JPS62174693A - Method of measuring output from nuclear reactor - Google Patents

Method of measuring output from nuclear reactor

Info

Publication number
JPS62174693A
JPS62174693A JP61015883A JP1588386A JPS62174693A JP S62174693 A JPS62174693 A JP S62174693A JP 61015883 A JP61015883 A JP 61015883A JP 1588386 A JP1588386 A JP 1588386A JP S62174693 A JPS62174693 A JP S62174693A
Authority
JP
Japan
Prior art keywords
reactor
core
power distribution
detector
detectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61015883A
Other languages
Japanese (ja)
Other versions
JPH0458916B2 (en
Inventor
稔 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61015883A priority Critical patent/JPS62174693A/en
Priority to DE19873701457 priority patent/DE3701457A1/en
Priority to FR878700997A priority patent/FR2597252B1/en
Publication of JPS62174693A publication Critical patent/JPS62174693A/en
Priority to US07/821,871 priority patent/US5185121A/en
Publication of JPH0458916B2 publication Critical patent/JPH0458916B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T3/00Measuring neutron radiation
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/10Structural combination of fuel element, control rod, reactor core, or moderator structure with sensitive instruments, e.g. for measuring radioactivity, strain
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、原子炉出力測定方法lと関し、さらlこ詳
しくいうと、中性子検出器を用いて、原子炉炉心内の出
力分布を測定するための原子炉出力測定方法に関するも
のである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for measuring nuclear reactor power, and more specifically, a method for measuring power distribution in a nuclear reactor core using a neutron detector. This article relates to a method for measuring nuclear reactor output.

C従来の技術〕 原子炉の炉心内出方分布は原子炉を運転する上で重要な
情報であり、従来からこれを測定するいくつかの方法が
試みられている。その一つは原子炉内に多数の定置形の
小形中性子検出器を設置する方法である。この方法では
、検出器の故障時の交換が困難なので、長期間安定に動
作する検出器を必要とするが、そのような検出器を製作
することはきわめて困難であった。第2の方法として、
小数の小形中性子検出器を、原子炉内に設けた多数の検
出器挿入孔(こ順次に挿入し、走査しながら炉出力分布
を測定する方法がある。この方法では原子炉全体の炉出
力分布を測定するのに時間ががかり、炉出力分布が短時
間で変化する場合に追従で音ないという欠点があった。
C. Prior Art] The distribution in the core of a nuclear reactor is important information for operating a nuclear reactor, and several methods have been tried to measure this. One method is to install a large number of stationary small neutron detectors inside the reactor. This method requires a detector that operates stably for a long period of time since it is difficult to replace the detector when it breaks down, but it has been extremely difficult to manufacture such a detector. As a second method,
There is a method in which a small number of small neutron detectors are inserted into a number of detector insertion holes (sequentially) in the reactor and the reactor power distribution is measured while scanning. It takes a long time to measure, and there is a drawback that there is no sound when the furnace power distribution changes in a short period of time.

第3の方法として、加圧水膨軽水炉(PWR)の炉出力
測定用として従来から使廟されている炉外設置形の中性
子計測装置の検出器を軸方向に分割して多数の短尺検出
器とし、各検出器からの出力信号を用いて計算によって
炉出力分布を求める方法がある。
As a third method, the detector of an external neutron measuring device, which has been used conventionally for measuring the reactor power of a pressurized water expansion light water reactor (PWR), is divided in the axial direction into a number of short detectors. There is a method of calculating the reactor power distribution using output signals from each detector.

上記の第3の方法について、以下に第2図を用いて説明
する。図において、(100)はPWR形原子炉の炉心
、(101)〜(104)は軸方向に分割した原子炉炉
心の各部分、(210)(220)(230)(240
)はそれぞれ中性子検出器、(241)〜(214) 
、 (221)〜(214)。
The third method described above will be explained below using FIG. 2. In the figure, (100) is the core of a PWR type reactor, (101) to (104) are each part of the reactor core divided in the axial direction, (210) (220) (230) (240)
) are neutron detectors, (241) to (214) respectively.
, (221)-(214).

(231)〜(234)および(241)〜(244)
はそれぞれ中性子検出器(210)(220)(250
)および(240)の分割された部分検出器を示す。
(231) to (234) and (241) to (244)
are neutron detectors (210), (220), and (250), respectively.
) and (240) are shown.

