JPS62172659A - Electrodeless discharge lamp - Google Patents

Electrodeless discharge lamp

Info

Publication number
JPS62172659A
JPS62172659A JP1420686A JP1420686A JPS62172659A JP S62172659 A JPS62172659 A JP S62172659A JP 1420686 A JP1420686 A JP 1420686A JP 1420686 A JP1420686 A JP 1420686A JP S62172659 A JPS62172659 A JP S62172659A
Authority
JP
Japan
Prior art keywords
light
container
airtight
discharge lamp
bulb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1420686A
Other languages
Japanese (ja)
Inventor
Masahiro Tokawa
雅弘 東川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP1420686A priority Critical patent/JPS62172659A/en
Publication of JPS62172659A publication Critical patent/JPS62172659A/en
Pending legal-status Critical Current

Links

Landscapes

  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

PURPOSE:To make it easy to get a high output, by forming an airtight container of a highly heatproof material, and covering the container by a light-transmitting material allowing no ultraviolet ray transmission. CONSTITUTION:In an airtight space 22, a discharge is taken place by a high frequency wave electromagnetic field generated by an induction coil 25. Since an airtight space 21 is well permeable for a visible light and ultraviolet rays, the beams of the both wavelength areas are radiated from a luminous bulb 24. When the both beams reach to the outside container 27, the ultraviolet rays are cut off and only the visible light permeates to output to the outside. In this case, since the luminous bulb 24 is formed of a highly heatproof material, the high output light can be radiated outward easily.

Description

【発明の詳細な説明】 (技術分野) 本発明は、透光性気密容器内に封入した希ガスあるいは
金属蒸気等の放電気体を、高周波電磁界により放電、発
光させて成る無電極放電ランプに関する。
Detailed Description of the Invention (Technical Field) The present invention relates to an electrodeless discharge lamp in which a discharge material such as a rare gas or metal vapor sealed in a light-transmitting airtight container is discharged and emitted by a high-frequency electromagnetic field. .

(背景技術) 従来の放電灯では、その点灯方式の観点から、ランプ構
造は大きくふたつ分類される。
(Background Art) Conventional discharge lamps can be roughly classified into two types of lamp structures from the viewpoint of lighting methods.

その一つは、現在白熱電球と共に広く普及している一般
の螢光灯に代表される有電極タイプであり、他の一つは
無電極タイプのものである。
One type is an electrode type, typified by general fluorescent lamps that are currently widely used along with incandescent light bulbs, and the other is an electrodeless type.

まず、有電極タイプについての一例を第4図に示す1図
中、1はガラスバルブで、その内面には螢光体被膜2が
形成されている。また、ガラスバルブ1によって形成さ
れる気密空間3には、所定量の水銀と希ガスが封入され
ている。さらに、ガラスバルブ1の両端には、熱電子放
射物質を充填した電極4a、4bが配設されている。こ
れらの電極4a、4bは、限流インピーダンス5を介し
てtjlit6に接続されている。このようなランプで
は、両電極4a、4b間に電圧を印加して、この間の管
内で放電を生じさせ、これによって発生した紫外線によ
って螢光体2を励起し、そこで発生した可視光を利用す
るものである。
First, an example of the electrode type is shown in FIG. 4. In the figure, 1 is a glass bulb, and a phosphor coating 2 is formed on the inner surface of the bulb. Further, the airtight space 3 formed by the glass bulb 1 is filled with a predetermined amount of mercury and rare gas. Further, at both ends of the glass bulb 1, electrodes 4a and 4b filled with a thermionic emitting substance are arranged. These electrodes 4a, 4b are connected to tjlit6 via a current limiting impedance 5. In such a lamp, a voltage is applied between the electrodes 4a and 4b to generate an electric discharge in the tube between the electrodes, the ultraviolet light generated thereby excites the phosphor 2, and the visible light generated there is utilized. It is something.

次に、無電極タイプの一例を第5図に示す。図中、7は
ガラスバルブで、その内面には螢光体被膜8が形成され
、ガラスバルブ7によって形成される気密空間9には、
所定量の水銀蒸気と希ガスが封入されている。10はバ
ルブ7の外周に巻回された誘導コイルで、その両端は電
源11に接続されている。このようなタイプでは、ラン
プ部には前述の有電極タイプのような電極はなく、誘導
コイル10に高周波電流を通じると、周囲に高周波電磁
界が発生し、バルブ7内では放電が生じ、これによって
発生した紫外線はさらに螢光体8を励起し、可視光を発
生させ、この発光を利用するものである。
Next, an example of the electrodeless type is shown in FIG. In the figure, 7 is a glass bulb, a fluorescent coating 8 is formed on its inner surface, and an airtight space 9 formed by the glass bulb 7 is
A predetermined amount of mercury vapor and rare gas are sealed. Reference numeral 10 denotes an induction coil wound around the outer periphery of the valve 7, and both ends of the induction coil are connected to a power source 11. In this type, the lamp part does not have an electrode like the above-mentioned electrode type, and when a high frequency current is passed through the induction coil 10, a high frequency electromagnetic field is generated around it, and a discharge occurs within the bulb 7. The ultraviolet light generated by this further excites the phosphor 8 to generate visible light, and this light emission is utilized.

ところで、上記両タイプの放電ランプを比較した場合、
無電極タイプは有電極タイプと比べて次のような利点を
有する。
By the way, when comparing the above two types of discharge lamps,
The non-electrode type has the following advantages over the electrode type.

(al瞬時点灯が可能である。(al instantaneous lighting is possible.

山)小型化、高出力化が容易である。M) It is easy to downsize and increase output.

(C)長寿命である。(C) It has a long life.

とりわけ、ランプの高出力化を狙う場合には、有電極タ
イプでは電極に流せる電流゛の制限が厳しいため、高出
力化も非常に困難であるが、同じサイズのバルブが与え
られた場合、無電極タイプの方がより大きなパワーを投
入でき、高出力化が容易である。しかし、無電極タイプ
についても当然ながら高出力化には限界がある。すなわ
ち、点灯によるランプの発熱にバルブが耐えうるかどう
かが問題となる。このような観点からは、バルブを一般
のガラス(例えばソーダガラス)よりも耐熱性の高い透
明石英(SiO2)や、透光性アルミナ(A1203)
などで形成すれば、かなりの高出力化が期待できるが、
これらの材質は、通常200nI11より長波長の紫外
域の透過性が強いため、一般照明用光源には適さない。
In particular, when aiming to increase the output of a lamp, it is very difficult to achieve high output because the current that can be passed through the electrodes is severely limited in the case of an electrode type. The electrode type can input more power and is easier to increase output. However, as a matter of course, the electrodeless type also has a limit to its ability to achieve high output. In other words, the question is whether the bulb can withstand the heat generated by the lamp when lit. From this point of view, the bulb should be made of transparent quartz (SiO2), which has higher heat resistance than ordinary glass (e.g. soda glass), or translucent alumina (A1203).
If formed with
These materials usually have strong transmittance in the ultraviolet region with wavelengths longer than 200 nI11, so they are not suitable for general illumination light sources.

(発明の目的) 本発明は上記の点に鑑みなされたもので、その目的とす
るところは、高出力化が容易で、しかも無電極タイプの
利点を備えている無電極放電ランプを提供するにある。
(Object of the Invention) The present invention has been made in view of the above points, and its purpose is to provide an electrodeless discharge lamp that can easily achieve high output and has the advantages of an electrodeless type. be.

(発明の開示) 本発明は、透光性気密容器内に封入した放電気体を高周
波電磁界により放電発光させて成る無電極放電ランプで
あって、上記気密容器を高耐熱性材料で形成すると共に
、該気密容器を紫外線を透過しない透光性材料より成る
外部容器で覆ったことを特徴とする。
(Disclosure of the Invention) The present invention is an electrodeless discharge lamp in which a discharge body enclosed in a light-transmitting airtight container is discharged and emitted by a high-frequency electromagnetic field, and the airtight container is formed of a highly heat-resistant material. , the airtight container is covered with an outer container made of a translucent material that does not transmit ultraviolet rays.

以下、本発明を実施例に基づいて詳細に説明する。Hereinafter, the present invention will be explained in detail based on examples.

実施例1 第1図は本発明に係る第1の実施例を示すもので、図中
、21は気密空間22を形成する気密容器で、該気密容
器2[は透明石英(S i 02 )あるいは透光性ア
ルミナ(Affi203)等の透光性を有し高耐熱性の
材料で形成され、内部には所定量の水11蒸気と希ガス
から成る放電気体が封入されており、透光性気密容器2
1の内面には螢光体被膜23が形成されている。このよ
うに構成された発光バルブ24の外部には誘導コイル2
5が近接されており、誘導コイル25の両端は電源26
に接続されている。また、発光バルブ24は外部容器2
7で覆われている。この外部容器27は可視光に対して
は透過性が良好で、かつ、紫外線(例えば、波長254
nmや185nmの紫外光)に対してはほとんど透過性
のない材質(例えばソーダ石灰ガラス)で形成されてい
る。すなわち、外部容器27は発光バルブ24から発生
する可視光および紫外光のうち、紫外光をカプトし可視
光のみを選択的に透過させるフィルターの役目をしてい
る。
Embodiment 1 FIG. 1 shows a first embodiment of the present invention. In the figure, 21 is an airtight container forming an airtight space 22, and the airtight container 2 is made of transparent quartz (S i 02 ) or It is made of translucent and highly heat-resistant material such as translucent alumina (Affi203), and a discharge body consisting of a predetermined amount of water 11 vapor and rare gas is sealed inside, making it translucent and airtight. container 2
A fluorescent coating 23 is formed on the inner surface of 1. An induction coil 2 is installed outside the light bulb 24 configured in this way.
5 are placed close to each other, and both ends of the induction coil 25 are connected to a power source 26.
It is connected to the. Further, the light-emitting bulb 24 is connected to the outer container 2.
Covered by 7. This outer container 27 has good transparency for visible light and ultraviolet light (for example, wavelength 254
It is made of a material (for example, soda lime glass) that has almost no transparency to ultraviolet light of 185 nm or 185 nm. That is, the outer container 27 functions as a filter that cuts out the ultraviolet light among the visible light and ultraviolet light generated from the light-emitting bulb 24 and selectively transmits only the visible light.

なお、発光バルブ24と外部容器27の間の空間28は
大気に通じている。
Note that a space 28 between the light-emitting bulb 24 and the outer container 27 communicates with the atmosphere.

次に、上記実施例の動作について説明する。前述のよう
に、気密空間22では誘導コイル25から発生する高周
波電磁界によって放電が生じる。
Next, the operation of the above embodiment will be explained. As described above, discharge occurs in the airtight space 22 due to the high frequency electromagnetic field generated from the induction coil 25.

気密容器21は可視光および紫外光に対して透過性が良
好なので、発光バルブ24からはこの両波長域の光が放
射される。そして、これらの光は外部容器27に到達す
ると、紫外光はカットされ可視光のみが透過し、外部へ
出力される。ここで、発光バルブ24は前述のように、
高耐熱性の材料で形成されているため、外部へ出力され
る光の高出力化が容易となる。
Since the airtight container 21 has good transparency for visible light and ultraviolet light, light in both wavelength ranges is emitted from the light-emitting bulb 24. When these lights reach the external container 27, the ultraviolet light is cut off, only the visible light is transmitted, and is output to the outside. Here, the light-emitting bulb 24 is as described above.
Since it is made of a highly heat-resistant material, it is easy to increase the output of light that is output to the outside.

実施例2 第2図は本発明に係る第2の実施例を示すもので、発光
バルブ24および誘導コイル25の構成は前記実施例と
同様であり、異なる構成は、発光バルブ24を覆うよう
に設けた外部容器29によって、発光バルブ24と外部
容器29との間に気密空間30を形成し、この気密空間
30に発光バルブ24を冷却するガスを封入した点であ
る。なお、封入するガスは、ヘリウムやネオンなどのよ
うに、空気よりも熱伝導性の大きいものが好ましい。
Embodiment 2 FIG. 2 shows a second embodiment of the present invention, in which the configurations of the light bulb 24 and the induction coil 25 are the same as in the previous embodiment, and the different structure is that the light bulb 24 is covered with a light bulb 24. The provided external container 29 forms an airtight space 30 between the light-emitting bulb 24 and the outer container 29, and this airtight space 30 is filled with gas for cooling the light-emitting bulb 24. Note that it is preferable that the gas to be filled has higher thermal conductivity than air, such as helium or neon.

本実施例における作用効果は、前記実施例と同様である
が、発光バルブ24の周囲が冷却用雰囲気と接している
ため、よりいっそう高出力化が容易となる。
The effects of this embodiment are similar to those of the previous embodiment, but since the periphery of the light-emitting bulb 24 is in contact with the cooling atmosphere, it becomes easier to increase the output.

実施例3 第3図は本発明に係る第3の実施例を示すもので、その
構成は前記第2の実施例と同様に、発光バルブ24と外
部容器29との間に気密空間30には冷却用ガスが封入
されており、異なる構成は、発光バルブ24の内面には
螢光体被膜は形成されておらず、外部容器29の内面に
螢光体被膜31を形成した点である。
Embodiment 3 FIG. 3 shows a third embodiment of the present invention, which has the same structure as the second embodiment, with an airtight space 30 between the light bulb 24 and the outer container 29. A cooling gas is sealed, and the difference is that a phosphor coating is not formed on the inner surface of the light-emitting bulb 24, but a phosphor coating 31 is formed on the inner surface of the outer container 29.

このように本実施例では、発光バルブ24の内面には螢
光体被膜がないため、発光バルブ24からの放射は、放
電によって生じた紫外線だけであり(厳密には放電によ
る可視域の発光も存在する)、この紫外線は外部容器2
9の内面に塗布した螢光体を励起し、可視光を発する。
As described above, in this embodiment, since there is no fluorescent coating on the inner surface of the light-emitting bulb 24, the radiation from the light-emitting bulb 24 is only the ultraviolet rays generated by the discharge (strictly speaking, the emission in the visible range due to the discharge is also included). ), this ultraviolet light is transmitted to the outer container 2
The phosphor coated on the inner surface of 9 is excited to emit visible light.

本実施例においても、前記第1および第2の実施例と同
様、高出力化が容易であるという効果を奏する。
Similarly to the first and second embodiments, this embodiment also has the effect that it is easy to increase the output.

ところで、上記3つの実施例のいずれにおいても、誘導
コイル25を近接させた発光バルブ24の内面には、点
灯時間の経過とともに黒化が発生することがあり、とり
わけ第1および第2の実施例のように、発光バルブ24
の内面に螢光体被膜がある場合には、この螢光体被膜表
面に黒化が発生し、光束劣化の要因となる。しかし、第
3の実施例では、黒化の生じる発光バルブ24の内面に
は螢光体被膜はなく、外部容器29の内面に螢光体被膜
があるため、上記のような光束劣化は大幅に低減できる
という効果もある。
Incidentally, in any of the three embodiments described above, blackening may occur on the inner surface of the light-emitting bulb 24 to which the induction coil 25 is placed in close proximity as the lighting time elapses, and especially in the first and second embodiments. As in, the light bulb 24
If there is a phosphor coating on the inner surface of the phosphor, blackening occurs on the surface of the phosphor coating, which causes luminous flux deterioration. However, in the third embodiment, there is no phosphor coating on the inner surface of the light bulb 24 where blackening occurs, but there is a phosphor coating on the inner surface of the outer container 29, so the luminous flux deterioration as described above is significantly reduced. It also has the effect of reducing it.

(発明の効果) 本発明は上記のように、透光性気密容器内に封入した放
電気体を高周波電磁界により放電発光させて成る無電極
放電ランプであって、上記気密容器を高耐熱性材料で形
成すると共に、該気密容器を紫外線を透過しない透光性
材料より成る外部容器で覆ったことにより、高出力化が
容易で、かつ外部に紫外線が放射されず、しかも無電極
タイプの利点を備えた無電極放電ランプを提供すること
ができた。
(Effects of the Invention) As described above, the present invention provides an electrodeless discharge lamp in which a discharge body sealed in a light-transmitting airtight container is discharged and emitted by a high-frequency electromagnetic field, and the airtight container is made of a highly heat-resistant material. In addition, by covering the airtight container with an outer container made of a translucent material that does not transmit ultraviolet rays, it is easy to increase output, prevent ultraviolet rays from being emitted to the outside, and have the advantages of an electrodeless type. It was possible to provide an electrodeless discharge lamp with the following features.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図はそれぞれ本発明の実施例を示す一部
断面の簡略図、第4図及び第5図はそれぞれ従来例を示
す一部断面の簡略図である。 21・・・透光性気密容器、23.31・・・螢光体被
膜、27.29・・・外部容器。
1 to 3 are simplified partial cross-sectional views showing embodiments of the present invention, and FIGS. 4 and 5 are simplified partial cross-sectional views showing conventional examples, respectively. 21... Translucent airtight container, 23.31... Fluorescent coating, 27.29... Outer container.

Claims (4)

【特許請求の範囲】[Claims] (1)透光性気密容器内に封入した放電気体を高周波電
磁界により放電発光させて成る無電極放電ランプであっ
て、上記気密容器を高耐熱性材料で形成すると共に、該
気密容器を紫外線を透過しない透光性材料より成る外部
容器で覆ったことを特徴とする無電極放電ランプ。
(1) An electrodeless discharge lamp in which a discharge body enclosed in a light-transmitting airtight container is discharged and emitted by a high-frequency electromagnetic field, and the airtight container is formed of a highly heat-resistant material, and the airtight container is exposed to ultraviolet light. An electrodeless discharge lamp characterized in that the lamp is covered with an outer container made of a translucent material that does not transmit light.
(2)上記気密容器と外部容器とで囲まれる空間を気密
空間とすると共に、該気密空間に冷却用ガスを封入した
特許請求の範囲第1項記載の無電極放電ランプ。
(2) The electrodeless discharge lamp according to claim 1, wherein a space surrounded by the airtight container and the outer container is an airtight space, and a cooling gas is sealed in the airtight space.
(3)上記気密容器の内面に螢光体被膜を形成した特許
請求の範囲第1項または第2項記載の無電極放電ランプ
(3) The electrodeless discharge lamp according to claim 1 or 2, wherein a phosphor coating is formed on the inner surface of the airtight container.
(4)上記外部容器の内面に螢光体被膜を形成した特許
請求の範囲第1項または第2項記載の無電極放電ランプ
(4) The electrodeless discharge lamp according to claim 1 or 2, wherein a phosphor coating is formed on the inner surface of the outer container.
JP1420686A 1986-01-24 1986-01-24 Electrodeless discharge lamp Pending JPS62172659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1420686A JPS62172659A (en) 1986-01-24 1986-01-24 Electrodeless discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1420686A JPS62172659A (en) 1986-01-24 1986-01-24 Electrodeless discharge lamp

Publications (1)

Publication Number Publication Date
JPS62172659A true JPS62172659A (en) 1987-07-29

Family

ID=11854631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1420686A Pending JPS62172659A (en) 1986-01-24 1986-01-24 Electrodeless discharge lamp

Country Status (1)

Country Link
JP (1) JPS62172659A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01315941A (en) * 1988-03-14 1989-12-20 General Electric Co <Ge> Electrodeless high luminance discharge lamp
JPH03184254A (en) * 1989-12-14 1991-08-12 Matsushita Electron Corp Electrodeless discharge lamp
KR100429994B1 (en) * 2001-10-11 2004-05-03 엘지전자 주식회사 Lamp structure for microwave lighting system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4859687A (en) * 1971-11-26 1973-08-21
JPS60138845A (en) * 1983-12-27 1985-07-23 Toshiba Corp Small metal halide lamp

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4859687A (en) * 1971-11-26 1973-08-21
JPS60138845A (en) * 1983-12-27 1985-07-23 Toshiba Corp Small metal halide lamp

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01315941A (en) * 1988-03-14 1989-12-20 General Electric Co <Ge> Electrodeless high luminance discharge lamp
JPH03184254A (en) * 1989-12-14 1991-08-12 Matsushita Electron Corp Electrodeless discharge lamp
KR100429994B1 (en) * 2001-10-11 2004-05-03 엘지전자 주식회사 Lamp structure for microwave lighting system

Similar Documents

Publication Publication Date Title
JPS583593B2 (en) Solenoid electric field fluorescent lamp
EP0497361B1 (en) Geometry enhanced optical output for RF excited fluorescent lights
US20050236997A1 (en) Dielectric barrier discharge lamp having outer electrodes and illumination system having this lamp
JPS61185857A (en) Electrodeless discharge lamp
US4745335A (en) Magnesium vapor discharge lamp
JPS62172659A (en) Electrodeless discharge lamp
JP2518015B2 (en) Discharge lamp
JP2003100258A (en) Fluorescent lamp and bulb type fluorescent lamp
JPH0449222B2 (en)
JPH08306341A (en) Fluorescent lamp
JPH09180685A (en) Dielectric barrier discharge lamp
JP3470449B2 (en) Cold cathode discharge lamp device, lighting device using the same, backlight, liquid crystal display device
JPH0452934Y2 (en)
JP3022160B2 (en) Electrodeless lamp
JPH01243304A (en) Electrodeless discharge lamp
JPH0660849A (en) Fluorescent lamp
JP2004362812A (en) Fluorescent lamp, compact self-ballasted fluorescent lamp and lighting system
JPH09199085A (en) Fluorescent lamp and lighting system using it
JP2003157804A (en) Ultraviolet emission type fluorescent lamp and lighting system
JPH0458121B2 (en)
JPH0831385A (en) Electrodeless discharge lamp
JPH03184254A (en) Electrodeless discharge lamp
GB2092364A (en) Electric light source
JPH02170340A (en) Discharge lamp without electrode
JPH06181051A (en) Electrodeless discharge lamp