JPS62173606A - Bipolar magnetic field generator - Google Patents

Bipolar magnetic field generator

Info

Publication number
JPS62173606A
JPS62173606A JP1507686A JP1507686A JPS62173606A JP S62173606 A JPS62173606 A JP S62173606A JP 1507686 A JP1507686 A JP 1507686A JP 1507686 A JP1507686 A JP 1507686A JP S62173606 A JPS62173606 A JP S62173606A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic pole
winding
main
main magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1507686A
Other languages
Japanese (ja)
Other versions
JPH0766486B2 (en
Inventor
Masatoshi Hayakawa
正俊 早川
Osamu Ishikawa
理 石川
Masahiko Kaneko
正彦 金子
Takehiro Nagaki
永木 猛弘
Toshio Mori
森 桐史雄
Koichi Aso
阿蘇 興一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP61015076A priority Critical patent/JPH0766486B2/en
Publication of JPS62173606A publication Critical patent/JPS62173606A/en
Publication of JPH0766486B2 publication Critical patent/JPH0766486B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing

Abstract

PURPOSE:To easily generate a bipolar magnetic field, to reduce the power consumption and to make overwriting possible by forming a main magnetic pole and a yoke with hard magnetic materials and soft magnetic materials respectively and supplying a pulse current to a winding wound around the main magnetic pole to switch the direction of magnetization. CONSTITUTION:A main magnetic pole 2 is formed with hard magnetic materials, and an anisotropic 'Alnico(R)' alloy or the like is used as them. A winding is wound around the main magnetic pole 2, and the pulse current is applied to the winding 3 only when the direction of magnetization of the main magnetic pole 2 is inverted. A yoke 4 forms a return path of a magnetic flux generated in the main magnetic pole 2 for recording or erasing and is formed with soft magnetic materials like Fe-Ni. A pulse current generating means 5 is provided with a DC power source 7 which can control the inversion of the current direction, a capacitor 8 of charging and discharging, and resistances 9 and 10, and a switch 11 is switched to select charging or discharging of the capacitor 8. In case of discharging of the capacitor 8, the pulse current is generated and flows to the winding 3 to generate a prescribed magnetic field which can invert the direction of magnetization of the main magnetic pole 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気回路の一部に永久磁石材料等の硬質磁性材
料を用いた双極性磁界発生装置に関し、特に光磁気記録
再生装置等におけるバイアス磁界の印加に好適な双極性
磁界発生装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a bipolar magnetic field generating device using a hard magnetic material such as a permanent magnet material in a part of a magnetic circuit, and in particular to a bipolar magnetic field generating device that uses a hard magnetic material such as a permanent magnet material as a part of a magnetic circuit, and particularly relates to a bipolar magnetic field generating device that uses a hard magnetic material such as a permanent magnet material as a part of a magnetic circuit. The present invention relates to a bipolar magnetic field generator suitable for applying a magnetic field.

〔発明の概要〕[Summary of the invention]

本発明は、光磁気記録等を行うためのバイアス磁界の印
加に使用される磁界発生装置において、主磁極とヨーク
をそれぞれ硬質磁性材料と軟質磁性材料で形成し核上磁
極に巻回された巻線にパルス電流を供給して着磁の方向
を切り替えることにより、容易に双極性の磁界を発生さ
せ且つ消費電力も少なく重ね書きを可能にするものであ
る。
The present invention provides a magnetic field generating device used for applying a bias magnetic field for magneto-optical recording, etc., in which the main pole and the yoke are formed of a hard magnetic material and a soft magnetic material, respectively, and a winding is wound around the supra-nuclear magnetic pole. By supplying a pulse current to the wire and switching the direction of magnetization, a bipolar magnetic field can be easily generated, power consumption is low, and overwriting can be performed.

〔従来の技術〕[Conventional technology]

光磁気記録装置において、光磁気ディスク等の光磁気記
録媒体上に熱磁気的に記録ビットをSN比良く書き込む
ためには、光磁気記録媒体の膜面と垂直に一定値以上の
バイアス磁界を印加しておく必要がある。また、一度記
録されたデータを消去するためには、記録時と逆向きの
磁界を印加して、レーザービーム等を照射し媒体をある
温度以上に加熱する必要がある。
In a magneto-optical recording device, in order to thermomagnetically write recording bits with a good signal-to-noise ratio on a magneto-optical recording medium such as a magneto-optical disk, a bias magnetic field of a certain value or more is applied perpendicular to the film surface of the magneto-optical recording medium. It is necessary to do so. Furthermore, in order to erase data once recorded, it is necessary to apply a magnetic field in the opposite direction to that during recording and irradiate the medium with a laser beam or the like to heat the medium to a certain temperature or higher.

