JPS62174589A - Device for controlling volume of screw type compressor - Google Patents

Device for controlling volume of screw type compressor

Info

Publication number
JPS62174589A
JPS62174589A JP1765086A JP1765086A JPS62174589A JP S62174589 A JPS62174589 A JP S62174589A JP 1765086 A JP1765086 A JP 1765086A JP 1765086 A JP1765086 A JP 1765086A JP S62174589 A JPS62174589 A JP S62174589A
Authority
JP
Japan
Prior art keywords
casing
type compressor
screw type
fluid
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1765086A
Other languages
Japanese (ja)
Inventor
Hironori Nakai
裕教 中井
Keizo Katori
香取 敬三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP1765086A priority Critical patent/JPS62174589A/en
Publication of JPS62174589A publication Critical patent/JPS62174589A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To miniaturize a variable volume screw type compressor by forming a cut-off port toward a suction side on the end face of a discharge side casing, and setting the installing direction of a control valve for opening and closing said cut-off port, in such a way that its valve shaft is perpendicular to a rotor shaft. CONSTITUTION:Flow-in passages 33a, 33b for allowing a gas in a operating chamber formed in a rotary casing 20 to escape to a suction side are formed in a bearing head casing 23 positioned on the discharge side of a screw type compressor. And, a control valve mechanism 32b for opening and closing said flow-in passages 33a, 33b is provided in the bearing head casing 23, and is set in such a way that its valve shaft is directed perpendicularly to the shaft of a rotor 22. The control valve mechanism 32b merely has to open and close the flow-in valves 33a, 33b and can be formed in a small shape, enabling the whole variable volume screw type compressor to be miniaturized.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はスクリュー式圧縮1大の容量制御装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a capacity control device for a large screw type compression unit.

(従来の技術) 従来酋通に使用されている容積型のツインスクリュー式
圧縮機の容9制御装置を第6図及び第7図により説明す
る。図面において、1はロータケーシング、2はサクシ
ョンケーシング、3はベアリングヘッドケーシング、4
は圧縮室、5は吸入室、6は吐出室、7はスライド弁、
8はブツシュロッド、9はピストン、10はシリンダー
、11はカバー、12は間口、13は吸入側へ連通ずる
バイパス室、14はピストン9、シリンダー10及びサ
クションケーシング2で囲まれた室、15はカバー11
、ピストン9及びシリンダー10で囲まれた室である。
(Prior Art) A displacement control device for a positive displacement twin-screw compressor conventionally used in a compressor will be explained with reference to FIGS. 6 and 7. In the drawings, 1 is a rotor casing, 2 is a suction casing, 3 is a bearing head casing, and 4 is a rotor casing.
is a compression chamber, 5 is a suction chamber, 6 is a discharge chamber, 7 is a slide valve,
8 is a bushing rod, 9 is a piston, 10 is a cylinder, 11 is a cover, 12 is a frontage, 13 is a bypass chamber communicating with the suction side, 14 is a chamber surrounded by the piston 9, cylinder 10 and suction casing 2, 15 is a cover 11
, a chamber surrounded by a piston 9 and a cylinder 10.

第6図は間口12がスライド弁7により開鎖されており
、容量100%の状態を示している。この状態から容品
を制御していく場合は、室15に接続孔16から圧力流
体を導入作用させ、同時に室14の圧力を接続孔17に
よって解放づる。これにより、ピストン9はその前後面
に動く圧力の差によって左く図面上)に移動し、ブツシ
ュロッド8を介してスライド弁7を左に移動し、第7図
の状態とする。したがって、圧縮室4は間口12、バイ
パス室13を介して吸入側へ連通し、圧縮室4内の流体
の一部は開口12から吸入側へ戻され吐出流体の容量が
減少する。戻された流体は新たに圧縮機に流入する流体
とともに吸入〒5から再び圧縮室4へ吸入される。
FIG. 6 shows a state in which the frontage 12 is opened and closed by the slide valve 7, and the capacity is 100%. When controlling the container from this state, pressure fluid is introduced into the chamber 15 through the connection hole 16, and at the same time, the pressure in the chamber 14 is released through the connection hole 17. As a result, the piston 9 moves to the left (in the drawing) due to the pressure difference between its front and rear surfaces, and the slide valve 7 moves to the left via the bushing rod 8, resulting in the state shown in FIG. Therefore, the compression chamber 4 communicates with the suction side via the opening 12 and the bypass chamber 13, and a portion of the fluid in the compression chamber 4 is returned to the suction side through the opening 12, reducing the volume of the discharged fluid. The returned fluid is sucked into the compression chamber 4 from the suction port 5 together with the fluid newly flowing into the compressor.

容量制御の割合は、吸入側へ戻される流体の吊を制御す
ることによって行なわれる。ずなわら戻される流体の半
は、他の条件を固定したときは、間口12の流れ方向の
投影面積によって決定されるものであり、この面積は開
口12におけるスライド弁7の移動方向長さ、すなわち
行程長さに比例するものである。したがって、容量制御
はスライド弁7の行程長さを制御して行なうことができ
る。
The rate of volume control is achieved by controlling the withdrawal of fluid back to the suction side. When other conditions are fixed, half of the fluid that is returned is determined by the projected area of the opening 12 in the flow direction, and this area is determined by the length of the slide valve 7 in the opening 12 in the moving direction, That is, it is proportional to the stroke length. Therefore, capacity control can be performed by controlling the stroke length of the slide valve 7.

例えば、第7図の状態から容量を増加させるときは、室
14に圧力流体を作用させ、室15の圧力を解放させて
スライド弁7を右に移動させる。逆に容量を減少させる
ときは室15に圧力流体を作用させ室14の圧力を解放
させる。このようにして、開口12の面積を無段階に増
減変化さぜることにより容量制御を無段階に行なうこと
ができる。
For example, when increasing the capacity from the state shown in FIG. 7, pressurized fluid is applied to the chamber 14, the pressure in the chamber 15 is released, and the slide valve 7 is moved to the right. Conversely, when reducing the capacity, pressure fluid is applied to the chamber 15 to release the pressure in the chamber 14. In this way, by steplessly increasing or decreasing the area of the opening 12, the capacity can be controlled steplessly.

ところが、前記従来技術では次のような問題がある。However, the prior art has the following problems.

(づ スライド弁7が前方すなわち該弁が容帛減の方向
に動くときには、吐出側にその行程長さ以上の空間が必
要であり、吐出室6の大きさ従ってそれが形成されるベ
アリングヘッドケーシング3の大ぎさを大きく取って前
記空間の確保をしなければならない。
(D) When the slide valve 7 moves forward, that is, in the direction of volume reduction, a space larger than the stroke length is required on the discharge side, and the size of the discharge chamber 6 and the bearing head casing in which it is formed are required. 3 must be increased in size to ensure the above space.

0 スライド弁7を勅かづピストン9、ブツシュロッド
8などの駆動装置に行程良さに相当する寸法が必要であ
り、同装置の配置に工夫が必要である。
0 The driving devices such as the piston 9 and the bushing rod 8 that operate the slide valve 7 must have dimensions corresponding to the stroke quality, and the arrangement of the devices requires some ingenuity.

Q9  容量制御に関連覆る部品が大qllとtrる。Q9: Parts related to capacity control are large qll.

に) 前記(→、0及びQ)の理由により容量制御1/
3Mの外形寸法の大型化が避けられない。
) Due to the reasons mentioned above (→, 0 and Q), capacity control 1/
An increase in the external dimensions of 3M is unavoidable.

(ト) スライド弁7は容量制御時の効率の面から2木
のロータの交わる位置に置かれな(プればならないので
あるが、この位置ではスライド弁7やロータケーシング
1の加工に色々な工夫が必要となる。
(G) From the standpoint of efficiency during capacity control, the slide valve 7 should not be placed at the intersection of the two rotors, but in this position there are various problems in machining the slide valve 7 and the rotor casing 1. Some ingenuity is required.

(発明が解決しようとする問題点) 前記のように、従来技術による容量制御機構では、機構
の大型化と加工の困九さとが避けられず、加工の困難さ
は製作トの低コスト化を妨げる一方、機構の大型化は装
置の小型化を進める上での大きな障害となっている。本
発明は容量制御機構の構成を従来技術と大きく異ならせ
ることにより、加工が容易でしかし小型に形成できる装
置を提供することを目的とする。
(Problems to be Solved by the Invention) As mentioned above, in the capacity control mechanism according to the conventional technology, it is inevitable that the mechanism becomes large and difficult to process. On the other hand, increasing the size of the mechanism is a major hindrance to progressing with the miniaturization of devices. An object of the present invention is to provide a device that is easy to process and can be formed in a small size by significantly differentiating the configuration of the capacity control mechanism from that of the prior art.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明のスクリュー式圧縮機の容量制御装置Nは、圧縮
室を構成するケーシングのうらで、吐出側におけるケー
シングの端部に、容13制御のために、圧縮室の流体を
吸入側へ逃すための逃し孔を右することと、この逃し孔
を開閉するための制御手段が吐出側におけるケーシング
の端部においてロータ軸に対して直角方向に設けられて
いることにより構成される。
(Means for Solving the Problems) The capacity control device N for a screw compressor of the present invention has a device installed at the end of the casing on the discharge side at the back of the casing constituting the compression chamber for capacity control. A relief hole for releasing fluid from the compression chamber to the suction side, and a control means for opening and closing this relief hole are provided at the end of the casing on the discharge side in a direction perpendicular to the rotor axis. It consists of:

(作用) 逃し孔と連通し流体を吸入側へ戻す流体通路の途中にあ
る制御弁を開にすれば圧縮室に吸入された流体の一部は
吸入側へ流れ吸入容量を減少させることができる。そし
て吐出側におけるケーシングの端面の個所に逃し孔が形
成され、しかもこの逃し孔を開閉する制御手段が吐出側
にJ5けるケーシングの端部の位置においてロータ軸に
対してM角に形成されるので装置の寸法を小さくするこ
とを可能にし、装置の部分組立をも可能にするとともに
加工を容易化できる。
(Function) By opening the control valve located in the middle of the fluid passage that communicates with the relief hole and returns fluid to the suction side, part of the fluid sucked into the compression chamber will flow to the suction side, reducing the suction capacity. . A relief hole is formed at the end of the casing on the discharge side, and a control means for opening and closing this relief hole is formed at an M angle with respect to the rotor axis at the end of the casing on the discharge side. This makes it possible to reduce the size of the device, allow partial assembly of the device, and facilitate processing.

(実施例) 以下、図面に示した実施例に基づいて本発明の詳細な説
明7る。
(Example) Hereinafter, the present invention will be described in detail based on the example shown in the drawings.

第1図及び第2図において、20はロータケーシング、
21.22+、Q77いに1噛合う一対のロータ、23
はベアリングヘッドケーシング、24は吐出側における
ケーシングの端部、25.26は「J−タI袖喘部、2
7、28は軸受、29は吸入?;j、30は吸入側へ戻
されなかった流体の吐出孔、32a 、 32bはそれ
ぞれ制御弁機構、33a 、 33bはそれぞれ吸入側
へ戻される流体の流入通路、37.38はベアリングヘ
ッドケーシング23とロータケーシング20にそれぞれ
設【ノられケーシングの端面においてUいに対向する通
路、36a 、 36bは制御弁機構32a 、 32
bより通路37、38にそれぞれ連絡を行なう流出通路
、39は連絡通路である。第1図、第2図において描か
れている制御弁機構32a 、 32bは第3図、第4
図において評判に示されている。同図において、42は
シリンダー押え、43はシリンダー、44は圧縮バネ、
45はビス1〜ン、35aは流入ボート、34aは流出
ボート、4Gは圧ツノ制御用の接続孔である。
In FIGS. 1 and 2, 20 is a rotor casing;
21.22+, Q77 A pair of rotors that mesh once, 23
24 is the bearing head casing, 24 is the end of the casing on the discharge side, 25.26 is the "J-Ta I sleeve part, 2
7, 28 are bearings, 29 is suction? j, 30 are discharge holes for the fluid that is not returned to the suction side, 32a and 32b are control valve mechanisms, respectively, 33a and 33b are inflow passages for the fluid that is returned to the suction side, and 37 and 38 are the bearing head casing 23; Passages 36a and 36b are provided in the rotor casing 20 and are opposed to each other on the end face of the casing, respectively, and are control valve mechanisms 32a and 32.
An outflow passage 39 communicates with the passages 37 and 38 from b, and a communication passage. The control valve mechanisms 32a and 32b depicted in FIGS. 1 and 2 are similar to those depicted in FIGS. 3 and 4.
The reputation is shown in the figure. In the figure, 42 is a cylinder holder, 43 is a cylinder, 44 is a compression spring,
Reference numeral 45 designates screws 1 to 1, 35a designates an inflow boat, 34a designates an outflow boat, and 4G designates a connection hole for pressure horn control.

容吊制御は次のように行なわれる。第1図は容吊制御が
行なわれている状態を示してJ3す、制御弁暇構32a
は第4図の状態にあり、三方切換弁は第5図0の状態に
ある。この状態では接続孔46が吸入室29に連通され
て圧力から解放されるので、圧縮バネ44の復元力によ
りピストン45は右へ動かされ流入通路33aが開とな
り、圧縮室内の流体の一部は流入通路33a、流入ボー
ト35a、流出ボート34aを通り流出通路36aから
通路37.38に流れ、更に連絡通路39を流れて吸入
室29に戻る。そして、ここで新しく吸入室29に流入
してくる流体と混合して再び圧縮室に吸入される。
Lifting control is performed as follows. FIG. 1 shows a state in which lifting control is being performed.
is in the state shown in FIG. 4, and the three-way switching valve is in the state shown in FIG. 5. In this state, the connection hole 46 is communicated with the suction chamber 29 and released from the pressure, so the piston 45 is moved to the right by the restoring force of the compression spring 44, opening the inflow passage 33a, and some of the fluid in the compression chamber is It passes through the inflow passage 33a, the inflow boat 35a, and the outflow boat 34a, flows from the outflow passage 36a to the passages 37 and 38, and then flows through the communication passage 39 and returns to the suction chamber 29. Then, it mixes with the fluid newly flowing into the suction chamber 29 and is sucked into the compression chamber again.

本実施例では制御弁機構が2組設けられているが制御弁
機構32bにおいても、前記と全く同様に、圧縮室内の
流体の一部は流入通路33b→流入ボ一ト→流出ポート
→流出通路36b→通路37.38→連絡通路39→吸
入室29と流れる。
In this embodiment, two sets of control valve mechanisms are provided, but in the control valve mechanism 32b, as well, a part of the fluid in the compression chamber is transferred from the inflow passage 33b → inflow port → outflow port → outflow passage, just as described above. 36b → passage 37, 38 → communication passage 39 → suction chamber 29.

制御弁機構32aを閏とする場合は、接続孔46に圧力
gi48から吐出ガス又は適宜の圧油等の圧力流体を作
用させ、ピストン45を左に移動させ第3図の状態とす
る。これにより、流入ボート35aは閉鎖し流入通路3
3aからの流体の流入は連断される。したがって吸入室
29から圧縮室内に吸入された流体はその仝姐が吐出孔
30から吐出されることになり、容ffl i、II 
titは行なわれない。
When the control valve mechanism 32a is a lever, pressure fluid such as discharge gas or appropriate pressure oil is applied to the connection hole 46 from the pressure gi 48, and the piston 45 is moved to the left to be in the state shown in FIG. As a result, the inflow boat 35a is closed and the inflow passage 3
The inflow of fluid from 3a is interrupted. Therefore, the second half of the fluid sucked into the compression chamber from the suction chamber 29 is discharged from the discharge hole 30.
tit is not performed.

容量制御の割合を制御するには、流入通路33a 、 
33bの位置、大きさを適切に選ぶ必要がある。すなわ
ち、その位置については、圧縮機の設計容積比(吸入最
大容積/吐出容積)以下でかつ1以上の位置に設置する
必要があるが、この位置はロータの回転角で代表される
ので、回転角が指示されれば、吐出側端面における2木
のロータの同容積比の位置を−へ的に求めることができ
る。
To control the rate of capacity control, the inflow passage 33a,
It is necessary to appropriately select the position and size of 33b. In other words, it must be installed at a position that is less than or equal to the compressor's design volume ratio (maximum suction volume/discharge volume) and greater than or equal to 1, but this position is represented by the rotation angle of the rotor, so If the angle is specified, the positions of the two rotors having the same volume ratio on the discharge side end face can be found in a negative direction.

また、吐出端面に設置される前記通路の大きさは、ロー
タの内部の端面形状に関して、その1枚の歯の幅を越え
ない範囲で決定されなければならない。
Further, the size of the passage installed in the discharge end face must be determined within a range that does not exceed the width of one tooth with respect to the shape of the end face inside the rotor.

回となれば歯幅を越える大きさとした場合は、その通路
を歯が通過する際に、隣接する歯溝から流体が流入又は
流出することになり、決定した効果が朋t!jできなく
なるからである。このように吐出端面に設置する通路の
位置と大きさを適切に選定覆ることによって容量制御の
割合を通りに制御することが可能となる。
If the width exceeds the width of the tooth, fluid will flow in or out from the adjacent tooth groove when the tooth passes through that passage, and the effect you have decided will be reduced! This is because you will not be able to do it. In this way, by appropriately selecting and covering the position and size of the passage installed on the discharge end face, it becomes possible to precisely control the rate of volume control.

また本実施例では制御弁憬構を2組設けてい′  るの
で、これらの各々の通路にjや絡する11II郊弁の開
閉の組み合ぜを変えることによって、きめの細かい容8
制御が可能となる。すなわら、この2組をそれぞれボー
l−A1ポートBと表現すると、全負荷(ボートA、ポ
ートB共に閉)100%、負荷1(ボートへ閉、ボー1
8間)75%、負荷■(ポートA間、ポートB閉)45
%、負荷■(ポー(・A、ポートB共に開)5%の4段
階の容吊制御ができる。
In addition, in this embodiment, two sets of control valve structures are provided, so by changing the opening/closing combination of the 11II sub-valve connected to each of these passages, fine-grained control can be achieved.
Control becomes possible. In other words, if these two sets are expressed as balls 1-A1 and port B, then the total load (both boat A and port B closed) is 100%, and the load 1 (closed to the boat, port 1) is 100%.
8) 75%, load (between ports A, port B closed) 45
Capacity can be controlled in 4 stages: %, load ■ (port (both ports A and B open) 5%).

〔発明の効果〕〔Effect of the invention〕

以上)本べたように、本発明の構成によれば、ケーシン
グ端面の逃し孔とこれを開閉ルリ御するロータ軸に直角
方向設置の手段とを採用することにより、容量制御に関
連する部品が小型化され、圧縮機としての外形寸法が小
型となり、容量ゐり一部の組立ては部分組立てがCき、
部分組ヒ後にケーシングに取付けることができるので組
9て(アセンブリー化)が容易となる。また構成部品は
加工が容易であって特別な工夫を必要としないという効
果が秦ぜられる。
As described above, according to the configuration of the present invention, parts related to capacity control can be made smaller by employing the relief hole in the end face of the casing and the means installed perpendicular to the rotor shaft for controlling the opening and closing of the relief hole. The external dimensions of the compressor have become smaller, and some parts of the assembly can be partially assembled due to the capacity.
Since it can be attached to the casing after partial assembly, assembly becomes easy. Further, the component parts are easy to process and do not require any special efforts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の装置ツの横断平面図、第2図は本発明
の装首の吐出側に位置するベアリングヘラドケーシング
の端面を吸入側から見た端面図、第3図及び第4図は本
発明による制御弁機構の2つの作動状態を示す断面図、
第5図は本発明の装置に使用される三方切換弁の2つの
位置を示す説明図、第6図及び第7図は従来技術の容量
制御装置の異なる作動状態を示す縦断面図である。 20・・ロータケーシング、22・・ロータ、23・・
ベアリングヘッドケーシング、24・・端面、32a 
、 32b ・・制御手段としての制御弁機構、33a
 、 33b ・・逃し孔としての流入通路。 滓7肥
FIG. 1 is a cross-sectional plan view of the device of the present invention, FIG. 2 is an end view of the end face of the bearing head casing located on the discharge side of the neck device of the present invention, viewed from the suction side, and FIGS. The figures are cross-sectional views showing two operating states of the control valve mechanism according to the present invention;
FIG. 5 is an explanatory view showing two positions of the three-way switching valve used in the device of the present invention, and FIGS. 6 and 7 are longitudinal sectional views showing different operating states of the prior art capacity control device. 20...Rotor casing, 22...Rotor, 23...
Bearing head casing, 24... end face, 32a
, 32b...control valve mechanism as control means, 33a
, 33b...Inflow passage as a relief hole. 7 slag fertilizer

Claims (2)

【特許請求の範囲】[Claims] (1)圧縮室を構成するケーシングのうち、吐出側にお
けるケーシングの端面に容量制御用の吸込側への逃し孔
を有し、この逃し孔を開閉するための制御手段が吐出側
におけるケーシングの端部においてロータ軸に対して直
角方向に設けられていることを特徴とするスクリュー式
圧縮機の容量制御装置。
(1) Among the casings constituting the compression chamber, the end face of the casing on the discharge side has a relief hole to the suction side for capacity control, and the control means for opening and closing this relief hole is provided at the end of the casing on the discharge side. A capacity control device for a screw compressor, characterized in that the capacity control device is provided in a direction perpendicular to a rotor axis at a portion thereof.
(2)ベアリングヘッドケーシングにロータ軸に直角方
向の制御手段が設けられ、逃し孔と連通し流体を吸込側
へ戻す連絡通路がロータケーシングに設けられている特
許請求の範囲第1項記載のスクリュー式圧縮機の容量制
御装置。
(2) The screw according to claim 1, wherein the bearing head casing is provided with a control means in a direction perpendicular to the rotor axis, and the rotor casing is provided with a communication passage that communicates with the relief hole and returns the fluid to the suction side. Capacity control device for type compressor.
JP1765086A 1986-01-29 1986-01-29 Device for controlling volume of screw type compressor Pending JPS62174589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1765086A JPS62174589A (en) 1986-01-29 1986-01-29 Device for controlling volume of screw type compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1765086A JPS62174589A (en) 1986-01-29 1986-01-29 Device for controlling volume of screw type compressor

Publications (1)

Publication Number Publication Date
JPS62174589A true JPS62174589A (en) 1987-07-31

Family

ID=11949730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1765086A Pending JPS62174589A (en) 1986-01-29 1986-01-29 Device for controlling volume of screw type compressor

Country Status (1)

Country Link
JP (1) JPS62174589A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5288806A (en) * 1976-01-20 1977-07-25 Kobe Steel Ltd Stepping volumn regulating method in screw freezer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5288806A (en) * 1976-01-20 1977-07-25 Kobe Steel Ltd Stepping volumn regulating method in screw freezer

Similar Documents

Publication Publication Date Title
EP0557023B1 (en) Scroll type compressor with variable displacement mechanism
KR0167866B1 (en) Variable displacement pump
JP2855446B2 (en) Power steering device
JP2603868B2 (en) Counter balance valve
JP2018537614A (en) Exhaust circulation part of exhaust turbine supercharger and method of operating exhaust turbine supercharger
ITMI970989A1 (en) HYDRAULIC ROTATING ACTUATOR
EP0793022A1 (en) Fluid brake device
JPH10266978A (en) Vane pump
JPS62174589A (en) Device for controlling volume of screw type compressor
JP2000055218A (en) Flow dividing valve
JPH0432538Y2 (en)
EP3822523A1 (en) Spool valve
CN114321439B (en) Automatic reversing valve
CN213145365U (en) Communicating valve group and pumping equipment
CN218031571U (en) Electromagnetic reversing valve with valve core reversing time adjustable
CN217355672U (en) Combination valve and displacement regulating system
US3636979A (en) Hydraulic valve
JPH0723667Y2 (en) Flow control valve device with check valve for pilot pressure oil
JPH0523839Y2 (en)
JP2718455B2 (en) Variable capacity scroll compressor
JPH03194188A (en) Scroll type compressor with variable capacity
JPH06278622A (en) Power steering device
CN118066160A (en) External control reversing control double-valve flow distribution radial plunger hydraulic device and working method thereof
JPH034803Y2 (en)
JP2821923B2 (en) Actuator merge control circuit