JPS62174502A - Gas turbine blade - Google Patents
Gas turbine bladeInfo
- Publication number
- JPS62174502A JPS62174502A JP1592586A JP1592586A JPS62174502A JP S62174502 A JPS62174502 A JP S62174502A JP 1592586 A JP1592586 A JP 1592586A JP 1592586 A JP1592586 A JP 1592586A JP S62174502 A JPS62174502 A JP S62174502A
- Authority
- JP
- Japan
- Prior art keywords
- blade
- gas turbine
- temperature
- gas
- thermal stress
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 claims abstract description 7
- 239000007789 gas Substances 0.000 abstract description 22
- 230000008646 thermal stress Effects 0.000 abstract description 6
- 230000000717 retained effect Effects 0.000 abstract 1
- 238000001816 cooling Methods 0.000 description 8
- 239000000567 combustion gas Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- -1 steam Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
【発明の詳細な説明】 〔発明の技術分野〕 この発明はガスタービンの翼に関する。[Detailed description of the invention] [Technical field of invention] This invention relates to gas turbine blades.
ガスタービンのガスの高温化を計り効率の上昇を計るこ
とが多方面で行なわれているが、翼材料等に主として金
属を用いるため空気や水蒸気あるいは水を用いて冷却を
行っている。Efforts have been made in many fields to raise the temperature of the gas in gas turbines in order to increase efficiency, but since metals are mainly used for blade materials, air, steam, or water is used for cooling.
このためせっかく高温化しても翼材料の点から翼を冷却
し、この冷却を行った事により高温化した効果が減少し
てしまう。For this reason, even if the temperature increases, the blade is cooled from the point of view of the blade material, and this cooling reduces the effect of the high temperature.
この発明は上述した従来のガスタービンの翼を改良した
もので、冷却を行なわないガスタービンの翼を提供する
ことを目的とする。This invention is an improvement on the conventional gas turbine blade described above, and an object thereof is to provide a gas turbine blade that does not require cooling.
高温燃焼ガスに直接加熱される部分と、固定支持部にセ
ラミックを用い、特に冷却を行なわなくとも安定に作動
するガスタービンの翼を構成した。By using ceramic for the parts that are directly heated by high-temperature combustion gas and the fixed support parts, we have constructed a gas turbine blade that operates stably even without special cooling.
従来用いられていた耐熱金属であるとガスタービン燃焼
ガス温度が800℃と越えると、空気等の冷却媒体によ
りガスタービンの翼を冷却し、金属温度を800℃前後
になるようにしている。When the gas turbine combustion gas temperature exceeds 800°C using conventionally used heat-resistant metals, the blades of the gas turbine are cooled with a cooling medium such as air to maintain the metal temperature at around 800°C.
このためガスタービンの翼は高温化のため冷却性能を高
める研究が実施され実用に供されている。For this reason, research has been conducted to improve the cooling performance of gas turbine blades due to their high temperatures, and this has been put into practical use.
しかし冷却を行うことにより、ガスタービンの作動温度
が低下し高温化したメリットを100%生かすことが不
可能である。However, by performing cooling, the operating temperature of the gas turbine decreases, making it impossible to make full use of the benefits of increasing the temperature.
本発明の翼は、冷却を行わなくとも高温ガス温度が約1
300℃程度まで作動することができ、高効率のガスタ
ービンを提供できる。The blade of the present invention has a hot gas temperature of about 1 without cooling.
It can operate up to about 300°C and provides a highly efficient gas turbine.
他にも空冷翼のように複雑な構造でないので製作コスト
が低減でき信頼性の高いガスタービンの翼を提供するこ
とができる。In addition, since it does not have a complicated structure like an air-cooled blade, manufacturing costs can be reduced and a highly reliable gas turbine blade can be provided.
第1図に本発明の一実施例を示した。図中1で示した翼
形部材の前縁部2に孔3を設け、後縁部4に同様に孔5
を設け、中空の部分である6を介して高温のガスが流動
できる構造の翼である。FIG. 1 shows an embodiment of the present invention. A hole 3 is provided in the leading edge 2 of the airfoil member indicated by 1 in the figure, and a hole 5 is similarly provided in the trailing edge 4.
The blade has a structure that allows high temperature gas to flow through the hollow part 6.
高温のガスが流動できる流路は、本実施例の構造に限定
されるものでなく、翼内部を高温ガスが流動する方式に
なっていればよい。The flow path through which high-temperature gas can flow is not limited to the structure of this embodiment, and may be of any type that allows high-temperature gas to flow inside the blade.
翼有効部の内外径側は円筒面に設けられた凹面により固
定される0円筒面は周方向に分割された形で構成されて
おり、第2図に示すように円筒面7.8により翼有効部
をそれぞれ内、外径側に挟む構造になっている。内外円
筒面7,8と内外の圧力隔壁11.12との間には断熱
部材を挿入し、圧力隔壁の温度上昇を防いでいる。The inner and outer diameter sides of the effective part of the blade are fixed by concave surfaces provided on the cylindrical surface.The cylindrical surface is divided in the circumferential direction, and as shown in Fig. 2, the cylindrical surface 7.8 It has a structure in which the effective part is sandwiched between the inner and outer diameter sides. A heat insulating member is inserted between the inner and outer cylindrical surfaces 7, 8 and the inner and outer pressure partitions 11, 12 to prevent the temperature of the pressure partitions from rising.
翼有効部に働く流体力により翼の位相づれや。The phase shift of the blade due to the fluid force acting on the effective part of the blade.
回転等が発生しないように円筒面7,8と断熱部材9,
10は回転止めの段差14をそれぞれ備えており、断熱
部材9,10と圧力隔壁とはピン13により廻り止めを
施しである。The cylindrical surfaces 7, 8 and the heat insulating member 9,
10 is provided with a step 14 to prevent rotation, and the heat insulating members 9 and 10 and the pressure partition wall are prevented from rotating by pins 13.
これ等、回り止めは本方法に限定されるものではなく、
ネジ等を用いた方法でも良い。These detents are not limited to this method,
A method using screws or the like may also be used.
翼部や内外円筒面に用いる材料は高温の燃焼ガスに直接
さらされるためセラミックやタングステン等の高温に耐
える材料が好ましい9,10の断熱部材は高温に耐えな
がら熱伝導率の低いものが良い。Since the materials used for the wing parts and the inner and outer cylindrical surfaces are directly exposed to high-temperature combustion gas, materials 9 and 10 that can withstand high temperatures, such as ceramics and tungsten, are preferable.The insulating members 9 and 10 are preferably materials that can withstand high temperatures and have low thermal conductivity.
表1にセラミック3種類と耐熱金属の熱伝導率と熱膨張
係数を示したが、断熱部材は酸化ジルコニア(ZrO,
)が熱伝導率が低く良好な特性を持っている。高温の燃
焼ガスに直接さらされる翼形部材と内外円筒面は高温強
度と、耐熱1f71!温度差の大きい窒化珪素(sii
N4)や炭化珪素(Sin)等が良い。Table 1 shows the thermal conductivity and thermal expansion coefficient of three types of ceramics and heat-resistant metals.
) has low thermal conductivity and good properties. The airfoil members and inner and outer cylindrical surfaces that are directly exposed to high-temperature combustion gas have high-temperature strength and heat resistance of 1f71! Silicon nitride (SII) has a large temperature difference.
N4), silicon carbide (Sin), etc. are preferable.
表1
セラミックを用いたガスタービンの翼は燃焼ガスを高温
化する場合、高温強度面もさることながら、急激なガス
温度の変化によりセラミック部材内部に発生する熱応力
により破壊してしまうことがある。Table 1 When the combustion gas is heated to high temperatures, gas turbine blades using ceramics not only have high-temperature strength but also may break due to thermal stress generated inside the ceramic member due to sudden changes in gas temperature. .
このため翼を中実から中空翼にすることにより熱応力の
低減を行っているが、より高温化を計るため、翼内外面
の非定常時(起動、停止)の温度差を減少し熱衝撃を小
さくするため5翼内部にも高温ガスを流通させ、ガスタ
ービン起動、停止時に翼の内外面から加熱、冷却が行な
われるため熱応力が大幅に緩和される。For this reason, the thermal stress is reduced by changing the blade from a solid blade to a hollow blade, but in order to achieve higher temperatures, the temperature difference between the outside and outside of the blade during unsteady conditions (startup, stoppage) is reduced and the thermal stress is reduced. In order to reduce this, high-temperature gas is also circulated inside the five blades, and when the gas turbine is started or stopped, heating and cooling are performed from the inside and outside surfaces of the blades, which greatly alleviates thermal stress.
本実施例は静翼に適用した実施例を示したが動翼の翼有
効部にも同様にして実施できる。Although this embodiment shows an example in which the present invention is applied to a stationary blade, the present invention can also be applied to the blade effective portion of a rotor blade in the same manner.
第1図はこの発明のガスタービンの翼の一実施例を示す
斜視図、第2図は第1図の要部の部品展開を示す図であ
る。
1・・・翼形部材 2・・・前縁部3.5・・
・孔 4・・・後縁部6・・・中空部
7,8・・・円筒面代理人 弁理士 則 近
憲 佑
同 竹 花 喜久男
第 1 図
第2図FIG. 1 is a perspective view showing an embodiment of a gas turbine blade of the present invention, and FIG. 2 is a diagram showing an exploded view of the main parts of FIG. 1. 1... Airfoil member 2... Leading edge portion 3.5...
- Hole 4... Trailing edge 6... Hollow part
7, 8... Cylindrical agent Patent attorney Nori Chika
Ken Yudo Kikuo Takehana Figure 1 Figure 2
Claims (1)
する流路を設けた事を特徴とする、ガスタービンの翼。 2、翼形部が環状流路構成部から分離して設けられてい
る事を特徴とする特許請求の範囲第1項記載のガスター
ビンの翼。[Scope of Claims] 1. A gas turbine blade, characterized in that a flow path communicating from the leading edge to the trailing edge of an airfoil portion formed of ceramic is provided. 2. The blade of a gas turbine according to claim 1, wherein the airfoil portion is provided separately from the annular flow path forming portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1592586A JPS62174502A (en) | 1986-01-29 | 1986-01-29 | Gas turbine blade |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1592586A JPS62174502A (en) | 1986-01-29 | 1986-01-29 | Gas turbine blade |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62174502A true JPS62174502A (en) | 1987-07-31 |
Family
ID=11902355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1592586A Pending JPS62174502A (en) | 1986-01-29 | 1986-01-29 | Gas turbine blade |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62174502A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016516148A (en) * | 2013-02-25 | 2016-06-02 | ゼネラル・エレクトリック・カンパニイ | Integrated split CMC shroud hanger and retainer system |
-
1986
- 1986-01-29 JP JP1592586A patent/JPS62174502A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016516148A (en) * | 2013-02-25 | 2016-06-02 | ゼネラル・エレクトリック・カンパニイ | Integrated split CMC shroud hanger and retainer system |
US10087784B2 (en) | 2013-02-25 | 2018-10-02 | General Electric Company | Integral segmented CMC shroud hanger and retainer system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4752184A (en) | Self-locking outer air seal with full backside cooling | |
US5695319A (en) | Gas turbine | |
US2479057A (en) | Turbine rotor | |
EP2546471B1 (en) | Tip clearance control for turbine blades | |
US3420502A (en) | Fluid-cooled airfoil | |
US4460311A (en) | Apparatus for minimizing and maintaining constant the blade tip clearance of axial-flow turbines in gas turbine engines | |
US4311432A (en) | Radial seal | |
JPH1037701A (en) | Blade for turbomachine thermally loaded | |
US5127795A (en) | Stator having selectively applied thermal conductivity coating | |
JP4402196B2 (en) | Low distortion shroud for turbines | |
JPS6363721B2 (en) | ||
JP2000008879A (en) | Cooling system for honeycomb packing in part applyed with high temperature gas of gas turbine | |
JPH10266804A (en) | Tip shroud blade cavity | |
JP2004044573A (en) | Stationary blade of gas turbine and gas turbine equipped with this stationary blade | |
JP2015001183A (en) | Turbine housing | |
JPH0774604B2 (en) | High temperature turbine engine structure | |
JPS62174502A (en) | Gas turbine blade | |
EP3470648B1 (en) | Turbocharger | |
JPH06159099A (en) | Axial flow fluid machinery | |
US3271004A (en) | Turbine vane adapted for high temperature operation | |
KR100814174B1 (en) | Connecting system for a transition duct in a gas turbine | |
US2699917A (en) | Turbine wheel and blade construction | |
JPS62126225A (en) | Turbine case for turbine supercharger | |
JPS5979007A (en) | Turbine blade | |
JPH10103011A (en) | Gas turbine shroud device |