このようにデータの書き込みや消去を行うための磁界の
発生装置としては、永久磁石を使用し、機械的動作によ
り永久磁石を反転させる機構のものが知られている。即
ら、永久磁石から発生ずる磁界をバイアス磁界として用
い、その磁界の向きが記録時と消去時でそれぞれ逆にな
るように永久磁石を機械的に反転させる機構になってい
る。
As a magnetic field generating device for writing and erasing data in this way, one is known that uses a permanent magnet and has a mechanism in which the permanent magnet is reversed by mechanical operation. That is, the magnetic field generated by the permanent magnet is used as a bias magnetic field, and the permanent magnet is mechanically reversed so that the direction of the magnetic field is reversed during recording and erasing.

また、永久磁石を使用せずに、電磁石を使用し、所定の
電流を該電磁石に流すことでバイアス磁界を発生させる
機構のものも知られている。これは電磁石から発生する
バイアス磁界によって、データの書き込みや消去を行っ
ている。
Also known is a mechanism that uses an electromagnet without using a permanent magnet and generates a bias magnetic field by passing a predetermined current through the electromagnet. Data is written and erased using a bias magnetic field generated by an electromagnet.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上述の永久磁石を機械的動作によって反
転させる機構のものは、長期間使用した場合には機械的
動作を伴うために信頼性の点で不安がある。
However, the above-mentioned mechanism in which the permanent magnet is reversed by mechanical operation is not reliable in terms of reliability when used for a long period of time because the mechanical operation is involved.

また、上述の電磁石を使用し、所定の電流を該電磁石に
流すことでバイアス磁界を発生させる機構のものは、少
なくとも使用時において電力を消費し、また、通電によ
る熱の発生が有り、Q熱から誤動作等の弊害が生ずるお
それがある。
In addition, the mechanism that uses the electromagnet described above and generates a bias magnetic field by passing a predetermined current through the electromagnet consumes power at least when in use, and also generates heat due to current flow, causing Q heat. This may cause malfunctions and other adverse effects.

そこで、本発明は上述の問題点に泥み、信頼性も高く安
定して磁界を発生させ、且つ低消費電力を実現し、更に
発熱等の弊害のない双極性磁界発生装置の提供を目的と
する。
Therefore, the present invention addresses the above-mentioned problems, and aims to provide a bipolar magnetic field generating device that is highly reliable, generates a stable magnetic field, achieves low power consumption, and is free from harmful effects such as heat generation. do.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、一端が磁気記録層に対向し硬質磁性材料によ
り形成された主磁極と、該主磁極に巻回された巻線と、
軟磁性材料により形成され上記主磁極で発生する磁束の
リターンバスとなるヨークと、上記主磁極の極性を反転
して着磁をするために上記巻線と接続するパルス電流発
生手段とを有してなる双極性磁界発生装置により上述の
問題点を解決する。
The present invention includes: a main magnetic pole whose one end faces a magnetic recording layer and is formed of a hard magnetic material; a winding wound around the main magnetic pole;
It has a yoke formed of a soft magnetic material and serves as a return bus for the magnetic flux generated by the main magnetic pole, and a pulse current generating means connected to the winding in order to reverse the polarity of the main magnetic pole and magnetize it. This bipolar magnetic field generator solves the above problems.

〔作用〕[Effect]

本発明の双極性磁界発生装置は、記録媒体へのデータの
書き込み時や消去時におけるバイアス磁界の発生は、硬
質磁性材料である主磁極とリターンバスとなるヨークに
よって行う機構になっている。従って、書き込み時や消
去時では、通電は不要であり、電力が消費されることも
なく、また、発熱等は防止される。
The bipolar magnetic field generating device of the present invention has a mechanism in which a bias magnetic field is generated when writing or erasing data on a recording medium using a main magnetic pole made of a hard magnetic material and a yoke serving as a return bus. Therefore, during writing and erasing, there is no need to apply electricity, no power is consumed, and heat generation is prevented.

