JPS6217341A - Air fuel ratio controller - Google Patents
Air fuel ratio controllerInfo
- Publication number
- JPS6217341A JPS6217341A JP15558485A JP15558485A JPS6217341A JP S6217341 A JPS6217341 A JP S6217341A JP 15558485 A JP15558485 A JP 15558485A JP 15558485 A JP15558485 A JP 15558485A JP S6217341 A JPS6217341 A JP S6217341A
- Authority
- JP
- Japan
- Prior art keywords
- fuel ratio
- air
- engine
- ratio
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は多気筒内燃機関の空燃比を制御する装置に関す
る。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device for controlling the air-fuel ratio of a multi-cylinder internal combustion engine.
[従来の技術]
最近、一部の自動車に、理論空燃比よりも大きな空燃比
、つまり希薄な空燃比でも運転可能な内燃機関が搭載さ
れつつある。そして、この種の多気筒内燃機関の空燃比
制御であって、機関負荷の増大に応じて設定空燃比を前
記の希薄空燃比から徐々に理論空燃比に変更してゆくこ
とにより、加速性の向上と同時に設定空燃比切換時のト
ルク変化を小さくすることを目的とする提案か特開昭5
8−53659号公報に示されている。[Prior Art] Recently, some automobiles are being equipped with internal combustion engines that can operate even at an air-fuel ratio greater than the stoichiometric air-fuel ratio, that is, at a lean air-fuel ratio. This type of air-fuel ratio control for a multi-cylinder internal combustion engine improves acceleration by gradually changing the set air-fuel ratio from the lean air-fuel ratio to the stoichiometric air-fuel ratio as the engine load increases. A proposal aimed at reducing the torque change when changing the set air-fuel ratio at the same time as improving the setting air-fuel ratio?
No. 8-53659.
「発明が解決しようとする問題点」
ところで、希薄空燃比で運転可能な多気筒内燃機関であ
っても通常の内燃機関と同様、機関冷間時に暖機促進を
図ることが望まれ、空燃比制御装置において、この方策
として、例えば、機関温度を代表する冷却水温が暖機要
求の有無を表わす一定の基準温度以下にあるとき、空燃
比を理論空燃比に設定することが考えられる。``Problems to be Solved by the Invention'' By the way, even in a multi-cylinder internal combustion engine that can be operated at a lean air-fuel ratio, it is desirable to promote warm-up when the engine is cold, as in a normal internal combustion engine. As a measure for this in the control device, for example, when the cooling water temperature representing the engine temperature is below a certain reference temperature indicating the presence or absence of a warm-up request, it is possible to set the air-fuel ratio to the stoichiometric air-fuel ratio.
しかしながら、このように機関冷間時に空燃比を理論空
燃比に設定すると、暖機促進の効果は上がっても、反面
、冷間時の排気系触媒の浄化能力が低く、NOXが比較
的多く排出されるという問題がある。However, when the air-fuel ratio is set to the stoichiometric air-fuel ratio when the engine is cold, the effect of promoting warm-up increases, but on the other hand, the purification ability of the exhaust system catalyst is low when the engine is cold, and a relatively large amount of NOx is emitted. There is a problem of being exposed.
本発明は前記にかんがみ、暖機後であっても、18ない
し20程度の希薄な空燃比での運転時には、理論空燃比
での運転時に比べ、第6図に示すようにNOx排出量が
少ないことに着目し、冷間時の空燃比をこのような希薄
空燃比に設定することにより、理論空燃比で運転する場
合よりもNOx排出量を少なくすることを目的とする。In view of the above, the present invention provides that even after warm-up, when operating at a lean air-fuel ratio of about 18 to 20, NOx emissions are lower than when operating at a stoichiometric air-fuel ratio, as shown in Figure 6. By focusing on this and setting the air-fuel ratio during cold to such a lean air-fuel ratio, the objective is to reduce the amount of NOx emissions compared to when operating at the stoichiometric air-fuel ratio.
また、本発明は冷間時に空燃比を前記希薄空燃比に設定
した後、暖機が完了し、かつ設定空燃比を理論空燃比に
変更すべき条件が成立した場合には、空燃比が希薄空燃
比から徐々に理論空燃比となるよう設定空燃比を変更す
ることにより、希薄空燃比から理論空燃比に切り換わる
際のトルク変化を小ざくすることを目的とする。Further, in the present invention, after the air-fuel ratio is set to the lean air-fuel ratio during cold conditions, when the warm-up is completed and the conditions for changing the set air-fuel ratio to the stoichiometric air-fuel ratio are satisfied, the air-fuel ratio is set to the lean air-fuel ratio. The purpose is to reduce the torque change when switching from the lean air-fuel ratio to the stoichiometric air-fuel ratio by changing the set air-fuel ratio so that the air-fuel ratio gradually becomes the stoichiometric air-fuel ratio.
[問題点を解決するための手段]
この目的を達成するために、本発明は第1図に示すよう
に、
希薄空燃比で運転可能な多気筒内燃機関1の空燃比を制
御する装置において、
機関1の冷却水温にしたがった信号を発生する第1の手
段2と、
この第1の手段2からの信号にしたがい、冷却水温が予
め定められた基Q温度以下であるとぎ空燃比を希薄空燃
比に設定し、かつ、冷却水温が前記基準温度を超えると
、空燃比を理論空燃比に設定すべき条件の成立とともに
、空燃比を徐々に理論空燃比に変更すべく、各気筒に対
する設定空燃比を所定数の機関回転ごとに1気筒づつ希
薄空燃比から理論空燃比に切換えてゆく第2の手段3と
を備えることを特徴とする。[Means for Solving the Problems] In order to achieve this object, the present invention provides an apparatus for controlling the air-fuel ratio of a multi-cylinder internal combustion engine 1 that can be operated at a lean air-fuel ratio, as shown in FIG. A first means 2 that generates a signal according to the cooling water temperature of the engine 1; and according to the signal from the first means 2, the air-fuel ratio is set to lean air when the cooling water temperature is below a predetermined base Q temperature. When the air-fuel ratio is set to the stoichiometric air-fuel ratio and the cooling water temperature exceeds the reference temperature, the conditions for setting the air-fuel ratio to the stoichiometric air-fuel ratio are satisfied, and the air-fuel ratio is set to the stoichiometric air-fuel ratio for each cylinder. The second means 3 switches the fuel ratio from the lean air-fuel ratio to the stoichiometric air-fuel ratio one cylinder at a time every predetermined number of engine revolutions.
[作用]
このように、冷間時の設定空燃比は希薄空燃比とされる
ことにより、NOx排出量を少なくすることができ、ま
た、希薄空燃比から理論空燃比への切換えは徐々に行な
われることからトルク変化が小さくなる。[Function] In this way, by setting the set air-fuel ratio during cold conditions to the lean air-fuel ratio, NOx emissions can be reduced, and the switching from the lean air-fuel ratio to the stoichiometric air-fuel ratio is performed gradually. This reduces torque changes.
[発明の実施例]
本発明が4気筒内燃機関に適用された実施例を第2図な
いし第5図を参照しつつ説明する。[Embodiments of the Invention] An embodiment in which the present invention is applied to a four-cylinder internal combustion engine will be described with reference to FIGS. 2 to 5.
本実施例の全体構成を示す第2図において、中央制御装
置10は、入力側に、機関の回転角を検出するとともに
回転数を検出するためのクランク角センサ20であって
少なくとも180’CAごとにパルスを発生するもの、
機関の負荷を検出するためのエアフロメータ30であっ
て空気吸入量にしたがった信号を発生するものおよび機
関温度を検出するため水温センサ2であって冷却水温に
したがった信号を発生するものがそれぞれ電気的に接続
され、一方出力側にはインジェクタ40が電気的に接続
されている。In FIG. 2 showing the overall configuration of this embodiment, the central control device 10 has a crank angle sensor 20 on the input side for detecting the rotation angle of the engine as well as the number of rotations at least every 180'CA. something that generates a pulse,
An air flow meter 30 for detecting the engine load and generating a signal according to the air intake amount, and a water temperature sensor 2 for detecting the engine temperature generating a signal according to the cooling water temperature, respectively. The injector 40 is electrically connected to the output side.
中央制御装置10においては、第3図に示すように、ク
ランク角センサ20からのNE低信号よびエアフロメー
タ30からのQ信号を受け、この両信号により示される
機関運転状態に対応して、空燃比が理論空燃比となるべ
く基本のインジェクタ開弁時間、つまり基本パルス幅を
演算手段101により演算する。この演算結果に対応す
る信号S1は第1の掛算手段102aにより第1の補正
係数設定手段103aからの入力信号S2a、つまり値
r1.OJを示す信号と掛算され、この結果を表わす信
@S 3 aが駆動パルス生成手段104の1つの入力
端へ送出されるとともに、前記演算結果に対応する信号
S1は第2の掛算手段102bにより第2の補正係数設
定手段103bからの入力信号S2b、つまりrl、O
Jよりも小さな値を示す信号とl+)算され、この結果
を表わす信号S3bが駆動パルス生成手段104の他の
1つの入力端へ送出される。駆動パルス生成手段104
は、後述するように、両信号S3a、S3bを比較手段
107からの信@S4および理論空燃比設定条件成立判
別手段106からの信@$8に応じて、NE低信号よる
出力タイミングで対応する駆動パルスに変換し出力する
。この出力される駆動パルスS6a、S6b、S6c、
S6dの個々のものは、第1気筒のインジェクタ40−
1のソレノイド4O−1aへの通電を断続するパワート
ランジスタ5C)−1、第2気筒に対する同様な他の1
つのトランジスタ50−2、第3気筒に対する同様な他
の1つのトランジスタ50−3、第4気筒に対する同様
な他のトランジスタ50−4の個々のベースのいずれか
1つに対して印加され、この印加によるトランジスタ5
0のオンへのスイッチング、このスイッチングによるン
レノイド40aへの通電開始によりインジェクタ40が
開弁動作し、前記駆動パルスの時間幅とほぼ等しい時間
だ(プインジエクタ40が開弁され、この量弁時間に対
応する量の燃料が機関燃焼至へ噴射される。As shown in FIG. 3, the central control device 10 receives the NE low signal from the crank angle sensor 20 and the Q signal from the air flow meter 30, and adjusts the air pressure in response to the engine operating state indicated by these two signals. The calculation means 101 calculates the basic injector opening time, that is, the basic pulse width so that the fuel ratio becomes the stoichiometric air-fuel ratio. The signal S1 corresponding to this calculation result is converted into the input signal S2a from the first correction coefficient setting means 103a by the first multiplication means 102a, that is, the value r1. The signal @S 3 a representing this result is sent to one input terminal of the driving pulse generating means 104, and the signal S1 corresponding to the calculation result is multiplied by the signal representing OJ by the second multiplying means 102b. The input signal S2b from the second correction coefficient setting means 103b, that is, rl, O
A signal S3b representing this result is sent to the other input terminal of the drive pulse generating means 104. Drive pulse generation means 104
As will be described later, both signals S3a and S3b are outputted at the NE low signal according to the signal @S4 from the comparing means 107 and the signal @$8 from the stoichiometric air-fuel ratio setting condition satisfaction determining means 106. Converts to drive pulse and outputs. These output drive pulses S6a, S6b, S6c,
Each S6d is the first cylinder injector 40-
A power transistor 5C)-1 for intermittently energizing the solenoid 4O-1a of No. 1, and another similar power transistor 5C)-1 for the second cylinder.
one transistor 50-2 for the third cylinder, another similar transistor 50-3 for the fourth cylinder, and another similar transistor 50-4 for the fourth cylinder. Transistor 5 by
0 is turned on, and the injector 40 opens the valve by starting energization to the inlet noid 40a due to this switching, and the time is approximately equal to the time width of the drive pulse. An amount of fuel is injected into the engine combustion chamber.
比較手段107は基準温度設定手段105からの基準温
度を示す信号S5とTHW信号とを受Cプ、検出水温と
基準温度とを比較し、この比較結果を示す信号S4を駆
動パルス生成手段104へ送出する。この信号S4とし
ては、例えば、検出水温が基Q温度以下であるときは論
理「1」、基準温度より大きいときは論理rOJとする
。The comparison means 107 receives the signal S5 indicating the reference temperature from the reference temperature setting means 105 and the THW signal, compares the detected water temperature with the reference temperature, and sends the signal S4 indicating the comparison result to the drive pulse generation means 104. Send. This signal S4 is, for example, logic "1" when the detected water temperature is below the base Q temperature, and logic rOJ when it is higher than the reference temperature.
駆動パルス生成手段104は、比較手段107から、検
出水温か基準温度以下でおることを示す論理「1」の信
号S4を受けているときは、NE倍信号より定められる
各気筒の噴則聞始タイミングごとに、第2のIJI”3
手段102bからの信号S3bをこの信号値に対応する
パルス幅の駆動パルスに変換してゆくとともに、例えば
第1.第2゜第3.第4気筒というような予め定められ
た順序にしたがって1パルスづつ分配する。When the drive pulse generation means 104 receives a signal S4 of logic "1" indicating that the detected water temperature is below the reference temperature from the comparison means 107, the drive pulse generation means 104 generates a fuel injection signal for each cylinder determined by the NE multiplication signal. At each timing, the second IJI”3
The signal S3b from the means 102b is converted into a driving pulse having a pulse width corresponding to this signal value, and the signal S3b is converted into a driving pulse having a pulse width corresponding to the signal value, and the signal S3b is converted into a driving pulse having a pulse width corresponding to the signal value. 2nd゜3rd. One pulse is distributed in a predetermined order, such as to the fourth cylinder.
また、駆動パルス生成手段104は、理論空燃比設定条
件成立判別手段106かこの条件が成立していることを
示す信号$8を送出しているときに、信@S4が、検出
水温が基準温度以下であることを示す論理「1」から基
準温度より大きいことを示す論理rOJに反転して入力
されてくると、この入力直後の噴射開始タイミング(第
1回目のタイミングと呼7〕)では第1のIs手段10
2aからの信号S3aを駆動パルスに変換し、次の噴射
開始タイミング、つまり第2回目のタイミング、第3回
目のタイミングおよび第4回目のタイミングではいずれ
も第2の掛算手段102bからの信号S3bを駆動パル
スに変換する。そして第5回目、第6回目のタイミング
では信号S3aを、第7回目、第8回目のタイミングで
は信号S3bを駆動パルスに変換する。そして第9回目
、第10回目、第11回目のタイミングでは信号S3a
を、第12回目のタイミングでは信号S3bを駆動パ′
ルスに変換する。そして第13回目以降のタイミングで
は比較手段107からの信号S4が再び論理「1」とし
て入力されてこない限り、信号S3aを駆動パルスに変
換しつづける。Further, when the driving pulse generating means 104 is sending out the signal $8 indicating that the stoichiometric air-fuel ratio setting condition is satisfied, the signal @S4 indicates that the detected water temperature is the reference temperature. When the input is reversed from the logic "1" indicating that the temperature is below the reference temperature to the logic rOJ indicating that the temperature is higher than the reference temperature, at the injection start timing immediately after this input (referred to as the first timing 7), the 1 Is means 10
The signal S3a from the second multiplication means 102b is converted into a driving pulse, and the signal S3b from the second multiplication means 102b is converted into a driving pulse at the next injection start timing, that is, the second timing, the third timing, and the fourth timing. Convert to driving pulse. Then, at the fifth and sixth timings, the signal S3a is converted into a driving pulse, and at the seventh and eighth timings, the signal S3b is converted into a driving pulse. Then, at the 9th, 10th, and 11th timings, the signal S3a
At the 12th timing, the signal S3b is
Convert to Luz. Then, at the 13th and subsequent timings, the signal S3a continues to be converted into a driving pulse unless the signal S4 from the comparing means 107 is input again as logic "1".
第4図は、前述したような比較手段107の出力信号$
4が論理「1」から論理「O」へ反転される前後にあけ
る駆動パルスS6のパルス幅変化を説明するためのタイ
ミングチャートを示している。FIG. 4 shows the output signal $ of the comparison means 107 as described above.
4 is a timing chart for explaining changes in the pulse width of the drive pulse S6 before and after the signal S4 is inverted from logic "1" to logic "O".
図において、S7a、S7b、S7c、S7dは駆動パ
ルス生成手段104において、信号S3aにしたがった
情報、例えばダウンカウンタのプリセット値またはコン
デンサの充電電圧、および信号S3bにしたがった前記
と同様な情報のいずれかを信号34.38の論理レベル
およびNE倍信号もとづいて選択し、ダウン力「シン1
〜または放電させるときの力「クント値または充電電圧
を表わしており、このカラン1へ(直が「O」ではなく
、または充電電圧が零ボルトではないとき、駆動パルス
が発生される。In the figure, S7a, S7b, S7c, and S7d are information in accordance with the signal S3a, such as a preset value of a down counter or a charging voltage of a capacitor, and any of the same information as described above in accordance with the signal S3b. is selected based on the logic level of signals 34 and 38 and the NE times signal.
~ or the force when discharging represents the Kunt value or the charging voltage, and when the current is not "O" or the charging voltage is not zero volts, a driving pulse is generated.
この図に示すように、駆動パルスS6は、NE倍信号同
期したタイミングで、信号34.S8にしたかつて信号
S3aまたは信号S3bのいずれかが一旦信号S7に変
換された上で生成され、そのパルス幅は、信号S4が論
理「1」のとぎは第1、第2.第3.第4気筒に対する
すべてのパルスについて小さく、$4が論理「O」に反
転すると、信号S8が論理「1」レベルでおることを条
件として、最初の機関1回転目では第1気筒に対するパ
ルスのみが、第2回転目では第1.第2気筒に対するパ
ルスが、第3回転目では、第1.第2、第3気筒に対す
るパルスが、第4回転目以降ではすべての気筒に対する
パルスが大きくなる。As shown in this figure, the drive pulse S6 is generated by the signal 34. Either the signal S3a or the signal S3b at S8 is once converted into the signal S7 and then generated, and its pulse width is the first, second, . Third. If all pulses to the 4th cylinder are small and $4 flips to logic "O", only the pulses to the 1st cylinder will be present in the first engine revolution, provided that the signal S8 remains at the logic "1" level. , in the second rotation, the first rotation. The pulse for the second cylinder is the same as that for the first cylinder at the third rotation. The pulses for the second and third cylinders become larger after the fourth rotation, and the pulses for all cylinders become larger.
第5図は第3図ないし第4図を参照して前述したような
処理と同様な処理をマイクロコンビュー夕により実行す
る場合のフローチャートを示している。FIG. 5 shows a flowchart when the microcomputer executes processing similar to the processing described above with reference to FIGS. 3 and 4.
この図全体に示す処理は、機関1回転ごとに開始され、
まず前述した基準温度設定手段105と同様に基準温度
を設定する(図中の符号201〉。The process shown in this entire figure is started every engine revolution,
First, a reference temperature is set in the same manner as the reference temperature setting means 105 described above (reference numeral 201 in the figure).
次に前記比較手段107と同様に検出水温と前記設定さ
れた基準温度とを比較する(202>。Next, similarly to the comparing means 107, the detected water temperature and the set reference temperature are compared (202>).
以後、検出水温が基準温度以下であると判断されたとき
から、その後、設定空燃比を理論空燃比とすべき条件が
成立したことが判断されているときに基Q温度を超えた
と判断され、この判断が引き続き維持される場合を例に
説明する。検出水温が基準温度以下であると判断されつ
づけている間は、第1.第2.第3.第4気筒に対する
設定空燃比の補正係数Kl 、に2 、に3 、に4を
すべて希薄空燃比に対応するKLに設定する(203>
。Thereafter, from the time when the detected water temperature is determined to be below the reference temperature, it is determined that the base Q temperature has been exceeded when it is determined that the conditions for making the set air-fuel ratio the stoichiometric air-fuel ratio are satisfied, An example in which this judgment is maintained will be explained. While the detected water temperature continues to be determined to be below the reference temperature, the first. Second. Third. The correction coefficients Kl, 2, 3, and 4 of the set air-fuel ratio for the fourth cylinder are all set to KL corresponding to the lean air-fuel ratio (203>
.
このK[は前述した値「1」よりも小さな補正係数に対
応する。そして、検出水温が基準温度より大きいと判断
されるようになると、設定空燃比を理論空燃比とすべき
条件が既に成立していることからこの判断直後において
、補正係数に1は理論空燃比に対応するKRに、他の補
正係数に2.に3、に4はK[のままに設定する(20
4,205.206>。そして次回の処理、つまり判定
切換わり後第2回目の処理においては、K1 、 K2
はKRに、K3.に4はKLに設定する(207゜20
8)。そして第3回目の処理においては、K1、に2.
に3はKRに、K4はK[に設定する(209,210
>。そして第4回目以降の処理においては、Kl 、に
2 、に3 、に4のすべてをKRk:設定する(21
1>。This K[ corresponds to a correction coefficient smaller than the value "1" described above. When the detected water temperature is determined to be higher than the reference temperature, the conditions for setting the set air-fuel ratio to be the stoichiometric air-fuel ratio have already been established, so immediately after this determination, the correction coefficient is set to 1. 2. to the corresponding KR and other correction coefficients. 3 and 4 are set as K[ (20
4,205.206>. Then, in the next process, that is, the second process after the judgment switch, K1, K2
to KR, K3. 4 is set to KL (207°20
8). Then, in the third process, K1, 2.
Set 3 to KR and K4 to K[ (209, 210
>. In the fourth and subsequent processes, all of Kl, 2, 3, and 4 are set to KRk (21
1>.
以上のように、機関冷間時には希薄空燃比に設定するこ
とからNOx排出量を少なくすることができ、またこの
希薄空燃比から理論空燃比への切換えは徐々に行なうこ
とからこの切換わる際の十ルク変化が小さくなる。As mentioned above, NOx emissions can be reduced by setting the lean air-fuel ratio when the engine is cold, and since the lean air-fuel ratio is gradually switched to the stoichiometric air-fuel ratio, the The change in 10 lux becomes smaller.
[発明の効果]
以上説明したように、本発明によれば、冷間時の設定空
燃比を8薄空燃比とすることによりNOx排出量を少な
くすることができ、また、このような空燃比設定に付随
して希薄空燃比から理論空燃比への空燃比切換えを徐々
に行なうためトルク変化を小さく抑えることができる。[Effects of the Invention] As explained above, according to the present invention, NOx emissions can be reduced by setting the air-fuel ratio during cold conditions to an 8-lean air-fuel ratio, and Since the air-fuel ratio is gradually switched from the lean air-fuel ratio to the stoichiometric air-fuel ratio in conjunction with the setting, torque changes can be kept small.
第1図は本発明の構成図、第2図ないし第5図は本発明
の一実施例を示し、第2図は全体構成図、第3図は中央
制御装置のブロック図、第4図は処理動作を説明するた
めのタイミングチャート、第5図は第3図のブロック構
成とほぼ同等なフローチャート、第6図は空燃比に対す
るNOx排出量の説明図である。
1・・・・・・多気筒内燃機関
2・・・・・・水温センサ(第1の手段)10・・・中
央制御装置
20・・・クランク角センサ
30・・・エアフロメータ
40・・・インジェクタFig. 1 is a block diagram of the present invention, Figs. 2 to 5 show an embodiment of the present invention, Fig. 2 is an overall block diagram, Fig. 3 is a block diagram of the central control unit, and Fig. 4 is a block diagram of the central control unit. FIG. 5 is a timing chart for explaining the processing operation, FIG. 5 is a flowchart substantially equivalent to the block configuration of FIG. 3, and FIG. 6 is an explanatory diagram of NOx emission amount with respect to air-fuel ratio. 1...Multi-cylinder internal combustion engine 2...Water temperature sensor (first means) 10...Central control unit 20...Crank angle sensor 30...Air flow meter 40... injector
Claims (1)
制御する装置において、 機関の冷却水温にしたがった信号を発生する第1の手段
と、 この第1の手段からの信号にしたがい、冷却水温が予め
定められた基準温度以下であるとき空燃比を希薄空燃比
に設定し、かつ、冷却水温が前記基準温度を超えると、
空燃比を理論空燃比に設定すべき条件の成立とともに、
空燃比を徐々に理論空燃比に変更すべく、各気筒に対す
る設定空燃比を所定数の機関回転ごとに1気筒づつ希薄
空燃比から理論空燃比に切換えてゆく第2の手段とを備
えることを特徴とする空燃比制御装置。[Scope of Claims] 1. A device for controlling the air-fuel ratio of a multi-cylinder internal combustion engine capable of operating at a lean air-fuel ratio, comprising: a first means for generating a signal according to a cooling water temperature of the engine; According to the signal, when the cooling water temperature is below a predetermined reference temperature, the air-fuel ratio is set to a lean air-fuel ratio, and when the cooling water temperature exceeds the reference temperature,
With the establishment of the conditions for setting the air-fuel ratio to the stoichiometric air-fuel ratio,
and second means for switching the set air-fuel ratio for each cylinder from the lean air-fuel ratio to the stoichiometric air-fuel ratio one cylinder at a time every predetermined number of engine revolutions in order to gradually change the air-fuel ratio to the stoichiometric air-fuel ratio. Characteristic air-fuel ratio control device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15558485A JPS6217341A (en) | 1985-07-15 | 1985-07-15 | Air fuel ratio controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15558485A JPS6217341A (en) | 1985-07-15 | 1985-07-15 | Air fuel ratio controller |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6217341A true JPS6217341A (en) | 1987-01-26 |
Family
ID=15609238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15558485A Pending JPS6217341A (en) | 1985-07-15 | 1985-07-15 | Air fuel ratio controller |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6217341A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5564404A (en) * | 1994-09-20 | 1996-10-15 | Nissan Motor Co., Ltd. | Air/fuel ratio control system of internal combustion engine |
US5588410A (en) * | 1994-04-07 | 1996-12-31 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Air-fuel ratio control method |
-
1985
- 1985-07-15 JP JP15558485A patent/JPS6217341A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5588410A (en) * | 1994-04-07 | 1996-12-31 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Air-fuel ratio control method |
US5564404A (en) * | 1994-09-20 | 1996-10-15 | Nissan Motor Co., Ltd. | Air/fuel ratio control system of internal combustion engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5021960A (en) | Combustion fault detection apparatus and control system for internal combustion engine | |
JPS63615B2 (en) | ||
JPS5918248A (en) | Fuel injection controlling method for internal combustion engine | |
JPH0914027A (en) | Control device of internal combustion engine and control device of vehicle | |
JPS6248066B2 (en) | ||
JPH09228875A (en) | Air fuel ratio controller of internal combustion engine | |
JPH03194144A (en) | Air-fuel ratio control device for internal combustion engine | |
JP3191676B2 (en) | Ignition timing control device for internal combustion engine | |
JPS6217341A (en) | Air fuel ratio controller | |
US5093793A (en) | Method of transferring signals within electronic control system for internal combustion engines | |
JPS6217340A (en) | Air fuel ratio controller | |
JP2570417B2 (en) | EGR rate detecting device for internal combustion engine | |
JP2586617B2 (en) | Output fluctuation detecting device for internal combustion engine | |
JP2625970B2 (en) | Operating state detection device for internal combustion engine | |
JPH029173B2 (en) | ||
JP2749138B2 (en) | Combustion abnormality detection device for internal combustion engine | |
JPH077580Y2 (en) | Ignition timing control device for internal combustion engine | |
JPH066214Y2 (en) | Combustion fluctuation control device for internal combustion engine | |
JPH01211648A (en) | Fuel injection controller of internal combustion engine | |
JP2586624B2 (en) | Output fluctuation detecting device for internal combustion engine | |
JP2804867B2 (en) | Internal combustion engine control device | |
JP2586565B2 (en) | Output fluctuation detecting device for internal combustion engine | |
JPH10331751A (en) | Ignition timming controller for internal combustion engine | |
JPH0267446A (en) | Torque fluctuation quantity detecting device for internal combustion engine | |
JPH02536B2 (en) |