JPS62176030A - Liquid metal ion source for ion beam processing device - Google Patents

Liquid metal ion source for ion beam processing device

Info

Publication number
JPS62176030A
JPS62176030A JP1690786A JP1690786A JPS62176030A JP S62176030 A JPS62176030 A JP S62176030A JP 1690786 A JP1690786 A JP 1690786A JP 1690786 A JP1690786 A JP 1690786A JP S62176030 A JPS62176030 A JP S62176030A
Authority
JP
Japan
Prior art keywords
reservoir
heater
liquid metal
beam processing
ion beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1690786A
Other languages
Japanese (ja)
Inventor
Yasushi Hisaoka
靖 久岡
Shigeo Sasaki
茂雄 佐々木
Akira Nushihara
主原 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1690786A priority Critical patent/JPS62176030A/en
Publication of JPS62176030A publication Critical patent/JPS62176030A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To heat the raw material metal in the vicinity of the top portion of a needlelike member locally and efficiently by heightening the electric resistance of a part of the heater arranged in a reservior, the heater located in the lower portion of the reservoir. CONSTITUTION:When the electric source 10 is switched on the heating current flows to the reservoir 1 from the needlelike member 40 through the raw material metal 3 stored in the bottom of the reservoir 1, and in this circuit the sectional area of the heater portion 4d of the needlelike member 40 is made small so that the electric resistance of this portion becomes high. Therefore, the heat amount generated in the supporting portion 4c of the said member 40 or in the reservoir 1 is small and the most of the electric power supplied from the heating source 40 is transformed to the heat energy in the heater portion 4d. Thus the temperature of the vicinity of the top portion 4e of the needlelike member 40 can be made higher to improve the heating efficiency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超微細加工をおこなうイオンビーム加工装置
の液体金属イオン源に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a liquid metal ion source for an ion beam processing apparatus that performs ultrafine processing.

【従来の技術〕[Conventional technology]

第4図は、従来のイオンビーム加工装置の液体金属イオ
ン源の一例を示す縦断面図である。図において、(1)
は例えばタンタルなど、で形成されたリザーバ、(2)
ハリザーパ(1)の底部に設けられた細孔、(3)はリ
ザーバ(1)に貯蔵された例えばガリウムなどのイオン
化すべき原料金属である。(4)は加熱ヒータ部(4a
)と電解研磨によって先端の曲率半径が数μmになるよ
う針状加工された先端部(4b)からなるタングステン
警の針状部材であり、針状部材(4)の先端部(4b)
が細孔(2)を貫通突出するように配置されている。(
5)は加熱ヒータ部(4a)を被覆する例えばアルミナ
セラミック特のヒータ絶縁体、(6)は針状部材(4)
の先端部(4b)に対向して設けられた接地電位の陰極
、(7)は導電リード線、(8)は電流端子である。ま
たリザーバ(1)および針状部材(4)はそれぞれ導電
リード線(7)を介して電流端子(8)にスポット溶接
などで接続されている。(9)は電流端子(8)を電気
絶縁する絶縁支持体、αOは電流端子(8)に接続され
た加熱電源、α℃は高圧電源、cLzは原料金属(3)
の飛散を防止するフタである。このように構成されたイ
オンビーム加工装置の液体金属イオン源は通常高真空中
に設置されている。
FIG. 4 is a longitudinal sectional view showing an example of a liquid metal ion source of a conventional ion beam processing apparatus. In the figure, (1)
is a reservoir formed of tantalum, for example, (2)
The pores (3) provided at the bottom of the harrier (1) are the source metal to be ionized, such as gallium, stored in the reservoir (1). (4) is the heater part (4a
) and a tip (4b) that has been processed into a needle-like shape by electropolishing so that the radius of curvature of the tip is several μm, and the tip (4b) of the needle-shaped member (4) is
is arranged so as to protrude through the pore (2). (
5) is a heater insulator made of alumina ceramic, for example, which covers the heater part (4a), and (6) is a needle-shaped member (4).
(7) is a conductive lead wire, and (8) is a current terminal. Further, the reservoir (1) and the needle-shaped member (4) are each connected to a current terminal (8) via a conductive lead wire (7) by spot welding or the like. (9) is an insulating support that electrically insulates the current terminal (8), αO is the heating power supply connected to the current terminal (8), α℃ is the high voltage power supply, and cLz is the raw material metal (3)
The lid prevents the liquid from scattering. The liquid metal ion source of the ion beam processing apparatus configured as described above is normally installed in a high vacuum.