そして、本発明は、書き込み時と消去時とで磁界の方向
を反転させるための機構、即ち双極性のバイアス磁界を
発生させるための機構として、主磁極を所定の方向に着
磁するための巻線と、この巻線に接続するようにパルス
電流発生手段を有し、このパルス電流発生手段より発生
するパルス電流を巻線に加えることで主磁極の着磁の方
向を反転させることができる。これは、主磁極は、例え
ば第3図に示すようなヒシテリシス特性を有する硬質磁
性材料で形成されており、パルス電流を上記巻線を介し
て主磁極に対して作用させ、第3図中、A点からB点あ
るいはB点からA点と着磁の状態を変化させることがで
きるからである。
The present invention also provides a mechanism for reversing the direction of the magnetic field between writing and erasing, that is, a mechanism for generating a bipolar bias magnetic field, in which a winding is used to magnetize the main magnetic pole in a predetermined direction. A wire and a pulse current generating means are connected to the winding, and by applying a pulse current generated by the pulse current generating means to the winding, the direction of magnetization of the main pole can be reversed. This is because the main pole is made of a hard magnetic material having hysteresis characteristics as shown in FIG. 3, for example, and a pulse current is applied to the main pole through the winding, and This is because the state of magnetization can be changed from point A to point B or from point B to point A.

このように主磁極の磁界の方向を反転させることができ
るため、書き込み時と消去時の両方に本発明の双極性磁
界発生装置を使用することができる。このため機械的な
動作等の機構部は不要であり、装置の信頼性や装置の安
定性は高いものとなる。
Since the direction of the magnetic field of the main pole can be reversed in this way, the bipolar magnetic field generating device of the present invention can be used for both writing and erasing. Therefore, there is no need for mechanical parts such as mechanical operations, and the reliability and stability of the device are high.

〔実施例〕〔Example〕

本発明の好適な実施例を図面を参照しながら説明する。 Preferred embodiments of the present invention will be described with reference to the drawings.

本実施例の双極性磁界発生装置1は、第1図に示す構成
になっている。
The bipolar magnetic field generating device 1 of this embodiment has the configuration shown in FIG. 1.

すなわち、本実施例の双極性磁界発生装置1は、光磁気
記録媒体の光磁気記録層等の磁気記録層に対向して用い
られ硬質磁性材料により形成された主磁極2と、該主磁
極2に巻回されこの主磁極2の着磁の方向を反転させる
ための巻線3と、軟磁性材料により形成され上記主磁極
2で発生する磁束のリターンバスとなるヨーク4と、上
記主磁極2に双極性の着磁を施すために上記巻線3と接
続するパルス電流発生手段5により構成されている。
That is, the bipolar magnetic field generating device 1 of this embodiment includes a main magnetic pole 2 formed of a hard magnetic material and used to face a magnetic recording layer such as a magneto-optical recording layer of a magneto-optical recording medium; a winding 3 wound around the main magnetic pole 2 for reversing the direction of magnetization of the main magnetic pole 2; a yoke 4 formed of a soft magnetic material and serving as a return bus for the magnetic flux generated in the main magnetic pole 2; It is comprised of a pulse current generating means 5 connected to the winding 3 in order to apply bipolar magnetization to the magnet.

上記主磁極2は、硬質磁性材料で形成されておリ、例え
ば異方性アルニコ合金等を用いることができる。また、
主磁極2は、バイアス磁界を形成するに足る残留磁化特
性を有するものであれば良く、上記パルス電流発生手段
5によってパルス電流が当該主磁極2に巻回する上記巻
線3に供給されたときには、着磁の方向が反転するよう
なヒシテリシス特性を示す材料であれば良い。この主磁
極2の形状は、略直方体であり、第2図に示すように、
光磁気記録媒体等の磁気記録層に対して対向する対向面
6が、該媒体の記録有効領域の少なくとも径方向に亘る
長さR1を有している。また、特に略直方体に限定され
ず、磁気抵抗や放熱等を考慮して最適化を図っても良い
。また、媒体上の1トラック幅に該当する幅の長さにし
ても良い。
The main magnetic pole 2 is made of a hard magnetic material, such as an anisotropic alnico alloy. Also,
The main magnetic pole 2 may have residual magnetization characteristics sufficient to form a bias magnetic field, and when a pulse current is supplied by the pulse current generating means 5 to the winding 3 wound around the main magnetic pole 2, , any material may be used as long as it exhibits hysteresis characteristics such that the direction of magnetization is reversed. The shape of the main magnetic pole 2 is approximately a rectangular parallelepiped, and as shown in FIG.
A facing surface 6 facing a magnetic recording layer of a magneto-optical recording medium or the like has a length R1 extending at least in the radial direction of the recording effective area of the medium. Further, the shape is not particularly limited to a substantially rectangular parallelepiped, and optimization may be made in consideration of magnetic resistance, heat radiation, etc. Alternatively, the length may be set to a width corresponding to one track width on the medium.

また、この対向面6には、テーパを形成しても良く、記
録媒体を近接させた場合に有効である。
Further, this facing surface 6 may be formed with a taper, which is effective when the recording medium is brought close to each other.

上記巻線3は、主磁極2に巻回されて該主磁極2の磁化
の方向を反転させる場合にのみパルス電流が加えられる
ものである。巻線3は、例えばポリイミド樹脂等の絶縁
材料を被覆した導線であり、主磁極2の着磁の方向を反
転させるのに足る磁界を発生させるものであれば良い。
The winding 3 is wound around the main magnetic pole 2 to which a pulse current is applied only when the direction of magnetization of the main magnetic pole 2 is reversed. The winding 3 is, for example, a conducting wire coated with an insulating material such as polyimide resin, and may be any wire that generates a magnetic field sufficient to reverse the direction of magnetization of the main pole 2.

この巻線3を巻回する場合には、アクリル樹脂等の巻枠
を用いても良い。
When winding the winding 3, a winding frame made of acrylic resin or the like may be used.

上記ヨーク4は、記録時や消去時において、上記主磁極
2で発生する磁束のリターンバスとなるものであり、例
えばFe−Ni系等の軟磁性材料で形成されている。こ
のヨーク4の形状は断面口字状になっており、その底面
の中心に上記主磁極2が取り付けられ、ヨーク4と主磁
極2を組み合わせた形状は、所謂断面E字状になってい
る。
The yoke 4 serves as a return bus for the magnetic flux generated by the main magnetic pole 2 during recording and erasing, and is made of a soft magnetic material such as Fe--Ni. The yoke 4 has a cross-sectional shape, and the main magnetic pole 2 is attached to the center of its bottom surface, and the combination of the yoke 4 and the main magnetic pole 2 has a so-called E-shaped cross section.

上記パルス電流発生手段5は、例えば第1図に示すよう
な、コンデンサ充放電回路を用いることができる。この
パルス電流発生手段5は、電流の方向を反転制御し得る
直流電源7と、充電や放電を行うコンデンサ8と、抵抗
9.10を有しており、スイッチ11の切り換えにより
、コンデンサ8の充電と放電を選択することができる。
As the pulse current generating means 5, a capacitor charging/discharging circuit as shown in FIG. 1, for example, can be used. This pulse current generating means 5 has a DC power supply 7 capable of reversing the direction of current, a capacitor 8 for charging and discharging, and a resistor 9.10. and discharge can be selected.

このコンデンサ8の放電の場合に上記パルス電流が発生
し、このパルス電流が上記巻線3を流れて、所定の主磁
極2の着磁の方向を反転させ得る磁界が発生する。尚、
図示の例では、後述する実験のために、抵抗9と並列に
電流測定の為のデジタルメモIJ −12を取り付け、
また、電源を可変直流電源7としている。
In the case of this discharge of the capacitor 8, the pulse current is generated, which flows through the winding 3 and generates a magnetic field capable of reversing the direction of magnetization of a given main pole 2. still,
In the illustrated example, a digital memo IJ-12 for current measurement is attached in parallel with the resistor 9 for the experiment described later.
Further, the power source is a variable DC power source 7.

このような双極性磁界発生装置1は、例えば第2図に示
すような状態で使用することができる。
Such a bipolar magnetic field generating device 1 can be used, for example, in a state as shown in FIG.

すなわち、第2図中、1点鎖線で示す光磁気記録媒体2
0の一方の面に、当該媒体の径方向に亘るように上記主
磁極2の上記対向面6が対向するように配設される。こ
のように双極性磁界発生装置lを配設し、記録時と消去
時とで上記パルス電流により主磁極2の磁界の方向を反
転させて使用することにより、データの市ね書きいわゆ
るオーバーライドが可能になる。
That is, the magneto-optical recording medium 2 indicated by the dashed line in FIG.
The opposing surface 6 of the main pole 2 is disposed to face one surface of the main magnetic pole 2 in the radial direction of the medium. By arranging the bipolar magnetic field generator l in this way and using the above-mentioned pulse current to reverse the direction of the magnetic field of the main magnetic pole 2 during recording and erasing, it is possible to overwrite data. become.

この双極性磁界発生装置1の記録状態と消去状態ではそ
れぞれ極性の異なる上記主磁極2の残留磁束密度に依存
したバイアス磁界を発生する。そして、このバイアス磁
界を利用してレーザービーム等を照射し記録や消去を行
うことができる。この場合には、上記主磁極の残留磁化
を利用するため電力の消費がなく、また、電流を流す必
要がないため、発熱等の弊害を有効に抑えることができ
る。
In a recording state and an erasing state, this bipolar magnetic field generating device 1 generates bias magnetic fields depending on the residual magnetic flux densities of the main magnetic pole 2 having different polarities. Then, using this bias magnetic field, recording and erasing can be performed by irradiating a laser beam or the like. In this case, since the residual magnetization of the main magnetic pole is utilized, no power is consumed, and there is no need to flow current, so that adverse effects such as heat generation can be effectively suppressed.

また、上記双極性磁界発生装置1において、記録状態か
ら消去状態にあるいは消去状態から記録状態にする場合
には、パルス電流を用いて主磁極2の磁界方向を反転さ
せることで簡単に使用状態を変えることができる。そし
て、パルス電流によって主磁極2の着磁方向を反転させ
るため、確実にこの反転制御を行うことができ、従来の
ように機械的動作によらないため、装置の信頼性が向上
する。
In addition, in the bipolar magnetic field generating device 1, when changing from a recording state to an erased state or from an erased state to a recorded state, the use state can be easily changed by reversing the magnetic field direction of the main magnetic pole 2 using a pulse current. It can be changed. Since the magnetization direction of the main magnetic pole 2 is reversed by the pulse current, this reversal control can be performed reliably, and the reliability of the device is improved because it does not depend on mechanical operation as in the conventional method.

ここで、以上のような双極性磁界発生装置1について、
本件発明者らが行った実験に基づいて説明する。
Here, regarding the bipolar magnetic field generator 1 as described above,
This will be explained based on experiments conducted by the inventors of the present invention.

先ず、主磁極2の材料に保磁力0.73kOe。First, the material of the main pole 2 has a coercive force of 0.73 kOe.

最大エネルギー積3.5MGOcの異方性アルニコ合金
を使用し、ヨーク4の材料をFG−Ni系の軟磁性材料
としていわゆる45パーマロイを使用した。巻線3は0
.35uの被覆銅線を使用し、350回の巻線とし、ま
た上記コンデンサ8は、495μFの容量のものを用い
た。
An anisotropic alnico alloy with a maximum energy product of 3.5 MGOc was used, and the material of the yoke 4 was a so-called 45 permalloy as an FG-Ni soft magnetic material. Winding 3 is 0
.. A 35u coated copper wire was used, with 350 turns, and the capacitor 8 had a capacity of 495 μF.

そして、上記パルス電流発生手段5のスイッチ11を操
作して、上記コンデンサ8の充放電によってパルス電流
を発生させ、このパルス電流を上記デジタルメモリー1
2を使用して測定し、さらにそのパルス電流における若
磁後の磁界強度を、ガウスメーターを使用して測定した
Then, by operating the switch 11 of the pulse current generating means 5, a pulse current is generated by charging and discharging the capacitor 8, and this pulse current is transferred to the digital memory 1.
2, and further, the magnetic field strength after young magnetization at the pulsed current was measured using a Gauss meter.

このような実験の結果を第5図に示す。第5図は横軸が
パルス電流の最大電流値(A)であり、縦軸が磁界強度
(Oe)である。このパルス電流の最大電流値と磁界強
度の関係は、最大電流値に依存して磁界強度が指数関数
的に立ち上がるような特性を示している。また、主磁極
2の対向面6からの距離dに応じて、距fidが小さい
方がより強い磁界が形成されていることがわかる。尚、
距離dは1龍、3龍、5mの各距離について測定した。
The results of such an experiment are shown in FIG. In FIG. 5, the horizontal axis is the maximum current value (A) of the pulse current, and the vertical axis is the magnetic field strength (Oe). The relationship between the maximum current value of this pulse current and the magnetic field strength shows a characteristic that the magnetic field strength rises exponentially depending on the maximum current value. It can also be seen that, depending on the distance d from the opposing surface 6 of the main magnetic pole 2, the smaller the distance fid, the stronger the magnetic field is formed. still,
The distance d was measured for each distance of 1 dragon, 3 dragons, and 5 meters.

また、同様の実験を主磁極2の材料を換えて行った。主
磁極2の材料に保磁力1.4 koe、最大エネルギー
積5.0MGOaの異方性アルニコ合金を用いた。
Further, similar experiments were conducted by changing the material of the main pole 2. An anisotropic alnico alloy with a coercive force of 1.4 koe and a maximum energy product of 5.0 MGOa was used as the material for the main pole 2.

その結果として、第6図に示すようなパルス電流の最大
電流値(A)と磁界強度(Oe)の関係が得られている
。この場合には、第5図に示した保磁力0.73kOe
、最大エネルギー積3.5MGOeの異方性アルニコ合
金を主磁極2の材料とする双極性磁界発生装置1と比較
して、各距離d毎に、それぞれ強い磁界が得られている
ことがわかる。
As a result, a relationship between the maximum current value (A) of the pulse current and the magnetic field strength (Oe) as shown in FIG. 6 is obtained. In this case, the coercive force shown in Fig. 5 is 0.73 kOe.
, it can be seen that a strong magnetic field is obtained at each distance d, compared to the bipolar magnetic field generator 1 in which the main magnetic pole 2 is made of an anisotropic alnico alloy with a maximum energy product of 3.5 MGOe.

ここで、参考のために距離dが3非の場合に、約500
0eの磁界を得るためのパルス電流について説明すると
、第4図に示すようなパルス波形であれば良い。立ら上
がり時間は2.7m5ecであり、パルス幅10は10
.3m5ecである。
Here, for reference, if the distance d is 3, approximately 500
To explain the pulse current for obtaining a magnetic field of 0e, any pulse waveform as shown in FIG. 4 may be used. The rise time is 2.7 m5ec, and the pulse width 10 is 10
.. It is 3m5ec.

また、最大電流値は4Aである。尚、この波形は、シャ
ント抵抗9の値を0.5Ωとした際のデジタルメモリー
12のデータである。また、コンデンサ8への充電電圧
を大きくすることで、パルスの立ち上がりを急峻にする
ことができる。
Further, the maximum current value is 4A. Note that this waveform is data in the digital memory 12 when the value of the shunt resistor 9 is 0.5Ω. Furthermore, by increasing the voltage charged to the capacitor 8, the rise of the pulse can be made steeper.

本実施例の双極性磁界発生装置1と対比するための比較
例を示す。
A comparative example will be shown for comparison with the bipolar magnetic field generating device 1 of this embodiment.

この比較例は、第8図に示すように、主磁極82とヨー
ク84を両方ともFe−Ni系の軟磁性材料いわゆる4
5パーマロイで形成したものである。巻線83は、銅製
の巻枠に、直径0.6−1の被覆銅線を150回巻いて
、直流抵抗を1.44Ωとした。
In this comparative example, as shown in FIG.
It is made of 5 permalloy. The winding 83 was made by winding a coated copper wire having a diameter of 0.6-1 150 times around a copper winding frame, and having a direct current resistance of 1.44Ω.

これを用いて、上述の実験の例と同様な測定を行い。そ
の結果から、第7図に示すような電流−磁界特性が得ら
れている。
Using this, measurements similar to those in the experimental example described above were performed. From the results, current-magnetic field characteristics as shown in FIG. 7 were obtained.

また、この比較例のデータと本実施例の双極性磁界発生
装置■のデータから、電力の得失については、第1表の
結果がiqられている。
Furthermore, from the data of this comparative example and the data of the bipolar magnetic field generator (2) of the present example, the results in Table 1 are determined regarding the advantages and losses of electric power.

(以下、余白) 第1表 第1表のデータは、それぞれ3 mm離れた点で500
0eの磁界を得るために必要な電力を示している。主磁
極とヨークを軟磁性材料で構成した比較例では、連続し
て通電するため所定の磁界を発生させ得る電力が大きく
なっている。一方、本実施例の双極性磁界発生装置lを
使用した場合には、パルス電流は主磁極の着磁の方向の
反転のためにのみ使用され、記録状態や消去状態では通
電しない。そして、反転の周期を例えば59ms e 
cとしても、第1表に示すように十分に省電力化を図る
ことができる。
(Hereinafter, blank space) Table 1 The data in Table 1 is 500 at points 3 mm apart from each other.
It shows the power required to obtain a magnetic field of 0e. In the comparative example in which the main pole and the yoke are made of soft magnetic material, the power required to generate a predetermined magnetic field is large because the current is applied continuously. On the other hand, when the bipolar magnetic field generator 1 of this embodiment is used, the pulse current is used only for reversing the direction of magnetization of the main pole, and is not applied in the recording state or erasing state. Then, the period of reversal is set to 59 ms, for example.
As shown in Table 1, sufficient power saving can be achieved even with the case of c.

〔発明の効果〕〔Effect of the invention〕

本発明の双極性磁界発生装置は、記録媒体へのデータの
書き込み時や消去時におけるバイアス磁界の発生は、硬
質磁性材料である主磁極とリターンバスとなるヨークに
よって行う機構になっている。従って、書き込み時や消
去時では、通電は不要であり、電力が消費されることも
なく、また、発熱等は防止される。また、巻線とパルス
電流発生手段により書き込み時および消去時にバイアス
磁界をそれぞれ反転させて用いることができる。
The bipolar magnetic field generating device of the present invention has a mechanism in which a bias magnetic field is generated when writing or erasing data on a recording medium using a main magnetic pole made of a hard magnetic material and a yoke serving as a return bus. Therefore, during writing and erasing, there is no need to apply electricity, no power is consumed, and heat generation is prevented. Further, the bias magnetic field can be reversed during writing and erasing by using the winding and the pulse current generating means.

このため機械的な動作を伴う機構部等は不要であり、装
置の信頼性や装置の安定性は高いものとなる。
Therefore, there is no need for a mechanical part that involves mechanical operation, and the reliability and stability of the device are high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る双極性磁界発生装置の構成を示す
模式図、第2図はその使用状態の一例を示す斜視図、第
3図は主磁極の材料のヒシテリシス特性を示す特性図、
第4図は本発明の双極性磁界発生装置における一例とし
てパルス電流の波形図、第5図は本発明に係る双極性磁
界発生装置の最大電流値と磁界強度の関係を示す特性図
、第6図は本発明に係る他の例の双極性磁界発生装置の
最大電流値と磁界強度の関係を示す特性図である。 また、第7図は比較例の電流と磁界強度の関係を示す特
性図、第8図は比較例の構成を示す模式図である。 1・・・双極性磁界発生装置 2・・・主磁極 3・・・巻線 4・・・田−り 5・・・パルス電流発生手段 特 許 出 願 人  ソニー株式会社代理人   弁
理士     小池 見間         田村榮− ヒシ干すシヌ牛許4生 第3図 ハl′番ス運I吟t−例 第4図 第5図
FIG. 1 is a schematic diagram showing the configuration of a bipolar magnetic field generator according to the present invention, FIG. 2 is a perspective view showing an example of its usage state, and FIG. 3 is a characteristic diagram showing the hysteresis characteristics of the material of the main magnetic pole.
FIG. 4 is a pulse current waveform diagram as an example of the bipolar magnetic field generator of the present invention, FIG. 5 is a characteristic diagram showing the relationship between the maximum current value and magnetic field strength of the bipolar magnetic field generator of the present invention, and FIG. The figure is a characteristic diagram showing the relationship between the maximum current value and magnetic field strength of another example of the bipolar magnetic field generator according to the present invention. Further, FIG. 7 is a characteristic diagram showing the relationship between current and magnetic field strength in a comparative example, and FIG. 8 is a schematic diagram showing the configuration of the comparative example. 1... Bipolar magnetic field generator 2... Main magnetic pole 3... Winding 4... Field 5... Pulse current generating means patent Applicant: Sony Corporation Representative, Patent Attorney Mi Koike Between Ei Tamura - Drying the water chestnut cow 4th grade Figure 3 Haru l'ban Suun Igint - Example Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 一端が磁気記録層に対向し硬質磁性材料により形成され
た主磁極と、該主磁極に巻回された巻線と、軟磁性材料
により形成され上記主磁極で発生する磁束のリターンバ
スとなるヨークと、上記主磁極の極性を反転して着磁を
するために上記巻線と接続するパルス電流発生手段とを
有してなる双極性磁界発生装置。
A main magnetic pole whose one end faces the magnetic recording layer and is formed of a hard magnetic material, a winding wound around the main magnetic pole, and a yoke formed of a soft magnetic material that serves as a return bus for the magnetic flux generated by the main magnetic pole. and pulse current generating means connected to the winding in order to reverse the polarity of the main magnetic pole and magnetize it.
JP61015076A 1986-01-27 1986-01-27 Bipolar magnetic field generator Expired - Fee Related JPH0766486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61015076A JPH0766486B2 (en) 1986-01-27 1986-01-27 Bipolar magnetic field generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61015076A JPH0766486B2 (en) 1986-01-27 1986-01-27 Bipolar magnetic field generator

Publications (2)

Publication Number Publication Date
JPS62173606A true JPS62173606A (en) 1987-07-30
JPH0766486B2 JPH0766486B2 (en) 1995-07-19

Family

ID=11878759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61015076A Expired - Fee Related JPH0766486B2 (en) 1986-01-27 1986-01-27 Bipolar magnetic field generator

Country Status (1)

Country Link
JP (1) JPH0766486B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0399978A2 (en) * 1989-05-25 1990-11-28 International Business Machines Corporation Method and apparatus for overwriting data on a magneto-optic disk
JPH0677002U (en) * 1991-03-28 1994-10-28 東光株式会社 Magnetic field generator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613305A (en) * 1984-06-15 1986-01-09 Fujitsu Ltd Bias magnetic field generator for photomagnetic recording

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613305A (en) * 1984-06-15 1986-01-09 Fujitsu Ltd Bias magnetic field generator for photomagnetic recording

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0399978A2 (en) * 1989-05-25 1990-11-28 International Business Machines Corporation Method and apparatus for overwriting data on a magneto-optic disk
JPH0677002U (en) * 1991-03-28 1994-10-28 東光株式会社 Magnetic field generator
JP2531633Y2 (en) * 1991-03-28 1997-04-09 東光株式会社 Magnetic field generator

Also Published As

Publication number Publication date
JPH0766486B2 (en) 1995-07-19

Similar Documents

Publication Publication Date Title
JP2609228B2 (en) Magneto-optical recording device
US4796241A (en) Device for producing a high frequency modulation magnetic field used in magneto-optical recording
JP2563597B2 (en) Composite thin film magnetic head
JPH06105507B2 (en) Magneto-optical recording / reproducing device
KR100189673B1 (en) Magnetic field modulation control circuit for recording a magneto-optical memory
DE3477077D1 (en) Layer-built magnetic head for a recording medium to be perpendicularly magnetized
CA2085763C (en) Magnetic head driving device
JPS62173606A (en) Bipolar magnetic field generator
KR20210052190A (en) Magnetic Memory Device
US2692379A (en) Blocking oscillator magnetic recording device
KR20210052141A (en) Magentic Memory Device
JP2685093B2 (en) External magnetic field applying device for magneto-optical disk and magneto-optical disk device
JP2880743B2 (en) Externally applied magnetic field supply device for magneto-optical recording
JPH0231301A (en) External magnetic field device for magneto-optical recording and reproducing device
JPS62283401A (en) Bipolar magnetic field generator
JP2605259B2 (en) Auxiliary magnetic field generator for optical information recording device
RU2217816C2 (en) Method and device for erasing record from magnetic medium
SU920836A1 (en) Storage cell with controllable accumulation coefficient
JPS61104401A (en) Thin film magnetic head recording system
JPS604258Y2 (en) magnetic recording device
JPS62128045A (en) Photomagnetic recording and reproducing device
JPS6233351A (en) Photomagnetic recording and reproducing device
JPH026487Y2 (en)
JPH04188404A (en) Magnetic head device
JPH05303701A (en) Magnetic head for magneto-optical recording

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees