JPS62174218A - Production of phenolic resin - Google Patents

Production of phenolic resin

Info

Publication number
JPS62174218A
JPS62174218A JP1660286A JP1660286A JPS62174218A JP S62174218 A JPS62174218 A JP S62174218A JP 1660286 A JP1660286 A JP 1660286A JP 1660286 A JP1660286 A JP 1660286A JP S62174218 A JPS62174218 A JP S62174218A
Authority
JP
Japan
Prior art keywords
phenol
steam
kettle
condenser
formaldehyde
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1660286A
Other languages
Japanese (ja)
Inventor
Kazuo Yamazaki
一雄 山崎
Hitoshi Arakawa
仁 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP1660286A priority Critical patent/JPS62174218A/en
Publication of JPS62174218A publication Critical patent/JPS62174218A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate the formation of a high-purity phonolic resin suitable for e.g., electronic material, by reacting a phenol with a formaldehyde in the presence of a catalyst and concentrating the reaction mixture by dehydration while simultaneously blowing steam and N2 gas thereinto. CONSTITUTION:A phenol (e.g., phenol) and a formaldehyde (e.g., HCHO) are fed together with an acid or alkali catalyst (e.g., aqueous hydrogen chloride solution) to batchwise reaction kettle 1 equipped with a jacket 2 for heating and cooling and reacted by heating with agitation. The pressure in the kettle is decreased to 100-200Torr by a vacuum pump 5 and the solution temperature in the kettle 1 is kept at 10 deg.C or above Steam from a steam inlet pipe 6 and N2 gas from a N2 gas inlet 7 are blown simultaneously into the reaction mixture at a steam to N2 ratio of 1:1-2, and the vaporized water and unreacted matter are condensed by cooling in a condenser 3. The condensate is recovered in a condensate receiver 4. Thus a high0purity phenol resin of an unreacted matter content >=1,000ppm is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はフェノール樹脂の製造法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for producing phenolic resins.

〔従来の技術〕[Conventional technology]

一般にフェノール樹脂を製造する工程においては、フェ
ノールとホルムアルデヒドを合成した後、反応系に残存
する水、未反応モノマーを除去する脱水濃縮工程があり
、この工程では減圧下で加熱するいわゆる真空蒸発操作
が行われている。また、残存量を減らすために、水蒸気
を吹き込む水蒸気蒸留法も使用されている。(亀井三部
「化学機械の理論と計算JP197.産業図書 196
3゜等) 〔発明が解決しようとする問題点〕 上記の方法のうち真空蒸発操作は、合成源液中の未反応
モノマーを除去するに要する時間を短縮し、また残存量
をより低減させるために、常圧蒸発操作を改良した方法
である。しかし、電子材料等に使用されるフェノール樹
脂のように、残存モノマー量がioooppm以下のオ
ーダーになると、真空蒸発操作ではモノマーの除去が不
可能である。一方、水蒸気蒸留法では、1oooppm
のオーダーまで除去が可能であるが、反応系外へ排出さ
れるフェノール、ホルムアルデヒド等を含有する廃液量
が著しく増大し、公害処理負荷が太き(なるという問題
点がある。本発明はこれらの問題点を解決するフェノー
ル樹脂の製造法を提供するものである。
Generally, in the process of manufacturing phenol resin, after synthesizing phenol and formaldehyde, there is a dehydration and concentration process to remove water remaining in the reaction system and unreacted monomers. It is being done. In order to reduce the residual amount, a steam distillation method in which water vapor is blown is also used. (Kamei Sanbe “Chemical Machinery Theory and Calculation JP 197. Sangyo Tosho 196
3゜etc.) [Problems to be solved by the invention] Among the above methods, the vacuum evaporation operation is used to shorten the time required to remove unreacted monomers in the synthesis source solution and to further reduce the residual amount. This method is an improvement on the normal pressure evaporation operation. However, when the amount of residual monomer is on the order of ioooppm or less, such as in the case of phenolic resins used in electronic materials, it is impossible to remove the monomer by vacuum evaporation. On the other hand, in the steam distillation method, 1oooppm
However, there is a problem that the amount of waste liquid containing phenol, formaldehyde, etc. discharged outside the reaction system increases significantly, and the pollution treatment load increases. The present invention provides a method for producing phenolic resin that solves the problems.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のフェノール樹脂の魅造法は、フェノール類とホ
ルムアルデヒド類とを酸性あるいはアルカリ性触媒下で
反応させ、次いで反応系に残存する水および未反応モノ
マーを除去する際、水蒸気および窒素ガスを同時に吹き
込み脱水濃縮することを特徴とする。
The method for producing phenolic resins of the present invention involves reacting phenols and formaldehyde under an acidic or alkaline catalyst, and then simultaneously blowing water vapor and nitrogen gas when removing water and unreacted monomers remaining in the reaction system. It is characterized by dehydration and concentration.

