JPS6217636A - Method for high sensitivity detection of grain boundary sensitivity degree of stainless steel - Google Patents

Method for high sensitivity detection of grain boundary sensitivity degree of stainless steel

Info

Publication number
JPS6217636A
JPS6217636A JP15744885A JP15744885A JPS6217636A JP S6217636 A JPS6217636 A JP S6217636A JP 15744885 A JP15744885 A JP 15744885A JP 15744885 A JP15744885 A JP 15744885A JP S6217636 A JPS6217636 A JP S6217636A
Authority
JP
Japan
Prior art keywords
stainless steel
grain boundary
aqueous solvent
degree
sensitization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15744885A
Other languages
Japanese (ja)
Inventor
Seisaburo Abe
阿部 征三郎
Riichi Todoroki
轟 理市
Takehisa Mizunuma
水沼 武久
Akira Matsuhashi
亮 松橋
Fumio Kurosawa
文夫 黒澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15744885A priority Critical patent/JPS6217636A/en
Publication of JPS6217636A publication Critical patent/JPS6217636A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To detect a grain boundary sensitivity degree with high sensitivity, by applying anode electrolysis to stainless steel in an electrolyte, which is prepared by adding org. acids, acid anhydrides, amines or a specific complex forming compound having solubility to a non-aqueous solvent, two or more times in a constant potential state. CONSTITUTION:One or more of org. acids, acid anhydrides, amines or beta-diketone having solubility to a non-aqueous solvent and one or more of lithium chloride or quaternary alkylammonium halide are simultaneously added to constitute a non-aqueous solvent type electrolyte. Anode electrolysis is applied to stainless steel in thus formed non-aqueous solvent type electrolyte two or more times in a constant potential state. By this method, the grain boundary sensitivity degree of stainless steel can be detected with high sensitivity.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ステンレス鋼の粒界鋭敏化度の高感度検出法
に係り、特に各種ステンレス鋼の極〈軽微な粒界クロム
欠乏層生成に伴う粒界鋭敏化を高感度に検出する方法に
関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a highly sensitive method for detecting the degree of grain boundary sensitization in stainless steel, and particularly to the formation of extremely small grain boundary chromium-deficient layers in various stainless steels. The present invention relates to a method for detecting grain boundary sensitization with high sensitivity.

(従来の技術) 従来、ステンレス鋼の粒界鋭敏化度の検出法としては、
10%しゅう酸エッチ試験方法(JISGO571)が
多用されておシ、シゅう酸エッチ処理後の表面光学顕微
鏡観察結果に基づき、硫酸・硫酸第二鉄腐食試験方法(
JISGO572)、65チ硝酸腐食試験方法(JIS
GO573)、硝酸・ふり化水素酸腐食試験方法(JI
SGO574)あるいは硫酸・硫酸銅腐食試験方法(J
ISGO575)などの長時間熱酸試験実施の要否の判
定が行われている。また近年粒界鋭敏化度の電気化学的
検出法として、F:JPR(E1ectrochem4
cal[エレクトロケミカル] Potentiokl
netic (ポテンショキネティック) React
ivatjon(リアクチページ、ン〕)試験方法もJ
IS化作業が進められている。これらはいずれも水溶液
系の腐食溶液中で腐食電位(自然電位)あるいは電気化
学的制御電位のもとて腐食を行い粒界鋭敏化度を検出す
るもので工業的にも確立された試験方法である。
(Conventional technology) Conventionally, the method for detecting the degree of grain boundary sensitization in stainless steel is as follows:
The 10% oxalic acid etch test method (JISGO571) is often used, but based on the surface optical microscope observation results after the oxalic acid etch treatment, the sulfuric acid/ferric sulfate corrosion test method (
JISGO572), 65 nitric acid corrosion test method (JIS
GO573), Nitric acid/Hydrofluoric acid corrosion test method (JI
SGO574) or sulfuric acid/copper sulfate corrosion test method (J
The necessity of long-term thermal acid tests such as ISGO575) is being determined. In recent years, as an electrochemical detection method for grain boundary sensitization, F:JPR (E1electrochem4
cal [electrochemical] Potentiokl
netic (potentiokinetic) React
Ivatjon (react page, n) test method is also J
IS work is underway. These are all industrially established test methods that detect the degree of grain boundary sensitization by performing corrosion in an aqueous corrosive solution under corrosion potential (natural potential) or electrochemically controlled potential. be.

しかしながら上記の本溶液系による各種JIS試験方法
によって粒界鋭敏化を生じていないと判定される材料に
おいても粒界鋭敏化に起因すると考えられる粒界腐食、
粒界応力腐食割れ事故あるいは粒界炭化物析出に起因す
ると考えられる低温靭性の低下を生ずる場合があり、極
く軽微な粒界鋭敏化を検出可能とする手段の開発が要求
されている。
However, even in materials that are determined to have no grain boundary sensitization by various JIS test methods using this solution system, grain boundary corrosion, which is thought to be caused by grain boundary sensitization,
In some cases, a decrease in low-temperature toughness may occur due to intergranular stress corrosion cracking accidents or intergranular carbide precipitation, and there is a need to develop a means that can detect extremely slight grain boundary sensitization.

一方、本発明者らの一部は金属材料中の析出物を観察す
るために非水溶媒系電解液を用いて定電位アノード電解
を行なう手段を特開昭55−107934号公報により
先に提案しており、また゛このような電解に用いられる
非水溶媒系電解液についても各種の溶液の提案を特願昭
59−72234号により行っている。
On the other hand, some of the present inventors previously proposed a means of performing constant potential anodic electrolysis using a non-aqueous electrolyte in order to observe precipitates in metal materials in JP-A-55-107934. In addition, Japanese Patent Application No. 72,234/1980 has proposed various types of non-aqueous electrolytic solutions for use in such electrolysis.

しかしながらこれらはいずれも金属材料中の水溶性ある
いは非水溶性の析出物をその周囲の金属を溶解すること
により金属表面に現出することを目的とするものであり
、粒界鋭敏化の検出の可否については未だ検討がなされ
ていなかった。
However, all of these methods aim to make water-soluble or water-insoluble precipitates in the metal material appear on the metal surface by dissolving the surrounding metal, and are difficult to detect grain boundary sensitization. The feasibility of this has not yet been considered.

(発明が解決しようとする問題点) そこで本発明者らは従来の水溶液系の粒界腐食試験方法
によっては検出できないような極く軽微な鋭敏化の検出
を可能とする手段について種々検討し、ステンレス鋼の
鋭敏化を高感度に検出する方法を見出したものである。
(Problems to be Solved by the Invention) Therefore, the present inventors have studied various means to enable the detection of extremely slight sensitization that cannot be detected by conventional aqueous solution-based intergranular corrosion testing methods. We have discovered a method to detect sensitization in stainless steel with high sensitivity.

即ち、本発明者らは、先に提案したような非水溶媒系電
解液中で定電位的にアノード電解するに際し、これを2
回以上行なうことにより、従来の試験方法では検出でき
ないごく軽微な鋭敏化をはじめて検出しうるという全く
新たな知見を得て本発明をなしたものである。
In other words, the present inventors performed potentiostatic anodic electrolysis in a non-aqueous electrolyte solution as previously proposed.
The present invention was made based on the completely new knowledge that by conducting the test more than once, it is possible to detect for the first time very slight sensitization that cannot be detected by conventional testing methods.

(問題点を解決するための手段) 本発明は、以上の知見に基ついてなされたものであって
、その要旨とするところは非水溶媒に溶解性を有する有
機酸類、酸無水物類、アミン類あるいはβ−・ジケント
類の1種以上および塩化リチウムあるいは四アルキルア
ンモニウムハライドの1種以上を同時に添加した非水溶
媒系電解液中で、ステンレス鋼を定電位的に2回以上ア
ノード電解することを特徴とするステンレス鋼の粒界鋭
敏化度の高感度検出法にある。
(Means for Solving the Problems) The present invention has been made based on the above findings, and its gist consists of organic acids, acid anhydrides, and amines that are soluble in non-aqueous solvents. Anodic electrolysis of stainless steel two or more times at constant potential in a non-aqueous electrolytic solution to which one or more of β-types or β-dyquents and one or more of lithium chloride or tetraalkylammonium halides are simultaneously added. A highly sensitive method for detecting the degree of grain boundary sensitization in stainless steel is provided.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

先ず本発明においてステンレス鋼とは、フェライト系、
オーステナイト系、あるいは二相系ステンレス鋼など一
般に使用されるステンレスttl を総称するものであ
る・ 次に、本発明にいう粒界鋭敏化とは上記各種ステンレス
鋼の結晶粒界に鋼中の炭素とり。ムとがクロム炭化物(
Cr7C3あるいはCr 2 s Cb )として析出
することにより粒界近傍のクロム量が低減し・耐粒界腐
食性あるいは耐粒界応力腐食割れ性が劣化する現象を指
すものである。
First, in the present invention, stainless steel refers to ferritic steel,
It is a general term for commonly used stainless steels such as austenitic or duplex stainless steels.Next, grain boundary sensitization as referred to in the present invention refers to carbon removal in the steel at the grain boundaries of the various stainless steels mentioned above. . Chromium carbide (
This refers to a phenomenon in which the amount of chromium near the grain boundaries decreases due to precipitation as Cr7C3 or Cr2sCb), and the intergranular corrosion resistance or intergranular stress corrosion cracking resistance deteriorates.

次に本発明において非水溶媒とは、メチルアルコール、
エチルアルコール、n−ヘキサンアルイは酢酸メチルな
どの非水溶媒を指し、これらの溶媒はいずれも有機酸類
、酸無水物類、アミン類あるいはβ−ジケトン類の溶解
性を有することを必須とするものである。ここで非水溶
媒の適用を必要とするところは、定電位アノード電解中
における水分による表面不働態皮膜の生成を防止する点
にある。さらに有機酸類等はいずれも上記非水溶媒に溶
解性を有する錯塩生成化合物であって、有機酸類として
は、マレイン酸、コハク酸、乳酸、クエン酸、酒石酸な
どがあり、酸無水物としては、無水マレイン酸、またア
ミン類としては、トリエタノールアミン、ジェタノール
アミン、モノエタノールアミンなどが適当であり、さら
にβ−ジケトン類のしては、アセト酢酸メチル、アセト
酢酸エチル、アセチルアセトン、サリチル酸メチル、メ
チルマルトール、エチルマルトールなどが適当である。
Next, in the present invention, non-aqueous solvents include methyl alcohol,
Ethyl alcohol and n-hexane alkaline refer to non-aqueous solvents such as methyl acetate, and all of these solvents must be able to dissolve organic acids, acid anhydrides, amines, or β-diketones. It is. The reason why the non-aqueous solvent is required here is to prevent the formation of a surface passive film due to moisture during constant potential anodic electrolysis. Furthermore, all organic acids are complex salt-forming compounds that are soluble in the above-mentioned non-aqueous solvents, and examples of organic acids include maleic acid, succinic acid, lactic acid, citric acid, and tartaric acid, and examples of acid anhydrides include: Suitable maleic anhydride and amines include triethanolamine, jetanolamine, monoethanolamine, etc., and β-diketones include methyl acetoacetate, ethyl acetoacetate, acetylacetone, methyl salicylate, Methyl maltol, ethyl maltol, etc. are suitable.

ここで上記錯塩生成化合物類の1種以上の添加を必要と
するところは、定電位アノード電解に際し、これらの添
加によってアルコール類等の非水溶媒中に鉄、クロム、
二、ケルを金属錯イオンとして溶解せしめる点くある。
Where it is necessary to add one or more of the above complex salt forming compounds, iron, chromium,
Second, there are ways to dissolve Kel as a metal complex ion.

又、本発明においては、前記溶液に電気伝導性全付与す
る目的で塩化リチウムあるいはrl+、1アルキルアン
モニウムハライドの1種以上tt<解質物質として添加
するものである。ここで言う四アルキルアンモニウムハ
ライドとは、一般式R4NXで表わされる物質を指し、
同式中RはCH3,C2H5,C3H,。
Further, in the present invention, one or more of lithium chloride, rl+, and 1-alkylammonium halide is added as a tt<dissolved substance for the purpose of imparting electrical conductivity to the solution. The tetraalkylammonium halide mentioned here refers to a substance represented by the general formula R4NX,
In the same formula, R is CH3, C2H5, C3H.

C4H9のいずれかを表わし、またXはハロゲン元素C
t、Br、Iのいずれかを表わすものである。ここで上
記電解、質物質の1種以上の添加は、前記非水溶液に電
気伝導性を付与することによシ定電位アノ−ド電解を可
能とするためのものである。
represents any of C4H9, and X is a halogen element C
It represents any one of t, Br, and I. The addition of one or more of the electrolyte substances mentioned above is for imparting electrical conductivity to the non-aqueous solution to enable constant potential anodic electrolysis.

上記の錯塩生成物質および電解質物質を添加した非水溶
媒をもって本発明法における非水溶媒電解液が構成され
る。なお、この場合、各添加物質の1^については特に
規定しないが、錯塩生成化合物の1種以上についてはほ
ぼ1〜15wt%程度、また電解質物質についてはほぼ
0.5〜10wtチ程度が適当である。
The non-aqueous solvent electrolyte in the method of the present invention is constituted by the non-aqueous solvent to which the above-mentioned complex salt-forming substance and electrolyte substance are added. In this case, 1^ of each additive substance is not particularly specified, but approximately 1 to 15 wt% for one or more complex salt forming compounds, and approximately 0.5 to 10 wt% for electrolyte substances. be.

次に本発明において最大の骨子とする所は、かかる非水
溶媒電解液を用いてステンレス鋼を定電位的に2回以上
アノード電解する点である。この場合、かかる電解法を
採用するに至ったのは以下のような理由に基くものであ
る。
Next, the most important point in the present invention is that stainless steel is electrostatically anodically electrolyzed two or more times using the non-aqueous electrolyte. In this case, the adoption of this electrolytic method was based on the following reasons.

即ち、前記非水溶媒系電解液中でステンレス鋼を最初ア
ノード電解すると水分を含有しないため不働態皮膜を生
成せず全面溶解する。この場合鋼中のクロム量に依存せ
ず一様に溶解するため粒界鋭敏化は検出できない。しか
しながら−たん非水溶媒系電解液中で第1回目のアノー
ド電解により全面溶解を行ったものについてメチルアル
コール又はエチルアルコール中で洗滌、乾燥全行い大気
中で不働態皮Mk生成せしめた後、非水溶媒系電解液を
用いて第2回目のアノード電解全行うと今度は粒界鋭敏
化に伴う著しい粒界腐食溝の発生が検出される。さらに
第2回目のアノード1i解だけでは粒界腐食溝の発生が
不十分な場合には、前記の洗滌、乾燥、電解を繰り返し
て行うことにより所期の目的全達成することができるも
のである。
That is, when stainless steel is first anodically electrolyzed in the non-aqueous electrolytic solution, since it does not contain water, it completely dissolves without forming a passive film. In this case, grain boundary sensitization cannot be detected because chromium dissolves uniformly regardless of the amount of chromium in the steel. However, after complete dissolution by the first anodic electrolysis in a non-aqueous electrolyte, washing and drying in methyl alcohol or ethyl alcohol and forming a passive skin Mk in the atmosphere were performed. When the second anodic electrolysis was carried out using an aqueous electrolyte, significant intergranular corrosion grooves were detected due to grain boundary sensitization. Furthermore, if the generation of intergranular corrosion grooves is not sufficient with the second anode 1i solution, the entire intended purpose can be achieved by repeating the above-mentioned cleaning, drying, and electrolysis. .

この場合アノード電解は、自然電位(8i!漬電位)か
ら7070−13O責な電位で行うことが望ましく、7
0mV未満ではアノード寛解し難く、又130mV超で
は孔食の発生が著しく粒界腐食溝の検出が困難となる。
In this case, the anodic electrolysis is desirably carried out at a potential of 7070-13O from the natural potential (8i! dipping potential),
If it is less than 0 mV, it is difficult to achieve anode amelioration, and if it exceeds 130 mV, pitting corrosion will occur and it will be difficult to detect intergranular corrosion grooves.

以上のごとく本発明においてはステンレス鋼を非水溶媒
電解液中で最初定電位的にアノード電解し、不働態皮膜
のない表面を得た後、大気中で不働態皮膜を生成せしめ
、その皮膜の保護性のクロム量依存性の差異を第2回目
以後のアノード電解による溶解性の差異として検出する
ものである。
As described above, in the present invention, stainless steel is first electrostatically anodically electrolyzed in a non-aqueous electrolyte to obtain a surface without a passive film, and then a passive film is generated in the atmosphere. The difference in the dependence of the protective property on the amount of chromium is detected as the difference in solubility due to the second and subsequent anodic electrolysis.

以下に本発明の効果を実施例に基づいてさらに具体的に
示す。
The effects of the present invention will be described in more detail below based on Examples.

(実施例) 第1表にそれぞれ0.012wt%、 0.007 w
t%オヨび0.013 wt% (D炭素を含有する5
US304L 、 SUS 430およびFe−18w
t%Cr−5,6wt%Ni鋼の軽鋭敏化材について本
発明法と従来法とによって粒界エツチングの有無を調査
した結果を示すが、本発明法による非水溶媒電解液中で
アノード電解を行った場合いずれも粒界エツチングが検
出されるが、従来法による粒界鋭敏化検出法によっては
粒界エツチングは全く検出されない。
(Example) Table 1 shows 0.012 wt% and 0.007 w, respectively.
t% weight 0.013 wt% (5 containing D carbon
US304L, SUS430 and Fe-18w
The results of investigating the presence or absence of grain boundary etching using the method of the present invention and the conventional method for lightly sensitized materials of t%Cr-5,6wt%Ni steel are shown. Grain boundary etching is detected in both cases, but no grain boundary etching is detected by the conventional grain boundary sensitization detection method.

(発明の効果) 以上のごとく、本発明法によれば従来の粒界鋭敏化試験
法によって検出できないような極く軽微な鋭敏化を検出
しつることから、各種ステンレス鋼の製造に際し、鋭敏
化を生じない熱処理後の冷却条件の決定、ステンレス鋼
製品の使用時における初期鋭敏化の検出、あるいは溶接
熱影響部の軽微な鋭敏化の検出が可能となるもので工業
的効果はきわめて顕著なものである。
(Effects of the Invention) As described above, according to the method of the present invention, extremely slight sensitization that cannot be detected by conventional grain boundary sensitization testing methods can be detected. It is possible to determine the cooling conditions after heat treatment that do not cause sensitization, to detect initial sensitization when using stainless steel products, or to detect slight sensitization of the weld heat-affected zone, and the industrial effect is extremely significant. It is.

Claims (1)

【特許請求の範囲】[Claims] 非水溶媒に溶解性を有する有機酸類、酸無水物類、アミ
ン類あるいはβ−ジケトン類の1種以上および塩化リチ
ウムあるいは四アルキルアンモニウムハライドの1種以
上を同時に添加した非水溶媒系電解液中で、ステンレス
鋼を定電位的に2回以上アノード電解することを特徴と
するステンレス鋼の粒界鋭敏化度の高感度検出法。
In a non-aqueous electrolytic solution to which one or more organic acids, acid anhydrides, amines, or β-diketones and one or more lithium chloride or tetraalkylammonium halides that are soluble in non-aqueous solvents are simultaneously added. A highly sensitive method for detecting the degree of grain boundary sensitization in stainless steel, which is characterized by subjecting stainless steel to anode electrolysis two or more times in a constant potential manner.
JP15744885A 1985-07-17 1985-07-17 Method for high sensitivity detection of grain boundary sensitivity degree of stainless steel Pending JPS6217636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15744885A JPS6217636A (en) 1985-07-17 1985-07-17 Method for high sensitivity detection of grain boundary sensitivity degree of stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15744885A JPS6217636A (en) 1985-07-17 1985-07-17 Method for high sensitivity detection of grain boundary sensitivity degree of stainless steel

Publications (1)

Publication Number Publication Date
JPS6217636A true JPS6217636A (en) 1987-01-26

Family

ID=15649878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15744885A Pending JPS6217636A (en) 1985-07-17 1985-07-17 Method for high sensitivity detection of grain boundary sensitivity degree of stainless steel

Country Status (1)

Country Link
JP (1) JPS6217636A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114486461A (en) * 2022-02-09 2022-05-13 松山湖材料实验室 High-chromium steel sample, preparation method thereof, and grain size determination and grain boundary display method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114486461A (en) * 2022-02-09 2022-05-13 松山湖材料实验室 High-chromium steel sample, preparation method thereof, and grain size determination and grain boundary display method thereof
CN114486461B (en) * 2022-02-09 2023-11-21 松山湖材料实验室 Sample of high chromium steel, preparation thereof, determination of grain size and grain boundary display method

Similar Documents

Publication Publication Date Title
García et al. The influence of pH on corrosion inhibitor selection for 2024-T3 aluminium alloy assessed by high-throughput multielectrode and potentiodynamic testing
Larsen et al. Effect of excess silicon and small copper content on intergranular corrosion of 6000-series aluminum alloys
Lizlovs et al. Anodic Polarization Behavior of High‐Purity 13 and 18% Cr Stainless Steels
Usman et al. Corrosion testing of anodized aerospace alloys: comparison between immersion and salt spray testing using electrochemical impedance spectroscopy
Raspini Influence of sodium salts of organic acids as additives on localized corrosion of aluminum and its alloys
JPH05195247A (en) Method of not incorporating chromium to protect aluminum and composition therefor
Bond et al. Intergranular corrosion of ferritic stainless steels
Qi et al. An optimized trivalent chromium conversion coating process for AA2024-T351 alloy
Al-Moubaraki et al. The red sea as a corrosive environment: corrosion rates and corrosion mechanism of aluminum alloys 7075, 2024, and 6061
Dibari et al. Electrochemical behavior of high purity aluminum in chloride containing solutions
Nowak et al. Effect of TIG welding and rare earth elements alloying on corrosion resistance of magnesium alloys
Sánchez-Tovar et al. Effect of different micro-plasma arc welding (MPAW) processes on the corrosion of AISI 316L SS tubes in LiBr and H3PO4 solutions under flowing conditions
France Jr et al. Comparison of chemically and electrolytically induced pitting corrosion
US5362569A (en) Anodizing and duplex protection of aluminum copper alloys
JPS6217636A (en) Method for high sensitivity detection of grain boundary sensitivity degree of stainless steel
US3468774A (en) Electrolytic descaling of titanium and its alloys
Schnatterer et al. Evaluating the intergranular corrosion susceptibility of Al‐Mg‐Si‐Cu alloys using electrochemical methods
US3135632A (en) Method of protecting ferrous metal surfaces from rerusting
Gouda et al. Corrosion behaviour of steel in stagnant salt solutions
JPS5921960B2 (en) How to remove scale from metal objects
JP3057033B2 (en) Stainless steel anticorrosion surface treatment method
Moloney et al. Accelerated Stainless Steel 316L Material Compatibility Assessment of Chemical Products using Potentiodynamic Polarisation
CA1088457A (en) Treating metallic article in molten oxidizing salt before immersion in electrolyte
Mack et al. Effect of Bromide Ions on the Electrochemical Behavior of Iron
Schneider et al. Corrosion behavior of anodized AA‐6060 depending on the anodizing bath aging