次に動作について説明する。加熱電源αOを投入すると
、電流は加熱ヒータ部(4a)からリザーバ(1)の底
部に溜まった原料金属(3)を介してリザーバ(1)へ
流れ、加熱電源αOに帰還する。この通電経路において
は針状部材(4)の径を十分小さくしであるため、主と
して絶縁被覆の施された加熱ヒータ部(4a〕が発熱し
、その伝導熱によって原料金属(3)が加熱されろ。高
温となった原料金属(3)は濡れ性の良好な溶融金属と
なり、細孔(2)から滲み出て針状部材(4)の先端部
(4b)を覆う。この先端部(4b)は尖鋭であるため
高圧電源(10により強電界が形成されており、先端#
(4b)t−覆う溶融した原料金属(3)はこの強電界
によってテーラ−コーン(Taylor cone )
と称される円錐状突起を形成する。この円錐状突起の先
端部には電界が集中するため原料金属(3)は電界蒸発
し、イオンビーム1)31として陰極(6)方向へ引き
出される。この際、引き出し可能なイオンビーム電流は
、溶融した原料金属(3)が針状部材(4)の表面を先
端へ向かって流れるときの流量抵抗に依存する。安定な
イオンビーム13)を発生させるには、溶融した原料金
属(3)勿高温に保持してその粘性を低下させることに
よシ流量抵抗を軽減し、強電界が印加された針状部材(
4)の先端部(4b)K溶融した原料金属(3)全安定
に供給す ゛る必要がある。
Next, the operation will be explained. When the heating power source αO is turned on, current flows from the heater section (4a) to the reservoir (1) via the raw metal (3) accumulated at the bottom of the reservoir (1), and returns to the heating power source αO. In this current-carrying path, since the diameter of the needle-like member (4) is made sufficiently small, the heater part (4a) coated with insulation mainly generates heat, and the raw metal (3) is heated by the conduction heat. The heated raw metal (3) becomes a molten metal with good wettability, oozes out from the pores (2) and covers the tip (4b) of the needle-like member (4). ) is sharp, so a strong electric field is formed by the high voltage power supply (10), and the tip #
(4b) The t-covering molten raw metal (3) forms a Taylor cone due to this strong electric field.
It forms a conical projection called. Since the electric field is concentrated at the tip of this conical protrusion, the raw metal (3) is evaporated by the electric field and drawn out as an ion beam (1) 31 toward the cathode (6). At this time, the ion beam current that can be extracted depends on the flow resistance when the molten raw metal (3) flows on the surface of the needle-shaped member (4) toward the tip. In order to generate a stable ion beam 13), the flow resistance is reduced by keeping the molten raw material metal (3) at a high temperature to reduce its viscosity, and a needle-shaped member (3) to which a strong electric field is applied is applied.
4) The tip (4b) of the molten raw metal (3) must be completely and stably supplied.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のように構成した従来の液体金属イオン源では加熱
ヒータ部(4)がリザーバ(1)の内部に設けられてい
るので、発生する熱エネルギーが直接外部へ散逸するこ
となく液体金属イオン源全体が加熱されるが、加熱電源
<1)から投入された電力は針状部材(4)の加熱ヒー
タ部(4a)全体で一様に熱に変換されるので、本来高
温に保持すべき針状部材(4)の先端部(4b)近傍の
原料金属(3)全局所的に加熱することは難かしいとい
う問題があった。
In the conventional liquid metal ion source configured as described above, the heater section (4) is provided inside the reservoir (1), so that the generated thermal energy is not directly dissipated to the outside and is heated throughout the liquid metal ion source. However, since the power input from the heating power source <1) is uniformly converted into heat throughout the heater part (4a) of the needle member (4), the needle member (4), which should originally be kept at a high temperature, is heated. There is a problem in that it is difficult to locally heat the entire raw material metal (3) near the tip (4b) of the member (4).

本発明は上記のような問題点を解決するためになされた
もので、針状部材の先端部近傍の原料金属を局所的に効
率よく加熱するイオンビーム加工装置の液体金属イオン
源を得ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and aims to provide a liquid metal ion source for an ion beam processing device that locally and efficiently heats the raw metal near the tip of a needle-shaped member. purpose.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記の目的全達成するためKなされたもので、
リザーバ内に配置された加熱ヒータ部を通′区すること
により前記リザーバ内に貯蔵された原料金属を加熱し、
該原料金pAを強電界を印加した針状部材の先端部に供
給しイオン化するようにした液体金属イオン源において
、前記加熱ヒータ部のうち前記リザーバ内の下部に位置
する一部分の電気抵抗を高くするようにしたイオンビー
ム加工装置の液体金属イオン源を提供するものである。
The present invention has been made to achieve all of the above objects,
heating the raw metal stored in the reservoir by passing through a heater section disposed in the reservoir;
In a liquid metal ion source in which the raw material pA is supplied to the tip of a needle-like member to which a strong electric field is applied and ionized, the electric resistance of a portion of the heater section located at a lower part in the reservoir is increased. A liquid metal ion source for an ion beam processing apparatus is provided.

〔作用〕[Effect]

加熱ヒータ部を通電すると、この加熱ヒータ部のうち電
気抵抗を高くした部分が宇として発熱され、その近傍の
原料金属を加熱する。
When the heater part is energized, the part of the heater part with high electrical resistance generates heat, which heats the raw metal in the vicinity.

〔発明の実施例〕 第1図は本発明の実施例を示す縦断面図である。[Embodiments of the invention] FIG. 1 is a longitudinal sectional view showing an embodiment of the present invention.

なお、第4図と同じ機能の部分には同じ記号を付し説明
を省略する。図において、針状部材り1はリザーバ(1
)内の上部に位置する支持部(4C)と、リザーバ(1
)内の下部に位置し支持部(4C)に比べ十分小さな径
の加熱ヒータ部(4d)と、針状に加工された先端部(
4e)とから構成されている。この針状部材−は、例え
ばタングステン線を電解研磨して支持部(4C)と加熱
ヒータ部(4d)を形成し、さらに加熱ヒータ部(4d
)の先端に再度電解研壱による針状加工を施して先端部
(4e)e製作する。
Note that parts having the same functions as those in FIG. 4 are given the same symbols, and explanations thereof will be omitted. In the figure, the needle member 1 is a reservoir (1
) and the reservoir (1).
) located at the bottom of the heater part (4d), which has a sufficiently smaller diameter than the support part (4C), and a needle-shaped tip part (
4e). This needle-shaped member is made by electrolytically polishing a tungsten wire, for example, to form a support part (4C) and a heater part (4d), and further a heater part (4d).
) is again processed into a needle shape by electrolytic polishing to produce the tip (4e)e.

支持部(4c)および加熱し−タ部(4d)を被覆する
ヒータ絶縁体(5a)は例えばアルミナを溶着するなど
して形成されている。
The heater insulator (5a) covering the support part (4c) and the heater part (4d) is formed by welding alumina, for example.

上記のように構成した本発明の詳細な説明すれば次の通
りである。第4図に説明した従来の液体金属イオン源の
場合と同様に、本発明においても加熱電源(1)’に投
入すると加熱電流は針状部材(41からリザーバ(1)
底部に溜まった原料金属(3)を介してリザーバ(1)
へ流れるが、この通電経路において、針状部材−の加熱
ヒータ部(4d)の断面積が小さいためにこの部分の電
気抵抗は高くなる。したがって針状部材00の支持部(
4C)やリザーバ(1)での発熱量は小さく、加熱電源
叫から供給される電力の大半は加熱ヒータ部(4d)で
鳩エネルギーに変換される。第1図に示した本実施例に
係る液体金属イオン源を第4図に示した従来の液体金属
イオン源と比較すると、同量の加熱電力を投入するとき
は前者(第1図)の方が後者(第4図)に比べてリザー
バ(1)の下部における発熱エネルギー密度が高いので
針状部材−の先端部(4e)の近傍はより高温となり、
加熱効率が向上する。
A detailed explanation of the present invention configured as above is as follows. As in the case of the conventional liquid metal ion source explained in FIG.
Reservoir (1) via raw metal (3) accumulated at the bottom
However, in this energization path, the cross-sectional area of the heater portion (4d) of the needle-like member is small, so the electrical resistance of this portion becomes high. Therefore, the support portion of the needle member 00 (
4C) and the reservoir (1) are small, and most of the power supplied from the heating power source is converted into pigeon energy in the heater section (4d). Comparing the liquid metal ion source according to this embodiment shown in Fig. 1 with the conventional liquid metal ion source shown in Fig. 4, the former (Fig. 1) is better when the same amount of heating power is input. Compared to the latter (Fig. 4), the heat generation energy density in the lower part of the reservoir (1) is higher, so the temperature near the tip (4e) of the needle-like member becomes higher.
Heating efficiency is improved.

なお上記の説明では、加熱YL流路である針状部材t4
tiの一部の断面積を小さくしてその部分の電気抵抗を
高くする場合を示したが、その部分の通電路程を長くす
ることや、比抵抗の高い材質全使用することによっても
高低抗化を実親、することができる。例えば、第2図に
示すように針状部材(401))のうちリザーバ(1)
内の下部に位f、りする部分を螺旋状(4f)に巻いて
通電路程を長くするようにしてもよい。あるいは第3図
に示すように、針状部材(40b)のうちリザーバ(1
)内の上部に位置する部分(4c)を導電性のよい材料
で形成し、先端(all(4e)’に比較的比抵抗の高
い材料で形成して、両者を例えばタンタル製の圧着用チ
ューブ12Gを介して接続矢印■の部分で圧着してもよ
い。材質は共に高融点材を用い、導電性のよい材質とし
ては例えばモリブデンなど、比抵抗の高い材質としては
例えば炭化チタンなどが使用できる。以上の説明から明
らかなように、第2図あるいは、π3図に示すような針
状部材(40a)、(40b)を用いても主たる発熱部
分をリザーバ(1)内の下部に偏在させることができる
ので、ともに所期の目的全達成することが出来る。
Note that in the above explanation, the needle member t4, which is the heating YL flow path,
Although we have shown a case where the cross-sectional area of a part of ti is reduced to increase the electrical resistance of that part, it is also possible to increase the resistance by increasing the current conduction path in that part or by using all materials with high specific resistance. The biological parents, can. For example, as shown in FIG. 2, the reservoir (1) of the needle-like member (401)
The lower part of the inner part may be wound spirally (4f) to lengthen the current-carrying path. Alternatively, as shown in FIG. 3, the reservoir (1
) is made of a material with good conductivity, the tip (all (4e)' is made of a material with relatively high resistivity, and both are connected to a crimping tube made of tantalum, for example). 12G may be used for crimping at the connection arrow ■.Both materials are high melting point materials, such as molybdenum as a material with good conductivity, and titanium carbide as a material with high resistivity. As is clear from the above explanation, even if the needle-like members (40a) and (40b) as shown in FIG. Therefore, together we can achieve all the intended objectives.

また以上の説明においては、各構成要素の材質としてガ
リウム、タンタル、タングステン、モリブデン、炭化チ
タン、アルミナなどヲ挙げたが、適宜他の材質を使用し
てもよく、また形状や寸法についても上記実施例に限定
されないことはいうまでもない。
In addition, in the above explanation, gallium, tantalum, tungsten, molybdenum, titanium carbide, alumina, etc. have been mentioned as materials for each component, but other materials may be used as appropriate, and the shape and dimensions may also be the same as described above. Needless to say, the invention is not limited to this example.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、リザ
ーバ内に設けられた加熱ヒータ部のうち主たる発@Fr
A3分がリザーバ内の下部に偏在するように[7たので
、小さな加M’/l’5力でも針状部材の先端部近傍の
原料金、乾)を効甲よく加熱できるという顕著な効果が
ある。
As is clear from the above description, according to the present invention, the main generator @Fr of the heater section provided in the reservoir
Since A3 is unevenly distributed in the lower part of the reservoir [7], it has the remarkable effect that even a small applied force M'/l'5 can effectively heat the raw material near the tip of the needle-like member. There is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例をオす縦断面図、第2し1、第
5図はそれぞれ本発明のイl」の実施例の要部全拡大し
た斜視図及び縦断面[4、第4図は従来のイオンビーム
加工’、+I;II’、7の液体?;属イオン源の一例
を示す縦断面図である。 (1)・・・リザーバ、(3)・・・原料金属、(4)
、ム1.(40a)。 (40b)・・・針状部材、(4d)、(1)、(4a
)・・・加熱ヒータ部、(4e)・・・先端部。 なお各図中、同一符号は同−又は相当部分を示すO
FIG. 1 is a vertical sectional view of an embodiment of the present invention, and FIGS. Figure 4 shows conventional ion beam processing ', +I; II', 7 liquid? FIG. 2 is a vertical cross-sectional view showing an example of a genus ion source. (1)...Reservoir, (3)...Raw material metal, (4)
, Mu1. (40a). (40b)...acicular member, (4d), (1), (4a
)...Heating heater part, (4e)...Tip part. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (4)

【特許請求の範囲】[Claims] (1)リザーバ内に配置された加熱ヒータ部を通電する
ことにより前記リザーバ内に貯蔵された原料金属を加熱
し該原料金属を強電界を印加した針状部材の先端部に供
給しイオン化するようにしたイオンビーム加工装置の液
体金属イオン源において、前記加熱ヒータ部のうち前記
リザーバ内の下部に位置する一部分の電気抵抗を高くす
るようにしたことを特徴とするイオンビーム加工装置の
液体金属イオン源。
(1) The raw metal stored in the reservoir is heated by energizing a heater section disposed in the reservoir, and the raw metal is supplied to the tip of the needle-like member to which a strong electric field is applied to ionize it. A liquid metal ion source for an ion beam processing apparatus according to the present invention, wherein the electric resistance of a portion of the heater section located at a lower part of the reservoir is increased. source.
(2)加熱ヒータ部のうちリザーバ内の下部に位置する
一部分の断面積を小さくしたことを特徴とする特許請求
の範囲第(1)項記載のイオンビーム加工装置の液体金
属イオン源。
(2) A liquid metal ion source for an ion beam processing apparatus according to claim (1), characterized in that the cross-sectional area of a portion of the heater portion located at a lower portion within the reservoir is reduced.
(3)加熱ヒータ部のうちリザーバ内の下部に位置する
一部分を螺旋状に巻いたことを特徴とする特許請求の範
囲第(1)項に記載のイオンビーム加工装置の液体金属
イオン源。
(3) A liquid metal ion source for an ion beam processing apparatus according to claim (1), characterized in that a portion of the heater section located at the lower part of the reservoir is spirally wound.
(4)加熱ヒータ部のうちリザーバ内の下部に位置する
一部分を比抵抗の高い材質で構成したことを特徴とする
特許請求の範囲第(1)項に記載のイオンビーム加工装
置の液体金属イオン源。
(4) Liquid metal ions of the ion beam processing apparatus according to claim (1), characterized in that a portion of the heater section located at the lower part of the reservoir is made of a material with high specific resistance. source.
JP1690786A 1986-01-30 1986-01-30 Liquid metal ion source for ion beam processing device Pending JPS62176030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1690786A JPS62176030A (en) 1986-01-30 1986-01-30 Liquid metal ion source for ion beam processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1690786A JPS62176030A (en) 1986-01-30 1986-01-30 Liquid metal ion source for ion beam processing device

Publications (1)

Publication Number Publication Date
JPS62176030A true JPS62176030A (en) 1987-08-01

Family

ID=11929206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1690786A Pending JPS62176030A (en) 1986-01-30 1986-01-30 Liquid metal ion source for ion beam processing device

Country Status (1)

Country Link
JP (1) JPS62176030A (en)

Similar Documents

Publication Publication Date Title
KR100916404B1 (en) X-ray generator
JPS5838906B2 (en) metal ion source
JPS62176030A (en) Liquid metal ion source for ion beam processing device
JPH10506497A (en) Liquid metal ion source
US4755683A (en) Liquid-metal ion beam source substructure
GB2296371A (en) Cathode arrangements utilizing diamond as an insulator
JPS63170833A (en) Liquid metal ion source
JPS62206744A (en) Ion source unit
JPH027499B2 (en)
JPH0136664B2 (en)
JPS62206745A (en) Ion source unit
JPS63146327A (en) Liquid metal ion source
JP2718463B2 (en) Holding current supply device for titanium evaporation source
JPH1064438A (en) Liquid metallic ion source
JPH01116066A (en) Vacuum deposition device
JPS5838905B2 (en) metal ion source
JPS6329373B2 (en)
JPH07169422A (en) X-ray tube
JPH01183046A (en) Thermion cathode type electron gun
JPS63210592A (en) Crucible for electron-beam melting
JPH02247951A (en) Electric field-discharge type ion source
JPS62290042A (en) Liquid metal ion source
JPS61232541A (en) Ion source apparatus
JPS6338813B2 (en)
JPS63198236A (en) Liquid metal ion source