本発明において脱水濃縮する際には、合成釜にジャケッ
トあるいはコイルを装備して熱媒を通し、加熱攪拌する
ことにより、合成釜内の液温を120℃以上とすること
が好ましい。
When dehydrating and concentrating in the present invention, it is preferable that the synthesis kettle is equipped with a jacket or a coil, a heat medium is passed through it, and the liquid temperature in the synthesis kettle is heated and stirred to 120° C. or higher.

本発明の製造法における装置の一例のフローシートを第
1図に示す。
FIG. 1 shows a flow sheet of an example of an apparatus for the production method of the present invention.

攪拌装置および加熱、冷却用ジャケット2を備えたバッ
チ式合成釜1に、流量調節装置を取り付けた水蒸気吹込
管6および窒素ガス吹込管7が設けである。この合成釜
内で合成終了した合成原液は加熱され、真空ポンプ5に
より合成釜内は減圧される。このとき水蒸気および窒素
ガスを吹き込むことにより、真空蒸発操作による脱水濃
縮を行う。蒸発した水および未反応物はコンデンサー3
内で冷却凝縮し、コンデンサー凝縮液受槽に回収される
A batch type synthesis reactor 1 equipped with a stirring device and a heating and cooling jacket 2 is provided with a steam blowing pipe 6 and a nitrogen gas blowing pipe 7 equipped with a flow rate regulating device. The synthetic stock solution that has been synthesized in this synthesis pot is heated, and the pressure inside the synthesis pot is reduced by the vacuum pump 5. At this time, water vapor and nitrogen gas are blown in to perform dehydration and concentration by vacuum evaporation operation. Evaporated water and unreacted substances are stored in condenser 3.
The condensate is cooled and condensed within the condenser, and collected in the condenser condensate receiving tank.

水蒸気および窒素ガスの吹き込み量は合成釜の容量によ
り適宜選択される。水蒸気と窒素ガスの比率はl:1な
いしl:2が好ましく、この範囲外では廃液量が増えた
り、フェノールがコンデンサーに凝縮したりするので好
ましくない。また減圧度は高い方がよいが通常100〜
200To rrの条件が採用される。
The amounts of water vapor and nitrogen gas blown are appropriately selected depending on the capacity of the synthesis vessel. The ratio of water vapor and nitrogen gas is preferably 1:1 to 1:2; outside this range, the amount of waste liquid increases and phenol condenses in the condenser, which is not preferred. Also, the degree of decompression should be higher, but it is usually 100~
A condition of 200 Torr is adopted.

〔作用〕[Effect]

よく知られているように、沸点の高い揮発性の不純物を
それよりも沸点の高い目的物より除去したい場合には、
通常水蒸気蒸留法が用いられる。
As is well known, if you want to remove a volatile impurity with a higher boiling point than a target substance with a higher boiling point,
Steam distillation is usually used.