原子炉炉心内には、図示していないが、前記の第2の方
法として説明した走査形の炉心内中性子検出器が設けら
れており、原子炉の炉心内出力分布f(x、y、z)が
求められる。第2図に示す装置は、この炉出力分布f 
(X、7.Z)の!7平面(水平面)に関する平均値f
(z)(上下方向の出力分布)を求めるものである。
Although not shown in the reactor core, the scanning type in-core neutron detector explained as the second method is installed, and the in-core power distribution f(x, y, z ) is required. The device shown in Fig. 2 has this furnace power distribution f
(X, 7.Z)! Average value f for 7 planes (horizontal plane)
(z) (output distribution in the vertical direction) is determined.

(Szア:炉心の水平方向断面積) ここで、f(z)はフーリエ級数の和として次のように
表わすことができる。
(Sza: Horizontal cross-sectional area of core) Here, f(z) can be expressed as a sum of Fourier series as follows.

(2菖:炉心の高さ) ただし、炉出力分布の一般的な形状が炉心上下端で減少
する形となるので、0〜πを変域とするサイン系列で表
わしている。係数01は軸方向出力分布f(z)から求
められるが、f (z)からC1を求める関係式はいわ
ゆるフーリエ級数展開であり、次式で表わされる。
(2 iris: height of the core) However, since the general shape of the reactor power distribution is such that it decreases at the upper and lower ends of the core, it is expressed as a sine series with a range of 0 to π. The coefficient 01 is obtained from the axial output distribution f(z), and the relational expression for obtaining C1 from f(z) is a so-called Fourier series expansion, and is expressed by the following equation.

ここで、この装置では各部分検出器(211”)〜(2
14)等の出力信号値から上記の係数を決定することが
必要となるので、式(3)の代りに次式を用いると都合
がよい。
Here, in this device, each partial detector (211'') to (2
Since it is necessary to determine the above coefficients from the output signal values such as 14), it is convenient to use the following equation instead of equation (3).

(Ct) = (Atj)(f、1)       ・
・・・・・・(4)ここに 〔Aij〕は定係数行列であり、式(2)を区間1毎に
積分した結果を解いて得られる。fjはf (z)を原
子炉部分(101)〜(104)の各々につきz軸方向
に積分したものであるが、部分検出器(211)〜(2
14)等の出力とは次式の関係にある。
(Ct) = (Atj) (f, 1) ・
(4) Here, [Aij] is a constant coefficient matrix, which is obtained by solving the result of integrating equation (2) for each interval. fj is the integral of f (z) in the z-axis direction for each of the reactor sections (101) to (104), but
14) etc., there is a relationship as shown in the following equation.

(Dk) = (Q+c5 ) Cf、1 )    
  ・・・・・・・(5)ここでDkは、部分検出器(
211)(221)(231)(241)の平均につい
てDl、(21?)(222)(232)(242)の
平均についてD2 C以下同様)のように定義する。
(Dk) = (Q+c5) Cf, 1)
(5) Here, Dk is the partial detector (
Define Dl for the average of 211)(221)(231)(241), and D2 for the average of (21?)(222)(232)(242).

(Qk4 )は炉心各部の出力が各部分検出器に与える
寄与の比率を係数とした定係数行列である。
(Qk4) is a constant coefficient matrix whose coefficient is the ratio of the contribution of the output of each part of the core to each partial detector.

式(4)と式(5)からフーリエ係数01が次のように
求められる。
Fourier coefficient 01 is obtained from equations (4) and (5) as follows.

CO1〕= (Aij)(Qk5)  (Dc)   
・・・・・(6)さらに式(2)によって炉心軸方向出
力分布f (z)が求められる。
CO1] = (Aij) (Qk5) (Dc)
...(6) Furthermore, the core axial power distribution f (z) is determined by equation (2).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のような従来の原子炉出力測定方法では、式(5)
の定係数行列(’L+cj、1を決定するためには炉出
力分布の異った状態に対して検出器出力〔Dk〕と原子
炉部分出力積分値fjの組を多数用意する必要がある。
In the conventional reactor power measurement method as described above, Equation (5)
In order to determine the constant coefficient matrix ('L+cj, 1), it is necessary to prepare many pairs of detector output [Dk] and reactor partial power integral value fj for different states of the reactor power distribution.

この組の数は、少なくとも部分検出器の分割数(第2図
では4)以上でなければならない。また、各組の炉出力
分布は十分に異ったものでなければ、行列(’Qcj)
の算出が困難となるなどの問題点があった。
The number of these sets must be at least equal to or greater than the number of divisions of the partial detector (4 in FIG. 2). In addition, unless the reactor power distributions of each set are sufficiently different, the matrix ('Qcj)
There were problems such as difficulty in calculating .

この発明はかような問題点を解消しようとするもので、
変換行列(Qkj)の決定を容易にし、炉出力分布演算
の精度を向上し、かつ、炉出力分布情報の詳細化を行う
ことができる原子炉出力測定方法を得ることを目的とす
る。
This invention attempts to solve these problems,
It is an object of the present invention to obtain a reactor power measurement method that facilitates the determination of a transformation matrix (Qkj), improves the accuracy of reactor power distribution calculation, and allows detailed reactor power distribution information.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る原子炉出力測定方法は、変換行列(Qk
j)を求める際にfjと〔Dk〕との対応を求めること
をせず、fjの代りに各中性子検出器それぞれの正面に
位置する方位角の区画内の炉心内情報のみを変換行列の
作成に利用する。
The reactor power measurement method according to the present invention includes a transformation matrix (Qk
When calculating j), instead of calculating the correspondence between fj and [Dk], instead of fj, only the in-core information in the azimuth angle section located in front of each neutron detector is used to create a conversion matrix. Use it for.

〔作 用〕[For production]

この発明においては、変換行列(Qcj)を求めるため
のデータの組が有する相互相関が高くなり、(Q+cj
)の算出が容易となる。また、中性子検出器それぞれに
対向する方位角領域毎の軸方向炉出力分布が求められる
ので、炉出力分布情報が詳細化できる。
In this invention, the cross-correlation of the data set for determining the transformation matrix (Qcj) becomes high, and (Q+cj
) becomes easy to calculate. Furthermore, since the axial reactor power distribution is determined for each azimuth region facing each neutron detector, the reactor power distribution information can be detailed.

〔実施例〕〔Example〕

以下、この発明の一実施例を第1図を参照して説明する
。ここで、第2図に示す従来技術によるものと異る点は
、原子炉炉心を方位角方向に分割し、それぞれ(111
)〜(114) 、 (121)〜(124)、・・・
・・・のように16個の炉心部分に分割して解析を行う
点である。解析手順の違いは、式(5)において、変換
行列(Qk6)を求める場合に、原子炉部分出力積分値
で、の代りに各検出器の正面に対向する1/4方位角部
分に関する原子炉部分出力積分値を用いる点である。す
なわち、4つの検出器(210) (220)(230
)(240)をそれぞれり、〜D4で表わし、それぞれ
の部分検出器出力をD+k””4にで表わし、炉心部分
(111’)〜(114)の部分出力積分値をf75、
炉心部分(121)〜(124)につきf2.のようl
こ表わし、式(5)を下記の4つの式に分解する。
An embodiment of the present invention will be described below with reference to FIG. Here, the difference from the prior art shown in FIG. 2 is that the reactor core is divided in the azimuth direction, and each (111
)~(114), (121)~(124),...
The point is that the analysis is performed by dividing the reactor core into 16 core parts. The difference in the analysis procedure is that in formula (5), when calculating the transformation matrix (Qk6), the reactor partial power integral value is used instead of the reactor partial power integral value for the 1/4 azimuth angle portion facing the front of each detector. The point is to use partial output integral values. That is, four detectors (210) (220) (230
) (240) are respectively represented by ~D4, each partial detector output is represented by D+k""4, and the partial power integral value of the core portions (111') to (114) is represented by f75,
f2. for core portions (121) to (124). Like l
Therefore, equation (5) is decomposed into the following four equations.

CDtk〕=(Q+kj) (f+j’)   ・・・
・・(5−1)(Dzk) = (Qzkj) (f2
j )   ・・・・・(s−2)(Ds+c) = 
(Qsk、1)Cfaj)   ・−・(5−3)〔D
4k)″(Q4kj) Cf4j)   …・・(5−
4)式(S−1)〜(5−4)のそれぞれにつき4つの
変換行列(’Lr5B)〜(Q4kj)を求め、それぞ
れ式(6)に代入して得られるC1を011〜c4iと
する。Cji〜C41のそれぞれを式(2)に代入して
得られる炉出力分布は、各検出器(210)〜(240
)の正面に対向する1/4方位角炉心部分それぞれの軸
方向炉出力分布である。これ等をf、(z)〜f4(z
)とすればf(z)は次式で求められ、形態的には従来
技術と同様の最終結果f (Z)が得られる。
CDtk]=(Q+kj) (f+j')...
...(5-1)(Dzk) = (Qzkj) (f2
j ) ...(s-2)(Ds+c) =
(Qsk, 1) Cfaj) ・-・(5-3) [D
4k)''(Q4kj) Cf4j)...(5-
4) Find four transformation matrices ('Lr5B) to (Q4kj) for each of formulas (S-1) to (5-4), and substitute them into formula (6) to obtain C1 as 011 to c4i. . The reactor power distribution obtained by substituting each of Cji to C41 into equation (2) is given by each detector (210) to (240).
) is the axial reactor power distribution for each of the 1/4 azimuth angle core sections facing the front. These are expressed as f, (z) ~ f4 (z
), then f(z) is obtained by the following equation, and the final result f(Z) is obtained which is morphologically similar to that of the prior art.

次に前記のように解析手順を変更したことによる利点に
ついて説明する。従来技術において、炉出力分布の演算
精度を決定するものは式(5)の変換行列(Qcj)の
数値精度であり、限られた測定ケースにもとづく〔Dk
〕と〔f、〕の組からCQ+g)を高精度で求めること
1こ困難の原因があった。ここで原子炉炉心の各部分の
出力と特定の部分検出器の出力信号値との関係を考える
と、水平面方向には検出器の近傍の炉心部分の出力との
相関が高く、水平方向に離れるに従って相関は急激に低
下する。
Next, the advantages of changing the analysis procedure as described above will be explained. In the conventional technology, what determines the calculation accuracy of the reactor power distribution is the numerical accuracy of the conversion matrix (Qcj) in equation (5), and it is based on limited measurement cases [Dk
There is one reason why it is difficult to obtain CQ+g) from the set of ] and [f, ] with high precision. Considering the relationship between the output of each part of the reactor core and the output signal value of a specific partial detector, in the horizontal direction there is a high correlation with the output of the core part near the detector, and in the horizontal direction it is far away. The correlation decreases rapidly.

特に熱中性子炉にあっては中性子の平均自由行程が短い
ので、この傾向が著るしい。したがって、式(5)のよ
うに検出器出力および炉心出力ともに水平面内の平均値
同志を比べると距離の遠い炉心部分からの寄与を含んだ
ものを比べることになり、相関が低い。これに対してこ
の発明による計算手順によれば、式(5)の代りに式(
s−+)〜(5−4)であられされる検出器に接近した
炉心部分の出力のみを取扱うため、各式において〔D1
k〕と〔fg)。
This tendency is particularly noticeable in thermal neutron reactors because the mean free path of neutrons is short. Therefore, when comparing the average values of both the detector output and the core output in the horizontal plane as in equation (5), the comparison includes contributions from the core portions that are far away, and the correlation is low. On the other hand, according to the calculation procedure according to the present invention, formula (5) is replaced by formula (
In each equation, [D1
k] and [fg).

(1=1〜4)との相関が高く、変換行列(Qzkj)
を求める計算が容易となり、精度が向上する。また、式
(7)により従来の方法と同一の結果を得られるだけで
なく、4つの方位角のそれぞれについての軸方向炉出力
分布f2(z)(J、=1〜4)が中間結果として得ら
れ、従来の方法よりも詳細な炉出力分布が得られる。
(1=1 to 4), and the transformation matrix (Qzkj)
It becomes easier to calculate and improve accuracy. Moreover, not only can the same results as the conventional method be obtained using equation (7), but also the axial furnace power distribution f2(z) (J, = 1 to 4) for each of the four azimuth angles can be obtained as an intermediate result. This results in a more detailed furnace power distribution than conventional methods.

なお、上記実施例の説明においては、炉出力分布を表現
するのに式(2)のフーリエ級数による表現を用いたが
、展開に用い得る級数系列はフーリエ級数に限らない。
In addition, in the description of the above embodiment, expression using the Fourier series of equation (2) was used to express the reactor power distribution, but the series series that can be used for expansion is not limited to the Fourier series.

エルミート多項式等の他の直交函数系列も有効に利用で
きる。
Other orthogonal function sequences such as Hermitian polynomials can also be effectively used.

〔発明の効果〕〔Effect of the invention〕

この発明は、以上の説明から明らかなように、炉出力分
布演算に用いる変換行列を求める場合に、炉心水平面内
平均値の代りに、検出器に接近した分割方位角部分のみ
の平均値を用いたので、検出器出力と炉出力分布との相
関が改善され、変換行列の算出が容易となり、clil
定精度が向上する。また、中間結果として各方位角毎の
軸方向炉出力分布が得られるので、炉出力分布がより詳
細にわかるという効果もある。
As is clear from the above description, this invention uses the average value of only the divided azimuth angle portion close to the detector, instead of the average value in the core horizontal plane, when calculating the transformation matrix used for reactor power distribution calculation. As a result, the correlation between the detector output and the reactor output distribution has been improved, and the calculation of the transformation matrix has become easier.
Improved accuracy. Furthermore, since the axial furnace power distribution for each azimuth angle is obtained as an intermediate result, there is also the effect that the furnace power distribution can be understood in more detail.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を説明するための検出器お
よび原子炉炉心の配置を示す斜視図、第2図は従来の原
子炉出力測定方法を説明するための検出器および原子炉
炉心の配置を示す斜視図である。 (111)〜(114) 、・・・・・(141)〜(
144)・Φ原子炉炉心(100)を分割した各炉心部
分、(210) (220)(230)(240)・・
中性子検出器、(211)〜(214) 。 ・・・・・(241)〜(244)・・部分検出器。 なお、各図中、同一符号は同−又は相当部分を示す。
FIG. 1 is a perspective view showing the arrangement of a detector and a reactor core for explaining an embodiment of the present invention, and FIG. 2 is a perspective view of a detector and a reactor core for explaining a conventional reactor power measurement method. It is a perspective view showing arrangement of. (111) ~ (114) , ... (141) ~ (
144)・ΦReactor core parts into which the reactor core (100) is divided, (210) (220) (230) (240)...
Neutron detector, (211)-(214). ...(241) to (244)...partial detectors. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 原子炉の周囲に鉛直方向に等方位角毎に複数個の中性子
検出器を配置し、これらの中性子検出器は前記原子炉の
炉心の高さにほぼ等しい長さを有し、かつ、内部に互い
に等しい長さに分割された複数個の部分検出器をそれぞ
れ内蔵し、これらの部分検出器の出力信号を用いて前記
炉心内の鉛直軸方向の出力分布を算出する原子炉出力測
定方法において、 前記炉心を前記中性子検出器に対向する方位角毎に扇形
柱体状に分割し、各前記中性子検出器に含まれる前記部
分検出器の出力信号はそれぞれの前記中性子検出器に対
向する炉心方位角部分の鉛直軸方向炉出力分布の算出に
使用され、前記各方位角部分の鉛直軸方向分布を前記方
位角に関して平均し、前記原子炉の鉛直軸方向炉出力分
布を算出することを特徴とする原子炉出力測定方法。
[Scope of Claims] A plurality of neutron detectors are arranged at equal azimuth angles in the vertical direction around the reactor, and these neutron detectors have a length approximately equal to the height of the core of the reactor. and each has a built-in plurality of partial detectors divided into equal lengths, and uses the output signals of these partial detectors to calculate the power distribution in the vertical axis direction within the reactor core. In the reactor power measurement method, the reactor core is divided into fan-shaped columns for each azimuth facing the neutron detector, and the output signal of the partial detector included in each of the neutron detectors is transmitted to each of the neutron detectors. is used to calculate the vertical axial reactor power distribution of the core azimuth angle portion facing the reactor, and the vertical axial distribution of the respective azimuth angle portions is averaged with respect to the azimuth angle to calculate the vertical axial reactor power distribution of the reactor. A nuclear reactor power measurement method characterized by:
JP61015883A 1986-01-29 1986-01-29 Method of measuring output from nuclear reactor Granted JPS62174693A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61015883A JPS62174693A (en) 1986-01-29 1986-01-29 Method of measuring output from nuclear reactor
DE19873701457 DE3701457A1 (en) 1986-01-29 1987-01-20 METHOD FOR MEASURING REACTOR PERFORMANCE
FR878700997A FR2597252B1 (en) 1986-01-29 1987-01-28 METHOD FOR MEASURING THE POWER OF A REACTOR
US07/821,871 US5185121A (en) 1986-01-29 1992-01-16 Reactor power measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61015883A JPS62174693A (en) 1986-01-29 1986-01-29 Method of measuring output from nuclear reactor

Publications (2)

Publication Number Publication Date
JPS62174693A true JPS62174693A (en) 1987-07-31
JPH0458916B2 JPH0458916B2 (en) 1992-09-18

Family

ID=11901188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61015883A Granted JPS62174693A (en) 1986-01-29 1986-01-29 Method of measuring output from nuclear reactor

Country Status (3)

Country Link
JP (1) JPS62174693A (en)
DE (1) DE3701457A1 (en)
FR (1) FR2597252B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175692A (en) * 2007-01-18 2008-07-31 Nuclear Fuel Ind Ltd Measuring method of axial power distribution of core

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07119827B2 (en) * 1987-12-25 1995-12-20 三菱電機株式会社 Measuring device of reactor power distribution

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2346725A1 (en) * 1973-09-17 1975-03-27 Siemens Ag NUCLEAR REACTOR
DE2515712A1 (en) * 1975-04-10 1976-10-21 Kraftwerk Union Ag NUCLEAR REACTOR
US4079236A (en) * 1976-03-05 1978-03-14 Westinghouse Electric Corporation Method and apparatus for monitoring the axial power distribution within the core of a nuclear reactor, exterior of the reactor
FR2546330B1 (en) * 1983-05-19 1985-08-23 Framatome Sa METHOD FOR DETECTING FAULTS IN THE CORE POWER DISTRIBUTION OF A PRESSURE WATER NUCLEAR REACTOR AND DEVICE FOR CARRYING OUT SAID METHOD

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175692A (en) * 2007-01-18 2008-07-31 Nuclear Fuel Ind Ltd Measuring method of axial power distribution of core

Also Published As

Publication number Publication date
DE3701457A1 (en) 1987-07-30
FR2597252A1 (en) 1987-10-16
FR2597252B1 (en) 1992-01-10
JPH0458916B2 (en) 1992-09-18

Similar Documents

Publication Publication Date Title
US4839134A (en) Continuous, online nuclear power distribution synthesis system and method
Dewey et al. Fundamental physics using ultrahigh resolution gamma spectroscopy
US6400786B1 (en) Process and device for monitoring at least one operating parameter of the core of a nuclear reactor
Wagdy et al. Errors in sampled data phase measurement
CN108986939A (en) Method for verifying nuclear reactor power range power coefficient Gk calibration value
US4990302A (en) Apparatus for measuring nuclear reactor power distribution
JP5745850B2 (en) A method for establishing mixed in-core mapping and its application to the calibration of fixed instrumentation
JPS62174693A (en) Method of measuring output from nuclear reactor
Garis et al. Determination of PWR control rod position by core physics and neural network methods
CN115826070B (en) Method for determining mining value position in white-sentry-type uranium ore to be detected by using core logger
CN110749919A (en) Method and device for calibrating nuclear reactor out-of-pile detector
US5185121A (en) Reactor power measuring method
Kiss et al. Effect of uncompensated SPN detector cables on neutron noise signals measured in VVER-440 reactors
Pázsit et al. Ringhals Diagnostics and Monitoring, Annual Research Report 2019-20
Lundberg et al. Core supervision methods and future improvements of the core master/presto system at KKB
Webb et al. Comparison of CECOR algorithm to Lagrange multiplier method to estimate reactor power distributions
Lindahl Adaption of core simulations to detector readings
Hantouche Comparative study of measurements by means of gamma thermometer strings with fission chamber measurements
JPS5827096A (en) Method of estimating position of local power range monitor
Gorski et al. Experience with fixed in-core detectors at Seabrook Station
Lewis et al. Inverse kinetics technique for reactor shutdown measurement: an experimental assessment.[AGR]
Bluhm et al. CABRI hodoscope
Losel et al. Control of Btatron Oscillations in a Cyclotron by Use of an On-Line Computer
Rihet et al. Elastic proton scattering from 11 B and T= 1 states in 12 C
Mihalczo et al. Reactivity from power spectral density measurements with/sup 252/Cf.[LMFBR]

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees