分そ
の目的を達成されたものは得られていない。
However, none of them has been able to sufficiently achieve their objectives in terms of biocompatibility and safety.

本発明者らは、人工骨、人工歯根、骨セメント等の人工
硬組織に実用化されているハイドロキシアパタイト(以
下rHAPJという)焼結体の有する生体親和性や、生
体内抗劣化性に着目し、鋭意検討を行った結果、生体親
和性、抗生化性に加えて、成形が容易で、弾力性及び安
全性の高い新規な骨類似成形物の創生に到達した。
The present inventors focused on the biocompatibility and in vivo anti-deterioration properties of sintered hydroxyapatite (hereinafter referred to as rHAPJ), which is used in artificial hard tissues such as artificial bones, artificial tooth roots, and bone cement. As a result of extensive research, we have arrived at the creation of a new bone-like molded material that is easy to mold, has high elasticity, and is safe, in addition to being biocompatible and antibiotic-resistant.

[発明の構成] 本発明の骨類似成形物は、OHA P 、グリコサミノ
グリカン(以下「GAG」という)、グルコマンナン及
びエピハロヒドリンを友応せしめてなることを特徴とす
るものである。
[Structure of the Invention] The bone-like molded product of the present invention is characterized by being made by combining OHA P, glycosaminoglycan (hereinafter referred to as "GAG"), glucomannan, and epihalohydrin.

本発明に用いるHAPは、次式: Caz  (POa )a  (OH)2で示される硬
骨や歯骨の主成分であり1例えば、湿式法では次式:C
a (NOI ) 2 + (NH4) 2 HPO4
pH8〜10 □Ca、oCPOa )a  (OH)2により、乾式
法では次式: Caz  P2 07  +CaCO3等の公知方法に
より合成され、人工歯根や人工骨として用いる為には更
に成形後のケーキ状アパタイトを1000−1250°
Cで焼結して機械的強度を増して使用されているもので
ある。
HAP used in the present invention is a main component of hard bones and dentary bones represented by the following formula: Caz (POa)a (OH) 1 For example, in the wet method, it is represented by the following formula: C
a (NOI) 2 + (NH4) 2 HPO4
pH 8-10 □Ca, oCPOa ) a (OH)2 In the dry method, it is synthesized by the following formula: Caz P2 07 +CaCO3 and other known methods, and in order to use it as an artificial tooth root or artificial bone, it is further formed into a cake-like apatite after molding. 1000-1250°
It is used after being sintered with C to increase its mechanical strength.

本発明に用いるGAGとしては、コンドロイチン硫酸類
、ヒアルロン酸、ヘパリン、ヘパラン硫酸等が挙げられ
、特にコンドロイチン硫酸Aやコンドロイチン硫酸Cが
好ましく、通常、医薬品として重版されている品質のも
のが用いられる。
GAGs used in the present invention include chondroitin sulfates, hyaluronic acid, heparin, heparan sulfate, etc., and chondroitin sulfate A and chondroitin sulfate C are particularly preferred, and those of quality that are reprinted as pharmaceuticals are usually used.

本発明に用いるグルコマンナンとしては、通常、重版の
グルコマンナン粉を用いるが、不純物が多い場合には精
製が必要である。
As the glucomannan used in the present invention, reprinted glucomannan powder is usually used, but if it contains many impurities, purification is required.

本発明に用いるエピハロヒドリンとしては、エピクロル
ヒドリン及びエビブロムヒドリン等が挙げられる。
Examples of the epihalohydrin used in the present invention include epichlorohydrin and ebibromohydrin.

HAP、GAG及びグルコマンナンの使用量は、HAP
  100正量部、GAG  100〜5重量部、グル
コマンナン 200〜5重1部であることが好ましい。
The amount of HAP, GAG and glucomannan used is
Preferably, the amount is 100 parts by weight, GAG 100 to 5 parts by weight, and glucomannan 200 to 5 parts by weight.

エピハロヒドリンの使用量は、GAGを構成している繰
り返し糖の10倍のモル数であることが好ましい。
The amount of epihalohydrin used is preferably 10 times the number of moles of the repeating sugar constituting GAG.

本発明の骨類似成形物は1例えば、次のようにして製造
することができる。
The bone-like molded article of the present invention can be manufactured, for example, as follows.

即ち、アルカリ性、好ましくはpH1O−12の水溶液
に、HAP、GAG、グルコマンナン及びエピハロヒド
リンを加えて練合し、均質なケーキとし、用途に応じた
型作りをする。このときのアルカリ性水溶液の使用量は
、HAP、GAG及びグルコマンナンの合計1tooz
量部に対し、10〜5!!!量部であることが好ましい
That is, HAP, GAG, glucomannan, and epihalohydrin are added to an alkaline aqueous solution, preferably pH 10-12, and kneaded to form a homogeneous cake, which is then molded according to the purpose. The amount of alkaline aqueous solution used at this time is 1tooz in total of HAP, GAG, and glucomannan.
10 to 5 per part! ! ! Preferably, it is in parts by weight.

成形済練合ケーキは、通常室温乃至150℃好ましくは
室温乃至100℃で通常1時間乃至48時間反応せしめ
各構成成分相互の水酸基を介したマトリンクス状架橋化
を行うことにより弾力性に富む軟骨様成形物を得ること
ができる。
The molded kneaded cake is usually reacted at room temperature to 150°C, preferably room temperature to 100°C, for 1 hour to 48 hours to form a cartilage-like product with high elasticity by performing matrix-like crosslinking through the hydroxyl groups between the constituent components. A molded product can be obtained.

[発明の効果] 本発明によれば、成形が容易で、弾力性及び酵素分解抵
抗性の高い骨類似成形物を提供することができる。
[Effects of the Invention] According to the present invention, it is possible to provide a bone-like molded product that is easy to mold and has high elasticity and resistance to enzymatic degradation.

[発明の実施例] 以下、実施例及び試験例により本発明を更に詳細に説明
するが、これらは1本発明の範囲を何ら制限するもので
はない。
[Examples of the Invention] Hereinafter, the present invention will be explained in more detail with reference to Examples and Test Examples, but these are not intended to limit the scope of the present invention in any way.

実施例1 コンドロイチン硫酸ナトリウム5g及びグルコマンナン
5gを0.OIN  NaOH水溶液水溶液100溶/
し、練合しなからHAP  5g及びエピクロルヒドリ
ン9.25gを加え、粘土状ケーキを作った。該ケーキ
を木型により目的の形に成形し40°Cの温浴中で2時
間反応し、次いで型枠をはずし騰水約5立中で5分間煮
沸し、得られた反応形成物をO,lN  NaOH水溶
液に一夜浸漬後、無菌水で洗浄した後、無菌的に温風乾
燥して軟骨様物質18.7gを得た。該軟骨様物質の分
析値を表に示す。
Example 1 5 g of sodium chondroitin sulfate and 5 g of glucomannan were added to 0.0 g of sodium chondroitin sulfate and 5 g of glucomannan. OIN NaOH aqueous solution 100%/
After kneading, 5 g of HAP and 9.25 g of epichlorohydrin were added to make a clay cake. The cake was molded into the desired shape using a wooden mold and reacted for 2 hours in a hot bath at 40°C.Then, the mold was removed and boiled for 5 minutes in boiling water for 5 minutes. After being immersed in a 1N NaOH aqueous solution overnight, it was washed with sterile water and dried with warm air aseptically to obtain 18.7 g of cartilage-like material. The analytical values of the cartilage-like substance are shown in the table.

Ca            9.1%P      
      5.7% 水分          25.0% グルクロン酸含量     7.8% 実施例2〜9 HAP、コンドロイチン硫酸ナトリウム及びグルコマン
ナンの構成成分の量比を換えて反応を実施例1に準じて
実施し、l cmX 1 cmX 1 ff1mの軟骨
様物質片を調製した。
Ca 9.1%P
5.7% Moisture 25.0% Glucuronic acid content 7.8% Examples 2 to 9 The reaction was carried out according to Example 1 by changing the quantitative ratio of the constituent components of HAP, sodium chondroitin sulfate, and glucomannan. A piece of cartilage-like material measuring 1 cm x 1 cm x 1 ff1 m was prepared.

なお、GAG及びエピクロルヒドリンの影響を以下の試
験例で検討する為にHAPとグルコマンナンの組成反応
物を実施例に準じて調製して比較例1とした。
In addition, in order to examine the influence of GAG and epichlorohydrin in the following test example, a composition reaction product of HAP and glucomannan was prepared according to the example and used as Comparative Example 1.

実施例10 HAP  5g、コンドロイチン硫酸ナトリウム5g、
ヒアルロン酸ナトリウム(分子量約lOO万)0.5g
、グルコマンナン5g及びエピクロルヒドリン9.25
gを0.OIN  NaOH水溶液 100−中にて練
合し実施例1に準じて反応し軟骨様物質18.3gを得
た。
Example 10 HAP 5g, sodium chondroitin sulfate 5g,
Sodium hyaluronate (molecular weight approximately 100,000) 0.5g
, glucomannan 5g and epichlorohydrin 9.25g
g to 0. The mixture was kneaded in OIN NaOH aqueous solution 100- and reacted according to Example 1 to obtain 18.3 g of cartilage-like material.

分析値 Ca             9.1%P     
        5.5%グルクロン酸換算ウロン酸値
 7.2%水分           28.7%試験
例 1 酵素分解抵抗性 生体埋植時の劣化反応のモデルとして、ムコ多糖分解酵
素であるヒアルロニダーゼに対する耐性を検討した。
Analysis value Ca 9.1%P
5.5% glucuronic acid equivalent uronic acid value 7.2% water 28.7% Test Example 1 Resistance to enzymatic degradation As a model of deterioration reaction during biological implantation, resistance to hyaluronidase, a mucopolysaccharide degrading enzyme, was investigated.

実施例1により得た軟骨様物質1gを約1 am”の角
片に細断し、0.1M酢酸緩衝液(pH5、0)50−
に浸漬し、牛不丸ヒアルロニターセ(生化学工業■拳試
薬グレード)O,1gを加え50℃で24時間攪拌消化
した。
1 g of the cartilage-like substance obtained in Example 1 was cut into pieces of approximately 1 am", and the pieces were mixed with 0.1 M acetate buffer (pH 5, 0) at 50-
1 g of Gyufumaru hyaluronitase (Seikagaku Kogyo ■ken reagent grade) O was added thereto, and the mixture was stirred and digested at 50° C. for 24 hours.

該軟骨様物質片を戸別し、炉液をカルバゾール硫酸法に
より測定したが、炉液中にウロン酸は全く認められなか
った。このことから本検体はヒアルロニダーゼにより分
解されにくく生体内劣化されにくいことが判明した。
The pieces of cartilage-like material were taken from house to house, and the furnace solution was measured by the carbazole sulfuric acid method, but no uronic acid was found in the furnace solution. This revealed that this sample was not easily degraded by hyaluronidase and was not easily degraded in vivo.

2、血液適合性試験 生体親和性の一指標として、全血凝固時間測定(臨床検
査の意義と解釈(第2版)86ページ、吉利和監修、医
学占院出版)により血液凝固反応、血小板凝集反応、赤
血球凝集反応に対する本検体の作用を定性的に評価した
2. Blood compatibility test As an indicator of biocompatibility, blood coagulation reaction and platelet aggregation are measured by whole blood coagulation time measurement (Significance and Interpretation of Clinical Tests (2nd edition) p. 86, supervised by Kazu Yoshiri, Igaku Shuin Publishing). The effect of this sample on the reaction and hemagglutination reaction was qualitatively evaluated.

直径0.7cm、長さ4cI11のポリエチレン製チュ
ーブの底部をクランプして実施例1にて調製した軟骨様
物質1 mm3の角片30個を充填し、新鮮に採血した
ヒト静脈血1〜2−を加えた。対照の凝固時間はチュー
ブと同じ大きざのガラス管に本検体と血液を加えて測定
した。各チューブとガラス管を37°Cにして30秒毎
に傾けて血液の流動性を調へた。凝固時間の終点は血液
全体がゲルに変った時点とした。本検体を入れないで血
液だけを同様に処理したものを対照−1とした。結果を
表に示す。
The bottom of a polyethylene tube with a diameter of 0.7 cm and a length of 4 cm was clamped and filled with 30 square pieces of cartilage-like material of 1 mm3 prepared in Example 1, and freshly collected human venous blood 1-2- added. The control clotting time was measured by adding the main sample and blood to a glass tube of the same size as the tube. Each tube and glass tube was heated to 37°C and tilted every 30 seconds to check blood fluidity. The end point of the coagulation time was defined as the time when the entire blood turned into gel. Control-1 was obtained by treating only blood in the same manner without adding the main sample. The results are shown in the table.

全く対照−1と同じ結果を示し血液適合性を有すること
が判った。
It showed exactly the same results as Control-1 and was found to have blood compatibility.

3、成猫腹部皮下埋植試験 実施例?、実施例1O1比較例1のl 、 Oc層×1
 、0cωX1++mの板状検体片を生理食塩液により
膨潤させ各検体当り6匹の成猫(体重2.5〜3kg)
の腹部皮下に埋植した。2週後及び4週後に各3匹ずつ
層殺し埋植片及び周囲の組織の病理組織所見を観察した
。結果を表に示す。
3. An example of an adult cat abdominal subcutaneous implantation test? , Example 1O1 l of Comparative Example 1, Oc layer x 1
, 0 cω
It was implanted subcutaneously in the abdomen. After 2 weeks and 4 weeks, the histopathological findings of the explants and surrounding tissues were observed for three animals each. The results are shown in the table.

以上の病理組織所見より、本発明の骨類似成形物は初期
軽度の異物反応を経て、組織適合状態で終結をみた。一
方、GAGを含まない比較例1の検体は、強い異物反応
及び炎症反応ののち、完全に劣化分解されることが判る
From the above histopathological findings, the bone-like molded product of the present invention underwent an initial mild foreign body reaction and ended up in a tissue-compatible state. On the other hand, it can be seen that the sample of Comparative Example 1, which does not contain GAG, is completely degraded and decomposed after a strong foreign body reaction and inflammatory reaction.

Claims (1)

【特許請求の範囲】[Claims] ハイドロキシアパタイト、グリコサミノグリカン、グル
コマンナン及びエピハロヒドリンを反応せしめてなるこ
とを特徴とする骨類似成形物。
A bone-like molded product characterized by being made by reacting hydroxyapatite, glycosaminoglycan, glucomannan, and epihalohydrin.
JP61015862A 1986-01-29 1986-01-29 Bone analogous molded article Granted JPS62176454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61015862A JPS62176454A (en) 1986-01-29 1986-01-29 Bone analogous molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61015862A JPS62176454A (en) 1986-01-29 1986-01-29 Bone analogous molded article

Publications (2)

Publication Number Publication Date
JPS62176454A true JPS62176454A (en) 1987-08-03
JPH0360272B2 JPH0360272B2 (en) 1991-09-13

Family

ID=11900608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61015862A Granted JPS62176454A (en) 1986-01-29 1986-01-29 Bone analogous molded article

Country Status (1)

Country Link
JP (1) JPS62176454A (en)

Also Published As

Publication number Publication date
JPH0360272B2 (en) 1991-09-13

Similar Documents

Publication Publication Date Title
AU773826B2 (en) Hyaluronic acid gel composition, process for producing the same, and medical material containing the same
CN106310383B (en) Injectable bone repair hydrogel and preparation method thereof
Barbosa et al. Polysaccharides as scaffolds for bone regeneration
US9050392B2 (en) Hydrogel and biomedical applications thereof
US8846640B2 (en) Viscoelastic gels as novel fillers
EP0200574B1 (en) A biomaterial comprising a composite material of chitosan derivative and collagen and a process for the production of the same
KR100395724B1 (en) Hard Tissue Stimulating Agent
US11866556B2 (en) Process for efficient cross-linking of hyaluronic acid
US20100178313A1 (en) Implantable Degradable Biopolymer Fiber Devices
CN109161037A (en) A kind of hydrogel composites, preparation method and application
KR20010101001A (en) Cross-linked hyaluronic acids and medical uses thereof
CN108478867A (en) Injectable macromolecule hydrogel, preparation method based on acylhydrazone key and macromolecule hydrogel injection
CN104774337B (en) Injection cross-linking sodium hyaluronate gel containing agarose microbeads and preparation method
JP2005535736A (en) Ester derivatives of hyaluronic acid for the preparation of hydrogel materials by photocuring
CN107158452A (en) A kind of bone surface of a wound hemostatic composition and its preparation method and application
HUT77606A (en) Anti-adhesion agent
KR101886413B1 (en) Manufacturing method of soft tissue filler composition based on hyaluronic acid
CN114099787B (en) Absorbable biological membrane, preparation method and application thereof
WO1996003147A1 (en) Synthesis of chemical gels from polyelectrolyte polysaccharides by gamma-irradiation
CN107397980A (en) A kind of tissue repair film coating anti-blocking compositions and its application method
CN112999420A (en) Plastic bone sponge for orthopedic filling and preparation method thereof
JPS62176454A (en) Bone analogous molded article
CN111298199B (en) Temporary implant for orthopedics department and preparation method thereof
JPH0826081B2 (en) Method for insolubilizing N-carboxyalkyl derivative of chitosan
WO2006076659A2 (en) Composition and method for covalently coupling a substance to a substrate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees