JPS62174293A - Method of dehydrating coking coal - Google Patents

Method of dehydrating coking coal

Info

Publication number
JPS62174293A
JPS62174293A JP61016472A JP1647286A JPS62174293A JP S62174293 A JPS62174293 A JP S62174293A JP 61016472 A JP61016472 A JP 61016472A JP 1647286 A JP1647286 A JP 1647286A JP S62174293 A JPS62174293 A JP S62174293A
Authority
JP
Japan
Prior art keywords
coal
centrifugal
dehydration
moisture content
fed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61016472A
Other languages
Japanese (ja)
Inventor
Yoichi Tawara
俵 洋一
Nobuyoshi Nishihara
信義 西原
Takeshi Ito
雄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61016472A priority Critical patent/JPS62174293A/en
Publication of JPS62174293A publication Critical patent/JPS62174293A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Drying Of Solid Materials (AREA)
  • Coke Industry (AREA)

Abstract

PURPOSE:To enable the drying apparatus, etc., to be miniaturized while decreasing the absolute value of coal moisture content and its range of variation without the need of any expensive heating facility, etc., by conducting dehydration of a coking coal at a particular range of centrifugal acceleration prior to pulverization. CONSTITUTION:Coal 2 in an outdoor coal storage yard 1 is shifted with a sieve 3. The coal grains having a diameter of 25mm or more are directly fed to a pulverization facility 4 and pulverized. On the other hand, the coal grains 14 having a diameter of 25mm or more are fed to a centrifugal dehydrator 15 by which dehydration oat a centrifugal acceleration of 300 to 800 times acceleration of gravity is performed so as to attain a moisture content of 6% or less and a range of moisture content variation of 1% or less. The coal 16 after dehydration is fed to the pulverization facility 4. The wash liq. is concentrated in a concentrating tank 17 and then likewise dehydrated using a centrifugal separator 18. The coal is fed together with coal 16 after dehydration to the pulverization facility 4, and pulverized. The pulverization product is compounded in a compounding facility 5, dried in a drying apparatus 7 and fed to a coke oven 9.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はコークス製造用石炭の脱水方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for dewatering coal for coke production.

(従来の技術) コークス製造用石炭は、通常、露天ヤードに貯炭される
。そのため降雨の影響や、銘柄固有の粒度の影響によシ
付着水分(以下、水分と略す)は6〜13チ程度に変動
する。石炭水分はコークス炉において石炭が乾留される
際蒸発する。したがって、水分の絶対値とその時間的変
動は、コークス炉乾留所要熱量の絶対値とその時間的変
動に影響を及ぼし、コークス炉生産性を大きく左右する
(Prior Art) Coal for coke production is usually stored in open-air yards. Therefore, the amount of adhering moisture (hereinafter abbreviated as moisture) varies from about 6 to 13 inches depending on the influence of rainfall and the particle size specific to the brand. Coal moisture evaporates when coal is carbonized in a coke oven. Therefore, the absolute value of moisture and its temporal variation affect the absolute value of the required heat amount for coke oven carbonization and its temporal variation, and greatly influence coke oven productivity.

このため、コークス炉乾留所要熱量を低位に安定させる
対策とし℃従来から、コークス炉へ供給する石炭を事前
に乾燥させ、水分を低減する技術がある。乾燥方式とし
ては、気流式、流動床式9間接加熱式があシ、乾燥熱源
としては特開昭58−129087号「コークスの製造
方法と装置」に示されるように、コークス炉の排熱を回
収して用いる方法がある。またコークス製造用石炭水分
の低減手段としては乾燥以外にも遠心脱水機を用いる方
法が考えられる。
Therefore, as a measure to stabilize the amount of heat required for carbonization in a coke oven at a low level, there is a conventional technique of drying coal to be supplied to a coke oven in advance to reduce its moisture content. Drying methods include air flow type, fluidized bed type, and indirect heating type.As for the drying heat source, as shown in Japanese Patent Application Laid-open No. 58-129087, ``Method and Apparatus for Manufacturing Coke,'' exhaust heat from a coke oven is used. There are ways to collect and use it. In addition to drying, a method using a centrifugal dehydrator may be considered as a method for reducing the moisture content of coal for coke production.

遠心脱水機は、高速回転する円筒または円すい台状のス
クリーンの中へ湿潤粉粒体を供給することによシ、粉粒
体の水分を振り切りによシ低減させるもので、土砂用、
化学製品用として従来から輻広く用いられてきた(例え
ば、化学工学便覧1121〜1127頁)。ただし、石
炭用としては炭鉱ておける選炭プロセス用としての用途
にとどまっていた。
A centrifugal dehydrator is a machine that feeds wet granular material into a cylindrical or conical screen that rotates at high speed, thereby shaking off the water content of the granular material and reducing the moisture content.
It has been widely used for chemical products (for example, Chemical Engineering Handbook, pages 1121 to 1127). However, its use for coal was limited to the coal preparation process in coal mines.

(発明が解決しようとする問題点) コークス製造用石炭水分は銘柄、天候により変動し、第
4図(X製鉄所内配合炭水分分布)に示すような分布を
示す。この石炭水分の変動のなめ下記の不都合が生じる
(Problems to be Solved by the Invention) The moisture content of coal for coke production varies depending on the brand and the weather, and exhibits a distribution as shown in Figure 4 (Blended Coal Moisture Distribution in Steelworks X). This fluctuation in coal moisture causes the following disadvantages.

第1に前述したコークス炉排熱を利用した石炭乾燥設備
を設けたコークス製造用石炭処理フローの場合について
述べる。この場合、石炭水分が回収熱量で乾燥できる限
界水分以上となっ九場合は、コークス炉に供給する水分
を一定とするため、外部から乾燥設嬬に補助的に熱量を
供給する必要が生じる。具体的にはコークス炉排熱を熱
媒体顕熱として回収し、この熱媒体により間接加熱器で
石炭を加熱乾燥させる乾燥設備においては、熱媒体輸送
ライン途中に外部供給燃料による補助加熱炉設備と同設
備用燃゛料が必要となる。
First, the case of the coal processing flow for coke production provided with the coal drying equipment that utilizes the coke oven exhaust heat described above will be described. In this case, if the coal moisture exceeds the limit moisture that can be dried using the recovered heat, it becomes necessary to supplementally supply heat to the drying equipment from outside in order to keep the moisture supplied to the coke oven constant. Specifically, in drying equipment that recovers coke oven waste heat as heat carrier sensible heat and uses this heat carrier to heat and dry coal in an indirect heater, an auxiliary heating furnace equipment using externally supplied fuel is installed in the middle of the heat carrier transport line. Fuel for the equipment will be required.

第2に石炭乾燥設備を設けないコークス製造用石炭処理
フローの場合について述べる。この場合水分の変動は直
接コークス炉乾留所要時間、所要熱量の変動につながり
生産管理・品質管理上大きな問題となる。
Second, we will discuss the case of a coal processing flow for coke production that does not include coal drying equipment. In this case, fluctuations in moisture directly lead to fluctuations in the time required for carbonization in the coke oven and the amount of heat required, which poses a major problem in terms of production control and quality control.

すなわち第1.第2いずれの場合も石炭水分の絶対値お
よびその変動幅を低減することによりその問題を解消す
ることができる。
That is, the first. In either of the second cases, the problem can be solved by reducing the absolute value of the coal moisture content and its fluctuation range.

ところで、石炭の水分低減手段として炭鉱用遠心脱水機
が存在することは既に述べた。炭鉱では約100g(,
9:重力加速度)の遠心加速度で脱水することによ久石
炭水分を5チ程度にまで低減している。
By the way, it has already been mentioned that centrifugal dehydrators for coal mines exist as means for reducing the moisture content of coal. Approximately 100g (,
By dewatering using centrifugal acceleration (acceleration of gravity), the water content of the coal is reduced to about 5%.

ただヒ炭鉱用脱水機をコークス製造用石炭処理に適用す
るには下記の問題がある。
However, there are the following problems when applying dehydrators for coal mines to coal processing for coke production.

本発明者等が行った実験によると第5図に示すように、
0.5B以下の微粉含有率が22チ以上の銘柄では遠心
加速度が100gにおける脱水可能な水分が14チ以上
となるためヤード保管石炭(水分:6〜13チ)の水分
を下げることはできない。
According to experiments conducted by the present inventors, as shown in Figure 5,
For brands with a fine powder content of 0.5 B or less and a content of 22 inches or more, the water content that can be dewatered at a centrifugal acceleration of 100 g is 14 inches or more, so it is not possible to lower the moisture content of coal stored in the yard (moisture content: 6 to 13 inches).

逆に炭鉱用脱水機(遠心加速度:約100g)でヤード
保管石炭の水分の絶対値と変動中を低減するには、第1
表に示す代表的銘柄の内のいくつかについては脱水前に
微粉除去のための湿式篩設備が必要となシ極めて不経済
的である。
On the contrary, in order to reduce the absolute value and fluctuation of the moisture content of coal stored in the yard using a dehydrator for coal mines (centrifugal acceleration: approximately 100 g), the first step is
Some of the representative brands shown in the table require wet sieving equipment to remove fine particles before dehydration, which is extremely uneconomical.

すなわち、コークス製造用石炭の水分の絶対値と変動幅
の低減を経済的に、かつ確実に達成するには従来の脱水
機では不可能である。
That is, it is impossible to economically and reliably reduce the absolute value and fluctuation range of moisture content of coal for coke production using conventional dehydrators.

本発明者等は、以上の現状を踏まえて、コークス製造用
石炭の水分の絶対値と変動幅を事前の篩操作なしに低減
する処理方法を提供するものである。
In view of the above-mentioned current situation, the present inventors provide a treatment method for reducing the absolute value and fluctuation range of moisture content of coal for coke production without prior sieving operation.

なお、前述した本発明者等による遠心脱水試験では、第
8図に基本構造を示す遠心脱水機を用い念。本機は回転
スクリーンの最大直径;soomi、回転数;最大20
00rpm、石炭処理量; 20 t7’hである。ま
た第5図は、脱水可能水分を調査するため脱水機入口水
分を意識的に増加させた結果を示す。
In addition, in the centrifugal dehydration test by the present inventors mentioned above, a centrifugal dehydrator whose basic structure is shown in FIG. 8 was used. This machine has a rotating screen maximum diameter: soomi, rotation speed: maximum 20
00 rpm, coal throughput; 20 t7'h. Moreover, FIG. 5 shows the result of intentionally increasing the water content at the dehydrator inlet in order to investigate the water content that can be dehydrated.

なお、遠心加速度は下記で定義されるため、円すい台状
の回転スクリーンでは軸方向位置により、スクリーン直
径が異なシ、遠心加速度も異なる。ただし、脱水後の石
炭の水分はスクリーン最大直径部で得られる最大遠心加
速度によシ決定するので、以後、遠心脱水機の代表諸元
としての遠心加速度とは最大遠心加速度を示すこととす
る。
Note that, since the centrifugal acceleration is defined below, in the case of a truncated cone-shaped rotating screen, the centrifugal acceleration also differs depending on the axial position of the screen when the diameter of the screen differs. However, since the moisture content of coal after dewatering is determined by the maximum centrifugal acceleration obtained at the maximum diameter part of the screen, hereinafter, centrifugal acceleration as a representative specification of a centrifugal dehydrator will refer to the maximum centrifugal acceleration.

ただし 2:遠心加速度(mis ) n:回 転 数(rpm) r:回転半径(m) (問題点を解決するための手段) 本発明はコークス製造用石炭を石炭の粉砕前に3011
以上800g以下の遠心加速度を加えることによシ石炭
水分を低減し、その変動幅を縮小することを特徴とする
コークス原料炭の脱水方法である。
However, 2: Centrifugal acceleration (mis) n: Number of revolutions (rpm) r: Radius of rotation (m) (Means for solving the problem) In the present invention, coal for coke production is
This is a method for dehydrating coking coal, which is characterized by reducing coal moisture content and reducing its fluctuation range by applying centrifugal acceleration of 800 g or less.

次に本発明の構成条件の決定根拠について説明する。第
1に遠心脱水機の設置位置について述べる。第5図に示
すように同一遠心効果における脱水後水分は微粉(−0
,5mm )が多い程高くなる。
Next, the basis for determining the configuration conditions of the present invention will be explained. First, we will discuss the installation location of the centrifugal dehydrator. As shown in Figure 5, the water content after dehydration under the same centrifugal effect is fine powder (-0
, 5mm), the higher it becomes.

したがって遠心脱水機の設置位置は破砕設備の前とする
Therefore, the centrifugal dehydrator should be installed in front of the crushing equipment.

第2に遠心加速度の適正範囲について述べる。Second, we will discuss the appropriate range of centrifugal acceleration.

製鉄所のコークス工場ではコークス品質確保、原料石炭
費用低減と一銘柄炭の性状変動によるコークス品質変動
の抑制等の目的で、通常一時に5〜20銘柄の石炭を配
合して用いる。例えば、X製鉄所ではある年に第1表に
示す数の銘柄の石炭を使用したが、同表中の粒度構成よ
F) Q、 5 mx以下の微粉含有率は銘柄によシ大
きく異なることがわかる。ところが本発明者等が行った
実験によれば、第5図に示すようK O,5+ff1l
以下の微粉含有率の大小によシ脱水後水分は異なる。そ
こで、前述の20t/h遠心脱水試験機を用いて、X製
鉄所において脱水試験を行った結果を第6図に示す。
Coke factories in steel mills usually mix and use 5 to 20 brands of coal at a time for the purpose of ensuring coke quality, reducing raw material coal costs, and suppressing variations in coke quality due to variations in the properties of one brand of coal. For example, in a certain year, X steelworks used the brands of coal shown in Table 1, but the particle size composition in the table is F) Q. The content of fines below 5 mx varies greatly depending on the brand. I understand. However, according to experiments conducted by the present inventors, as shown in FIG.
The moisture content after dehydration differs depending on the fine powder content as shown below. Therefore, a dehydration test was conducted at X Steel Works using the 20 t/h centrifugal dehydration tester described above, and the results are shown in FIG.

なお本試験期中の各銘柄炭の使用比率を第1表に合せて
示す。第6図における配合後石炭の脱水後水分の上・下
限からなる変動幅は、諸事情によシ適時決定する石炭使
用銘柄および天候条件等による脱水前の石炭の水分変動
によるものである。その結果、第6図に示すように遠心
加速度が300g以上では配合後石炭の脱水後水分の変
動幅は大幅に縮小することがわかった。
The usage ratio of each brand of coal during this test period is also shown in Table 1. The fluctuation range consisting of the upper and lower limits of the moisture content after dehydration of the coal after blending in FIG. 6 is due to the fluctuation of the moisture content of the coal before dehydration depending on the brand of coal used and weather conditions, which are determined at a timely manner depending on various circumstances. As a result, as shown in FIG. 6, it was found that when the centrifugal acceleration was 300 g or more, the fluctuation range of the water content after dehydration of the coal after blending was significantly reduced.

また、遠心加速度がSOO,@以上になると脱水後水分
はほぼ一定となることがわかった。
It was also found that when the centrifugal acceleration exceeds SOO,@, the water content after dehydration becomes almost constant.

ところで、使用銘柄と使用比率は製鉄所立地条件や石炭
市場状況等によシ決定されるため製鉄所特有である。例
えばY製鉄所では、ある年の使用銘柄と使用比率は第1
表に示すようになった。そこで前述の20 t/h遠心
脱水試験機を用いて、Y製鉄所においても脱水試験を行
った。その結果も第7図に示すように1遠心加速度が3
00g以上では脱水後水分の変動幅は大幅に縮小し、遠
心加速度が800g以上では脱水後水分は一定となった
Incidentally, the brand used and the ratio used are determined by the location conditions of the steelworks, the coal market conditions, etc., and are unique to each steelworks. For example, at Y steelworks, the brand used and the usage ratio in a certain year are
Now shown in the table. Therefore, a dehydration test was also conducted at Y Steel Works using the aforementioned 20 t/h centrifugal dehydration tester. The results also show that 1 centrifugal acceleration is 3 as shown in Figure 7.
When the centrifugal acceleration was 800 g or more, the fluctuation range of the water content after dehydration was significantly reduced, and when the centrifugal acceleration was 800 g or more, the water content after dehydration became constant.

なお、Y製鉄所とX製鉄所は当然ながら気象条件も異な
る。すなわち使用銘柄、使用比率、各銘柄炭水分(気象
条件により異なる)にかかわらず、遠心加速度を300
y以上、soog以下とすることにより配合後石炭の脱
水後水分の変動幅を大幅に縮小し、絶対値を低減するこ
とができる。
Naturally, the weather conditions at Y Steelworks and X Steelworks are different. In other words, regardless of the brand used, the usage ratio, and the moisture content of each brand coal (varies depending on weather conditions), the centrifugal acceleration is 300%.
By setting the value to y or more and soog or less, it is possible to significantly reduce the fluctuation range of the water content after dehydration of the blended coal and reduce the absolute value.

(作用) 本発明を用いない場合、各銘柄配合炭で、例えば第4図
に示すように7.5〜12.5%ある水分を本発明によ
シ石炭に粉砕前に30ON以上soo!i以下の遠心加
速度を加えることによシ、第6図に示すように水分を平
均値で6チ以内、変動!@で1チ以内に納めることがで
きる。なお、第6図は前述の20 t/h遠心脱水機の
運転結果に基づくものであるが、これとは別にioo 
t、”h遠心脱水機の運転も実施したが、遠心加速度の
適正範囲も20t/h機の場合と同様に300p以上8
001以下であった。
(Function) When the present invention is not used, each brand of blended coal has a water content of 7.5 to 12.5%, for example, as shown in Fig. 4, so that the moisture content is 30ON or more before being crushed into the coal according to the present invention! By applying a centrifugal acceleration of less than i, as shown in Figure 6, the average value of moisture fluctuates within 6 cm! @ allows you to pay within 1 inch. Although Fig. 6 is based on the operation results of the 20 t/h centrifugal dehydrator mentioned above, apart from this,
We also operated a centrifugal dehydrator, and the appropriate range of centrifugal acceleration was 300 p or more, as in the case of the 20 t/h machine.
It was less than 001.

(実施例) 以下、本発明を図面に示す実施例により説明する。まず
、第2図に示す従来の石炭乾燥膜備付のコークス羨造用
石炭処理フローについて説明する。
(Example) Hereinafter, the present invention will be explained using examples shown in the drawings. First, a coal processing flow for coke making using a conventional coal drying membrane shown in FIG. 2 will be described.

屋外の貯炭ヤード1から送られた石炭2は、粉砕設備4
と配合設備5で処理され、乾燥機7で乾燥された後、コ
ークス炉9へ供給される。乾燥機の構造としては、例え
ば第3図に示す間接加熱管内蔵型回転乾燥機が用いられ
る。即ち回転円筒31の中に伝熱管34が同心円状に配
設され、加熱用熱媒体が、熱媒体人口36から入り、熱
媒体出口37から出る。また、石炭35は石炭投入口3
2から入シ乾燥した後、石炭出口33から出る。
Coal 2 sent from outdoor coal storage yard 1 is sent to crushing equipment 4
After being processed in a blending facility 5 and dried in a dryer 7, it is supplied to a coke oven 9. As the structure of the dryer, for example, a rotary dryer with a built-in indirect heating tube shown in FIG. 3 is used. That is, the heat transfer tubes 34 are arranged concentrically in the rotating cylinder 31, and the heating medium enters from the heat medium outlet 36 and exits from the heat medium outlet 37. In addition, the coal 35 is the coal input port 3.
After the coal enters from 2 and is dried, it exits from coal outlet 33.

一方、第2図において加熱用熱媒体12は煙道熱交換器
11および上昇管熱交換器10によシ加熱され、さらに
石炭水分が多い場合は補助加熱設備20で加熱され乾燥
機7へ供給される。乾燥機7で熱交換して温度の低下し
た熱媒体は、ボンf13で昇圧されることによ)循環使
用される。
On the other hand, in FIG. 2, the heating heat medium 12 is heated by the flue heat exchanger 11 and the riser tube heat exchanger 10, and if the coal moisture is high, it is further heated by the auxiliary heating equipment 20 and supplied to the dryer 7. be done. The heat medium whose temperature has been lowered by heat exchange in the dryer 7 is circulated and used by increasing the pressure in the bomb f13.

次に本発明の実施例を第1図を用いて説明する。Next, an embodiment of the present invention will be described using FIG.

石炭2はまず篩3により251m以上は−分けられて粉
砕設備4へ送られ、25朋以下の石炭14は遠心脱水機
15で脱水された後、粉砕設備4へ送られる。なお、2
5朋以上の石炭は脱水機を通さない理由は、25mm以
上の石炭は大粒径ゆえ脱水機内での閉塞を引き起しやす
い上、石炭粒子重量当シの付着水分が少ないため、脱水
の必要性が少ないためである。一方、遠心脱水機15の
排液は濃縮槽17で濃縮され、濃縮液はさらに遠心分離
機18で水分を低減され念後、遠心脱水機出口石炭16
と共に粉砕設備4へ送られる。粉砕設備4から出た石炭
は配合設備5で処理された後、乾1栗機7で乾燥されコ
ークス炉9へ供給される。本例においては、第2図に示
す従来技術と異なシ熱媒体の補助加熱設備は不要である
。さらば、本発明者等が試験に用いた遠心脱水機の構造
を第8図で説明する。石炭41は振動モータ40で振動
する石炭供給シュート42を径由して、モータ46で駆
動されるチー・や−状圧拡がる回転スクリーン43へ供
給される。石炭は回転スクリーン内で遠心力を受けて付
着水を排液44として飛ばしつつ、遠心力の分力によ多
回転スクリーン出口へ向い脱水後石炭45として回転ス
クリーンよシ外へ排出される。第9図は類似の石炭脱水
機の例である。この場合も、石炭の動きは基本的には第
8図と同一である。ただし回転スクリーン出口に排出定
量化のためストン/4−47が設置されている。ストツ
ノ母−は回転スクリーンと同一速度で回転しつつ軸方向
に直進往復運動し、石炭切出し量を調節する機能を持つ
The coal 2 is first separated by a sieve 3 in the amount of 251 m or more and sent to the crushing equipment 4, and the coal 14 of 25 m or less is dehydrated in the centrifugal dehydrator 15 and then sent to the crushing equipment 4. In addition, 2
The reason why coal of 5 mm or more is not passed through the dehydrator is that coal of 25 mm or more tends to clog in the dehydrator due to its large particle size, and it also has less moisture attached to the weight of the coal particles, so dewatering is not necessary. This is because there is little sex. On the other hand, the waste liquid from the centrifugal dehydrator 15 is concentrated in a concentration tank 17, and the concentrated liquid is further reduced in water content in a centrifugal separator 18.
It is also sent to the crushing equipment 4. The coal discharged from the crushing equipment 4 is processed in the blending equipment 5, then dried in the dryer 7 and supplied to the coke oven 9. In this example, there is no need for auxiliary heating equipment for the heat medium, which is different from the prior art shown in FIG. Now, the structure of the centrifugal dehydrator used by the present inventors in the test will be explained with reference to FIG. Coal 41 passes through a coal supply chute 42 which is vibrated by a vibration motor 40 and is supplied to a rotating screen 43 which is driven by a motor 46 and which expands in the shape of a bow. The coal is subjected to centrifugal force within the rotating screen, and while adhering water is blown away as waste liquid 44, the coal is directed to the outlet of the multi-rotary screen by a component of the centrifugal force, and after dewatering is discharged as coal 45 out of the rotating screen. Figure 9 is an example of a similar coal dehydrator. In this case as well, the movement of the coal is basically the same as in Figure 8. However, a stone/4-47 is installed at the outlet of the rotating screen to quantify emissions. The stock horn rotates at the same speed as the rotary screen while reciprocating in a straight line in the axial direction, and has the function of adjusting the amount of coal cut out.

この例以外にも種々の排出方式を持つ遠心脱水機が、あ
る。いずれの場合もスクリーンを回転させ°るタイプの
脱水機ならば、300〜800gの遠心加速度によシコ
ークス製造用石炭の水分を除去するという本発明の特徴
を発揮できるという点では同一である。
In addition to this example, there are centrifugal dehydrators with various discharge methods. In either case, if the dehydrator is of the type that rotates the screen, it is the same in that it can exhibit the feature of the present invention, which is to remove moisture from the coal for producing coke using a centrifugal acceleration of 300 to 800 g.

(発明の効果) 本発明方法によれば、石炭水分は6チ以下で水分変動幅
を1%以下とできる。このためコークス炉へ装入する石
炭を乾燥するいわゆる事前乾燥設備においては、従来降
雨によプ石炭水分が増大した場合、必要であった高価な
熱媒体補助加熱設備およびその燃料が不要となる。さら
に石炭の平均水分低減のため事前乾燥設備で石炭に加え
るべき熱量が少なくてすむなめ、乾燥機本体、廃熱回収
用熱交換器も小型化、小容量化できる。したがって脱水
機を設置した方が、事前乾燥設備単独設置の場合に比べ
て全体の設備費、運転費は低減する。
(Effects of the Invention) According to the method of the present invention, the coal moisture can be kept at 6% or less and the moisture fluctuation range can be kept at 1% or less. Therefore, in so-called pre-drying equipment for drying coal charged into a coke oven, expensive heat medium auxiliary heating equipment and its fuel, which were conventionally required when coal moisture increases due to rainfall, are no longer required. Furthermore, because the average moisture content of the coal is reduced, the amount of heat that must be added to the coal in the pre-drying equipment is small, and the dryer itself and the heat exchanger for waste heat recovery can also be made smaller and smaller in capacity. Therefore, installing a dehydrator will reduce the overall equipment cost and operating cost compared to installing a pre-drying equipment alone.

また事前乾燥設備のない、コークス製造工場においても
、本発明方法に従って遠心脱水機を用いることにより水
分変動による生産・品質上の問題を解消できる上、コー
クス炉乾留所要熱奇が低減するため、脱水機の設置コス
トを上回るメリットが得られる。
In addition, even in coke manufacturing plants without pre-drying equipment, by using the centrifugal dehydrator according to the method of the present invention, production and quality problems caused by moisture fluctuations can be resolved. The benefits outweigh the cost of installing the machine.

以上のように、事前乾燥設備の有無にかかわらず、本発
明はコークス製造用石炭の水分除去手段として従来にな
い特徴を有するもので、その効果は多大である。
As described above, regardless of the presence or absence of pre-drying equipment, the present invention has unprecedented features as a means for removing moisture from coal for coke production, and its effects are significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施したコークス製造用石炭処理フロ
ーの例を示す図、第2図は従来のコークス製造用石炭処
理フロー図を示す図、第3図(a)は回転乾燥機の一例
を示す図、第3図(b)は第3図(a)の人−入断面図
、第4図はコークス製造用石炭の水分分布の例を示す図
、第5図は表1に示す各銘柄単味の脱水可能水分を示す
図、第6図、第7図はそれぞれX、Y製鉄所における脱
水後炭配合時水分を示す図、第8図は脱水試験に用いた
遠心脱水機の構造を示す図、第9図は類似遠心脱水機の
構造例を示す図で、第9図(a)はストッパー位置左限
(閉)状態、第9図(b)はストッパー位置右限(開)
状態を示す図である。 1:室外貯炭ヤード 2:石炭 3:lJ設備     4:粉砕設備 5:配合設備    6:配合済石炭 7:乾燥機     8:乾燥済石炭 9:コークス炉   10:上昇管熱交換器11:煙道
熱交換器  12:熱媒体油13:ポン7’     
 14 : 25組板下石炭15:遠心脱水機   1
6:脱水済石炭17:濃縮槽     18:遠心分離
機19:遠心分離排液  20:熱媒体補助加熱設備2
1:燃料      31:回転円筒32:石炭投入口
   33:石炭出口34:伝熱管     35:石
炭 36:熱媒体入口   37:熱媒体出口40:振動モ
ータ   41:脱水前石炭42:石炭供給シート43
:回転スクリーン44:排液     45:脱水後石
炭46:モータ      47:ストツノ臂−48:
ストッパー往復動装置 ’10 ′7,56.08.s9.0 ダ、510.0
10..511.011.−5 P2.01:2.S 
13.0本分(%) 第5図 ムlに一刀04IL C’/sオ〕 第6図 ム辷加*a:X (樫ダ〕 第7図 ムcfIOtJL:!(−/sり 4乙;毛−タ
Fig. 1 is a diagram showing an example of a coal processing flow for coke production according to the present invention, Fig. 2 is a diagram showing a conventional coal processing flow diagram for coke production, and Fig. 3 (a) is an example of a rotary dryer. 3(b) is a cross-sectional view of FIG. 3(a), FIG. 4 is a diagram showing an example of moisture distribution in coke-making coal, and FIG. Figures 6 and 7 are diagrams showing the dewaterable moisture content of a single brand, Figures 6 and 7 are diagrams showing the moisture content when blending coal after dehydration at steelworks X and Y, respectively, and Figure 8 is the structure of the centrifugal dehydrator used in the dehydration test. Figure 9 is a diagram showing an example of the structure of a similar centrifugal dehydrator, where Figure 9 (a) shows the stopper position at the left limit (closed) and Figure 9 (b) shows the stopper position at the right limit (open).
It is a figure showing a state. 1: Outdoor coal storage yard 2: Coal 3: lJ equipment 4: Grinding equipment 5: Blending equipment 6: Blended coal 7: Dryer 8: Dried coal 9: Coke oven 10: Riser heat exchanger 11: Flue heat Exchanger 12: Heat medium oil 13: Pon 7'
14: 25 sets of coal under the plate 15: Centrifugal dehydrator 1
6: Dehydrated coal 17: Concentration tank 18: Centrifugal separator 19: Centrifugal separation liquid 20: Heat medium auxiliary heating equipment 2
1: Fuel 31: Rotating cylinder 32: Coal input port 33: Coal outlet 34: Heat transfer tube 35: Coal 36: Heat medium inlet 37: Heat medium outlet 40: Vibration motor 41: Coal before dehydration 42: Coal supply sheet 43
: Rotating screen 44: Drainage liquid 45: Coal after dehydration 46: Motor 47: Stolen arm - 48:
Stopper reciprocating device '10 '7, 56.08. s9.0 da, 510.0
10. .. 511.011. -5 P2.01:2. S
13.0 minutes (%) Fig. 5 Ml ni Itto 04IL C'/sO] Fig. 6 Mu 辷加*a:X (Kashida) Fig. 7 Mu cfIOtJL:!(-/sri4 O) ;hair

Claims (1)

【特許請求の範囲】[Claims] コークス原料炭の粉砕前に、(300〜800)×重力
加速度の遠心加速度を加えて石炭付着水分を低減するこ
とを特徴とするコークス原料炭の脱水方法。
A method for dehydrating coking coal, which comprises applying centrifugal acceleration of (300 to 800) x gravitational acceleration to reduce moisture adhering to the coking coal before pulverizing the coking coal.
JP61016472A 1986-01-28 1986-01-28 Method of dehydrating coking coal Pending JPS62174293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61016472A JPS62174293A (en) 1986-01-28 1986-01-28 Method of dehydrating coking coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61016472A JPS62174293A (en) 1986-01-28 1986-01-28 Method of dehydrating coking coal

Publications (1)

Publication Number Publication Date
JPS62174293A true JPS62174293A (en) 1987-07-31

Family

ID=11917205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61016472A Pending JPS62174293A (en) 1986-01-28 1986-01-28 Method of dehydrating coking coal

Country Status (1)

Country Link
JP (1) JPS62174293A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61218685A (en) * 1985-03-23 1986-09-29 Hamada Juko Kk Dehydration and sieving of coal for coke production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61218685A (en) * 1985-03-23 1986-09-29 Hamada Juko Kk Dehydration and sieving of coal for coke production

Similar Documents

Publication Publication Date Title
US4989344A (en) Particulate removal for a sludge treatment process
US4248641A (en) Method and apparatus for the production of cement clinkers from moist agglomerated raw material
US4829678A (en) Sludge treatment process
CA3077778C (en) System and method for the treatment of oil sands
US4956926A (en) Sludge treatment process
JP2013534180A (en) Sludge drying method and sludge drying equipment
JP2013500931A (en) How to grind crushed material
US6006440A (en) Process and apparatus for drying a slurry
JPH0515900A (en) Method and device for drying water-containing sludge
CN202973766U (en) Device for treating thin slurry such as mud or manure
Pikoń Drying of coal
US2235683A (en) Drying process
US4953478A (en) Odor control for a sludge treatment process
JPS62174293A (en) Method of dehydrating coking coal
JPS62156911A (en) Method of treating diatomaceous earth
US3712598A (en) Rotary apparatus for treating colemanite ore
CA3055235A1 (en) Process and apparatus for roasting of gold bearing sulfide concentrate
CA2872454C (en) Process for the beneficiation of pit-moist raw brown coal
US1992520A (en) Method and apparatus for drying materials
JPH05293396A (en) Method for grinding material, such as ore material, for cement production and plant for carrying out the method
RU2802778C1 (en) Method for obtaining clay powder and sand from saponite sludge
US1949181A (en) Sewage disposal
KR20010020393A (en) Method for thermal treatment of granulated iron ore before reduction
JP3380112B2 (en) Pretreatment method for coal charged in coke oven
JPH0519072B2 (en)