この水蒸気蒸留法は理想溶液ではラウールの法則、非理
想溶液ではヘンリーの法則により説明されるごとく、蒸
気圧の平衡論を応用したもので、留出物の蒸気に水蒸気
、あるいは他のガスを伴わせ、留出物の分圧を小さくし
、蒸留温度を下げることにより、効率よく不純物の除去
をおこなうものである。
This steam distillation method applies the equilibrium theory of vapor pressure, as explained by Raoult's law for ideal solutions and Henry's law for non-ideal solutions. By reducing the partial pressure of the distillate and lowering the distillation temperature, impurities can be efficiently removed.

本発明ではフェノールの分圧を下げるために、水蒸気お
よび窒素ガスを併用し、フェノールの除去を効率よく行
うものである。本発明で、水蒸気と窒素ガスを併用して
いるのは、以下の理由による。
In the present invention, in order to lower the partial pressure of phenol, water vapor and nitrogen gas are used in combination to efficiently remove phenol. The reason why water vapor and nitrogen gas are used together in the present invention is as follows.

すなわち、水蒸気のみ使用する場合、先に述べたように
、廃水処理負荷の増大が問題となり、一方窒素ガスのみ
使用する場合は、コンデンサー効率の低下が問題となる
からである。すなわち、除去しようとするフェノールは
、その凝固点が40℃と高いため、窒素ガスのみを用い
た場合、コンデンサーの伝熱面へ凝縮した後直ちに固ま
り、コンデンサーの伝熱効率を低下させ、ついには閉塞
させてしまうという問題がある。ここで、窒素ガスと一
緒に少量の水蒸気を吹き込むと、コンデンサー内凝縮液
は水蒸気とフェノールの混合液となり、凝固することも
なく、従って、コンデンサー効率を損なわずにフェノー
ル等不純物の除去ができる。
That is, when only water vapor is used, as mentioned above, an increase in waste water treatment load becomes a problem, whereas when only nitrogen gas is used, a decrease in condenser efficiency becomes a problem. In other words, the phenol to be removed has a high freezing point of 40°C, so if only nitrogen gas is used, it will solidify immediately after condensing on the heat transfer surface of the condenser, reducing the heat transfer efficiency of the condenser and eventually causing blockage. There is a problem with this. If a small amount of water vapor is blown in together with nitrogen gas, the condensate in the condenser becomes a mixture of water vapor and phenol, and does not coagulate. Therefore, impurities such as phenol can be removed without impairing condenser efficiency.

第2図に真空蒸発操作、水蒸気蒸留操作、窒素蒸留操作
、水蒸気・窒素蒸留操作におけるフェノール樹脂中の残
存フェノール量の推移を示す。
Figure 2 shows the changes in the amount of phenol remaining in the phenol resin during vacuum evaporation, steam distillation, nitrogen distillation, and steam/nitrogen distillation.

■は吹き込み無し、■は水蒸気(100g/Hr)■は
窒素ガス(100g/Hr)■は水蒸気水蒸気(30g
/Hr)、窒素ガス(60g/Hr)の場合である。
■ means no blowing, ■ means water vapor (100 g/Hr) ■ means nitrogen gas (100 g/Hr) ■ means water vapor (30 g
/Hr) and nitrogen gas (60g/Hr).

第2図で■の窒素蒸留が後半フェノール減少速度が落ち
ているのは、コンデンサー伝熱面が凝縮したフェノール
で覆われ、真空ポンプの封水に混合し、減圧度が上がっ
てしまうためである。また、■と■は減少速度には差が
ないが、フェノールを含む廃液量は■の方が■の約3倍
も多い。
In Figure 2, the rate of phenol reduction in the second half of nitrogen distillation (■) is slow because the heat transfer surface of the condenser is covered with condensed phenol, which mixes with the seal water of the vacuum pump, increasing the degree of vacuum. . Furthermore, although there is no difference in the rate of decrease between ■ and ■, the amount of waste liquid containing phenol is approximately three times greater in ■ than in ■.

〔実施例〕〔Example〕

以下、本発明を実施例で説明するが、本発明の範囲はこ
の実施例によって限定されるものではない。
EXAMPLES Hereinafter, the present invention will be explained using Examples, but the scope of the present invention is not limited by these Examples.

実施例 30ONの反応釜にフェノール120kg、ホルマリン
(37%ホルムアルデヒド水溶液)700kg、10%
塩酸水溶液0.4 kgを投入し、攪拌しながら100
度に加熱し、反応物が白濁した時点で常圧下で脱水濃縮
を開始し、反応液温が130度になった時点で真空ポン
プにより減圧度を200Torrに下げ、圧力3kg/
cdGの水蒸気を3瞳/ Fl r %圧力5kg/a
dGの窒素ガスを5k(/Hr吹き込み、3時間脱水濃
縮を続けた。
Example 3 Into a 0ON reaction vessel, 120 kg of phenol, 700 kg of formalin (37% formaldehyde aqueous solution), 10%
Add 0.4 kg of hydrochloric acid aqueous solution and add 100 kg while stirring.
When the reaction mixture became cloudy, dehydration and concentration was started under normal pressure. When the temperature of the reaction mixture reached 130 degrees, the degree of vacuum was lowered to 200 Torr using a vacuum pump, and the pressure was reduced to 3 kg/
cdG water vapor 3 pupils/Fl r %pressure 5kg/a
Nitrogen gas of dG was blown at 5 k/hr, and dehydration and concentration was continued for 3 hours.

以上により得られた樹脂は次のような性質を有した。軟
化点 83℃、シェル流 50龍、残量未反応フェノー
ル 400ppm。
The resin obtained above had the following properties. Softening point: 83°C, shell flow: 50%, remaining unreacted phenol: 400ppm.

また、フェノールを含む廃液量は水蒸気法に比べ30%
少なかった。
In addition, the amount of waste liquid containing phenol is 30% compared to the steam method.
There weren't many.

〔発明の効果〕〔Effect of the invention〕

本発明の製造法によれば、容易にフェノール樹脂中の未
反応物等の含有量を11000pp以下まで低減させる
ことができ、電子材料用等へ使用する高純度な製品を製
造することができる。また、コンデンサーの伝熱面への
フェノール凝固がおこらないため、コンデンサーの効率
が損なわれることもなく、設備容量の縮小および設備メ
ンテナンス時間の短縮が可能となる。さらに、本発明に
よればフェノール類を含む廃液量の低減が図ることがで
きる。かくの如く、本発明の工業的、経済的および公害
対策面における価値は大である。
According to the production method of the present invention, the content of unreacted substances, etc. in the phenol resin can be easily reduced to 11,000 pp or less, and high purity products for use in electronic materials etc. can be produced. Furthermore, since phenol coagulation does not occur on the heat transfer surface of the condenser, the efficiency of the condenser is not impaired, making it possible to reduce equipment capacity and equipment maintenance time. Furthermore, according to the present invention, it is possible to reduce the amount of waste liquid containing phenols. As described above, the present invention has great value in terms of industrial, economical and pollution control aspects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による製造法にてフェノール樹脂を製造
する装置のフローシートである。 第2図は蒸留操作における残存フェノール量の推移を表
したグラフである。 符号の説明 1 反応釜    2 加熱、冷却用ジャケット3 コ
ンデンサー 4 コンデンサー凝縮液受槽5 真空ポン
プ  6 水蒸気吹込管 7 窒素ガス吹込管
FIG. 1 is a flow sheet of an apparatus for producing phenolic resin by the production method according to the present invention. FIG. 2 is a graph showing the change in the amount of residual phenol during the distillation operation. Explanation of symbols 1 Reaction vessel 2 Heating and cooling jacket 3 Condenser 4 Condenser condensate receiving tank 5 Vacuum pump 6 Steam blowing pipe 7 Nitrogen gas blowing pipe

Claims (1)

【特許請求の範囲】[Claims] 1、フェノール類とホルムアルデヒド類とを酸性あるい
はアルカリ性触媒下で反応させ、次いで反応系に残存す
る水および未反応モノマーを除去する際、水蒸気および
窒素ガスを同時に吹き込み脱水濃縮することを特徴とす
るフェノール樹脂の製造法。
1. Phenol, which is characterized by reacting phenols and formaldehyde under an acidic or alkaline catalyst, and then removing water and unreacted monomers remaining in the reaction system by simultaneously blowing water vapor and nitrogen gas for dehydration and concentration. Method of manufacturing resin.
JP1660286A 1986-01-28 1986-01-28 Production of phenolic resin Pending JPS62174218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1660286A JPS62174218A (en) 1986-01-28 1986-01-28 Production of phenolic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1660286A JPS62174218A (en) 1986-01-28 1986-01-28 Production of phenolic resin

Publications (1)

Publication Number Publication Date
JPS62174218A true JPS62174218A (en) 1987-07-31

Family

ID=11920844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1660286A Pending JPS62174218A (en) 1986-01-28 1986-01-28 Production of phenolic resin

Country Status (1)

Country Link
JP (1) JPS62174218A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011068760A (en) * 2009-09-25 2011-04-07 Dic Corp Method for producing bisphenol f in combination with novolak-type phenol resin
JP2011089008A (en) * 2009-10-22 2011-05-06 Sekisui Chem Co Ltd Method for producing curable resin composition
CN105363401A (en) * 2015-11-24 2016-03-02 嘉善绿野环保材料厂(普通合伙) Reaction kettle for polyaluminum chloride production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011068760A (en) * 2009-09-25 2011-04-07 Dic Corp Method for producing bisphenol f in combination with novolak-type phenol resin
JP2011089008A (en) * 2009-10-22 2011-05-06 Sekisui Chem Co Ltd Method for producing curable resin composition
CN105363401A (en) * 2015-11-24 2016-03-02 嘉善绿野环保材料厂(普通合伙) Reaction kettle for polyaluminum chloride production

Similar Documents

Publication Publication Date Title
US5324867A (en) Process for the production of bisphenol A.
US3983180A (en) Process for preparing methyl chloride
JP4182608B2 (en) Separation and recovery of hydrogen chloride and water
CN1911890B (en) Method of producing high-purity hydroxypivalaldehyde and/or dimer thereof
KR920009111B1 (en) Method of carrying out chemical dehydration reaction and apparatus therefor
IE42020B1 (en) Preparation of hydroxypivaldehyde
CA1321208C (en) Method for preparation of alkyl glycolates
EP1171665B1 (en) Process for the production of furfural from lignosulphonate waste liquor
US5455017A (en) Production of concentrated aqueous solutions of ferric chloride
CN101125795A (en) Method for preparing formic acid
US6080894A (en) propylene oxide and styrene monomer co-production procedure
US4747914A (en) Process for the purification of 1,2-dichloroethane
US4115408A (en) Conversion of poly(tetramethylene ether) glycol in aqueous effluent stream to tetrahydrofuran
JPS62174218A (en) Production of phenolic resin
US3953533A (en) Process for the hydration of olefins to alcohols
JPS60116635A (en) Manufacture of 1,2-dichloroethane from ethylene and chlorinegas
KR100279575B1 (en) Method for preparing methyl formate
CN114835569A (en) Method for producing photoinitiator UV-184 by condensation method
US3378585A (en) Process for the production of urea
US3846255A (en) Separating phenol from phenol-water subazeotrope by treatment with brine
US3647640A (en) Process for recovering dimethylformamide by distillation with dimethylamine addition
CN110921630A (en) Method for preparing hydrogen chloride by resolving hydrochloric acid
CA1121829A (en) Continuous manufacture of allyl diglycol carbonate
US3436317A (en) Treatment of unreacted substances in urea synthesis
SU389069A1 (en) P ^ UNIONAL - • i; S.1; > & 'i V, •. ;,; ..:. ;;;;, -,: ./> & ^ ', -' • r. '. Ri-! ! w ^ -J ^ L.i;: - ::. ^ MOTh ^ HA \