JPS62172262A - Method for directly analyzing molten metal of refining furnace out of inert gas introducing furnace - Google Patents

Method for directly analyzing molten metal of refining furnace out of inert gas introducing furnace

Info

Publication number
JPS62172262A
JPS62172262A JP61015419A JP1541986A JPS62172262A JP S62172262 A JPS62172262 A JP S62172262A JP 61015419 A JP61015419 A JP 61015419A JP 1541986 A JP1541986 A JP 1541986A JP S62172262 A JPS62172262 A JP S62172262A
Authority
JP
Japan
Prior art keywords
molten metal
gas
furnace
inert gas
halide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61015419A
Other languages
Japanese (ja)
Other versions
JPH0521506B2 (en
Inventor
Takamasa Takahashi
隆昌 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP61015419A priority Critical patent/JPS62172262A/en
Publication of JPS62172262A publication Critical patent/JPS62172262A/en
Publication of JPH0521506B2 publication Critical patent/JPH0521506B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to rapidly analyze the component of a molten metal on the steel manufacturing spot, by converting the component in the molten metal to halide by mixing halogen gas with inert gas and quantifying the halide gas discharged from the molten metal. CONSTITUTION:A gaseous mixture consisting of inert gas (Ar-gas) and halogen gas (e.g., chlorine gas) in a predetermined ratio is introduced into a ladle 1 through the gas passing pipe 5 connected on the way of the sucking-up pipe 3 provided to the lower part of the vacuum tank 2 of a RH furnace and the molten metal is stirred by the gaseous mixture to convert the component in the molten metal to halide. The halide gas discharged from the molten metal is taken in a mass analyser 8 through an exhaust pipe 6 and a gas take-out pipe 7 and the component of the molten metal is quantified rapidly and accurately.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 溶鋼や溶銑(本明細書ではこれらを一括して「溶湯」と
いう。)の成分分析を迅速に行なうことは生産能率の向
上あるいは各処理工程における迅速な対応が可能となっ
て生産コストを低減させることができるため非常に重要
である。
[Detailed Description of the Invention] [Field of Industrial Application] Rapid component analysis of molten steel and hot metal (herein collectively referred to as "molten metal") is useful for improving production efficiency or for each processing process. This is very important because it allows for rapid response in the field and reduces production costs.

この発明は分析用試料を溶湯から取り出すことなく製鋼
現場において溶湯成分を迅速に分析できる方法を提供す
るものである。
The present invention provides a method that allows rapid analysis of molten metal components at a steelmaking site without removing samples for analysis from the molten metal.

〔従来の技術〕[Conventional technology]

溶湯の迅速分析法が最近種々開発されているが(例えば
、鉄と鋼「第109回討論会講演概要;オンライン分析
技術の最近の進歩Jvot、71、扁2、P125〜(
1985)、特開昭57−119241号公報、特開昭
59−145932号公報、特開昭59−210330
号公報、特開昭59−210349号公報など)、これ
らの方法は2つに大別される。その−は溶湯面をレーザ
ー、アーク等で励起し、分析情報としての光を伝送し、
分光定量する方法である。
Recently, various rapid analysis methods for molten metal have been developed (for example, "Tetsu to Hagane" 109th Symposium Lecture Summary; Recent Advances in Online Analysis Technology Jvot, 71, Bian 2, P125~ (
1985), JP-A-57-119241, JP-A-59-145932, JP-A-59-210330
(Japanese Patent Laid-Open No. 59-210349, etc.), these methods are roughly divided into two. - Excites the molten metal surface with a laser, arc, etc., transmits light as analytical information,
This is a method of spectroscopic quantification.

もうひとつは溶湯面をやはυレーザー、アーク等で励起
し、その除光とともに生成する微細粒子を搬送してキャ
ピラリーアーク、高周波誘導プラズマ発光(ICP )
等による発光分析法で定量する方法である。
The other method is to excite the molten metal surface with a υ laser, arc, etc., and transport the fine particles generated as the light is removed to produce capillary arc or high-frequency induced plasma emission (ICP).
This is a method of quantitative determination using luminescence spectrometry.

そのほかプローブを使用する方法もある。例えば鋼中の
アルミニウム成分の分析は製鋼工程の管理上最も重要で
あシ、従来溶湯中のアルミニウム含有量の推定はほとん
どが酸素グローブによっていた。また、本発明者らは溶
湯中にプローブを挿入して溶湯をグローブ内に取シ入れ
該グローブにハロゲンガスと不活性ガスの混合ガスを導
入してハロゲン化物ガスを生成させてこれを分析する方
法を先に開発している(特願昭60−132055号)
Another method is to use a probe. For example, analysis of the aluminum content in steel is most important in controlling the steelmaking process, and conventionally the aluminum content in molten metal has mostly been estimated using oxygen globes. In addition, the present inventors insert a probe into the molten metal, take the molten metal into a globe, and introduce a mixed gas of halogen gas and inert gas into the globe to generate halide gas and analyze it. The method has been developed first (Patent Application No. 132055/1983)
.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記の溶湯面を励起する方法はいずれも長所及び短所を
有しているが、次のような共通の短所がある。すなわち
、溶湯の励起を行なうためには溶湯面に原理的に空間が
必要であるが、スラグが浮き流動が激しい溶η面におい
てスラグ等の混入がなくかつ安定した溶湯面を常に確保
することが容易でなく、この方法による迅速分析の実施
を難しくしている。また、溶湯を励起するためにレーデ
−やアーク等といった特別な設備が必要とな)システム
全体が非常に高価になるということも問題であった。
All of the above methods of exciting the molten metal surface have advantages and disadvantages, but they have the following common disadvantages. In other words, in principle, a space is required on the molten metal surface in order to excite the molten metal, but it is necessary to always ensure a stable molten metal surface without any slag mixed in on the molten metal surface where slag floats and flows rapidly. This makes it difficult to perform rapid analysis using this method. Another problem was that the entire system was very expensive (necessitating special equipment such as radar and arc to excite the molten metal).

また、酸素グローブを使用する方法はアルミニウムに限
られ、かつ1回の測定ごとに1本のプローブを必要とす
るためプローブが高価なこともありて測定回数が制限さ
れていた。このプローブのコストの問題は本発明者らが
先に開発した方法においても同様であった。
Furthermore, the method of using an oxygen glove is limited to aluminum and requires one probe for each measurement, which limits the number of measurements due to the high cost of the probe. This probe cost problem was also the same in the method previously developed by the present inventors.

C問題点を解決するための手段〕 本発明は、このような問題点を解決して、溶湯のす/ブ
リングや反応プローブの挿入等を行なうことなく、操業
中に迅速かつ連続的に微量元素を分析しうる手段を提供
するものである。すなわち、本発明は、溶湯を不活性ガ
スで攪拌しながら炉外精錬するに当り、前記不活性ガス
中にハロゲンガスを混合することにより溶湯中の成分を
ハロゲン化物に変え、溶湯から放出される該ハロゲン化
物ガスを定量することを特徴とする、不活性ガス導入炉
外精錬炉における溶湯中の成分の直接分析方法に関する
ものである。
Means for Solving Problem C] The present invention solves these problems and quickly and continuously extracts trace elements during operation without molten metal bathing/bling or insertion of reaction probes. It provides a means to analyze the That is, in the present invention, when refining the molten metal outside the furnace while stirring it with an inert gas, by mixing halogen gas into the inert gas, the components in the molten metal are converted to halides, which are released from the molten metal. The present invention relates to a method for directly analyzing components in molten metal in an inert gas-introduced external refining furnace, which is characterized by quantifying the halide gas.

本発明の方法を適用できるのは炉外精錬炉でおって溶湯
に不活性ガスを導入して攪拌するタイプである。このよ
うな炉の例として真空脱ガス炉(RH炉)、バブリング
アロイプロセスF (BAP炉)などが挙げることがで
きる。不活性ガスは従来使用されているもの例えばアル
ゴンなどをそのまま使用すればよい。
The method of the present invention can be applied to an external refining furnace of the type in which an inert gas is introduced into the molten metal and stirred. Examples of such a furnace include a vacuum degassing furnace (RH furnace) and a bubbling alloy process F (BAP furnace). As the inert gas, conventionally used gases such as argon may be used as they are.

本発明の方法は不活性ガスにハロゲンガスを混入して用
いるところに特徴がある。ハロゲンガスは塩素ガス、フ
ッ素がス、臭素ガスなどである。
The method of the present invention is characterized in that a halogen gas is used mixed with an inert gas. Halogen gases include chlorine gas, fluorine gas, and bromine gas.

例えば、表1に示すように、ハロゲンに塩素ガスを用い
れば通常測定される溶湯成分のうち炭素以外のすべてを
塩化物に変えることができる。
For example, as shown in Table 1, if chlorine gas is used as the halogen, all of the normally measured molten metal components other than carbon can be converted to chlorides.

表1 各塩化物の生成自由エネルギー M (s 、 t 1g ) 十XCL2 (g)→M
C1x/2(t、g)そして、各塩化物の飽和蒸気圧と
温度の関係を第3図に示すように、溶湯温度(通常16
00〜1700℃程度)ではすべての塩化物をガスとし
て取シ出すことが可能である。図中、Aは5icz4、
Bはpct、、CはAtCA3、Dは5bcz、、Eは
S nCl2、FはPbC22、GはFeCl2− H
はN I Cl2、IはCu 2 Ct 2そしてJは
vCt2をそれぞれ表わしている。同図に示すように、
鉄の塩化物は好都合なことに比較的蒸気圧が低い。また
、塩化バナジウムの蒸気圧も低いが、溶湯中のバナジウ
ムの含有率は通常0.1チ以下であるから、この蒸気の
回収は充分に可能である。
Table 1 Free energy of formation of each chloride M (s, t 1g) 1XCL2 (g) → M
C1x/2 (t, g) Then, as shown in Figure 3, the relationship between the saturated vapor pressure and temperature of each chloride is determined by the molten metal temperature (usually 16
(about 00 to 1700°C), it is possible to extract all the chlorides as gas. In the figure, A is 5icz4,
B is pct, C is AtCA3, D is 5bcz, E is SnCl2, F is PbC22, G is FeCl2-H
represents N I Cl2, I represents Cu 2 Ct 2 and J represents vCt2, respectively. As shown in the figure,
Iron chlorides advantageously have relatively low vapor pressures. Further, although the vapor pressure of vanadium chloride is low, since the content of vanadium in the molten metal is usually 0.1 h or less, it is possible to sufficiently recover this vapor.

ハロゲノがスの混合比率は溶湯の種類、溶湯への影響、
へロダン化物を分析する機器の感度、精錬条件、炉の種
類などから適当になるように設定され、通常混合ガス全
体の0.01〜l容i%程度の範囲から選択される。
The mixing ratio of halogen gas depends on the type of molten metal, its influence on the molten metal,
It is set appropriately depending on the sensitivity of the equipment for analyzing helodanide, refining conditions, type of furnace, etc., and is usually selected from a range of about 0.01 to 1% by volume of the entire mixed gas.

この混合ガスには内部標準として適当なガスを一定割合
で混合させることもできる。この内部標準には鉄のハロ
ゲン化物も利用できることはいうまでもない。
A suitable gas can also be mixed in this mixed gas at a constant ratio as an internal standard. Needless to say, iron halides can also be used as this internal standard.

不活性ガスを吹き込むタイプの炉においては一般に溶湯
から放出されるガスは捕集される構造になっているので
生成したハロゲン化物ガスはその排出管の途中から分取
することができる。この分岐管は測定対象元素の沸点が
高い混合には凝縮しないように加熱する必要がある場合
もある。
Furnaces of the type in which inert gas is blown generally have a structure in which the gas released from the molten metal is collected, so the generated halide gas can be collected from the middle of the exhaust pipe. This branch pipe may need to be heated to prevent condensation when a mixture of the elements to be measured has a high boiling point.

・−ロダン化物は、反応温度等の条件によシ2・−ロダ
ン化物、3−・ロダン化物、4−・ロダン化物などの混
合物が得られることがあるが、その場合にはこれらのす
べてを定量してもよく、また条件が一定の場合には1種
を定量して全体の量を算出してもよい。
・-Rhodanide may be obtained as a mixture of 2-rhodanide, 3-rhodanide, 4-rhodanide, etc. depending on conditions such as reaction temperature, but in that case, all of these may be obtained. It may be quantified, or if the conditions are constant, one species may be quantified to calculate the total amount.

検出器は測定対象成分の種類と数を考慮して選択され、
例えば高周波銹導プラズマ発光分光分析装置、質量分析
装置、赤外線分光光度計などをオリ用しうる。定量は各
成分の既知の濃度のものについて測定して検量線を作成
しておきこれと参照させることによって行なうことがで
きる。この検量線をコンピュータに記憶させておけば各
成分の濃度への変換を自動的に行なわせることもできる
The detector is selected considering the type and number of components to be measured.
For example, a high frequency induction plasma emission spectrometer, a mass spectrometer, an infrared spectrophotometer, etc. can be used. Quantification can be carried out by measuring known concentrations of each component, creating a calibration curve, and referring to this. If this calibration curve is stored in a computer, it can be automatically converted into concentrations of each component.

ハロゲン化物の生成量は導入ガス量その他の反応条件に
よって多少変動するのでハロ2ン化鉄、アルゴン等を内
部標準に用いて算出することが好ましい。
Since the amount of halide produced varies somewhat depending on the amount of introduced gas and other reaction conditions, it is preferable to calculate using iron halide, argon, etc. as an internal standard.

この定量は反応論に立脚して行なうこともできる。すな
わち、塩化物の生成反応は一般式としてy+αCt2 
→MC22(x’ (M;F e r S l + M
n * P t At+ e tc )で示され、平衡
時は KM−2MC7/(aM−p″c12)・・・(1)が
成立する。こ2α こでKMは平衡定数で6シ、 多成分の平衡時Pct2は各成分に同一であるから定量
の必要のない鉄に関し KF*= Prace□/(”F* ”Cl2)のPc
l□  を(1)式に導入し、(2)式を得る。
This quantification can also be performed based on reaction theory. In other words, the general formula for the chloride production reaction is y+αCt2
→MC22(x'(M; F e r S l + M
n * P t At+ e tc ), and at equilibrium, KM-2MC7/(aM-p″c12)...(1) holds.2α Here, KM is an equilibrium constant of 6, and is multicomponent. Since Pct2 at equilibrium is the same for each component, it is not necessary to quantify iron, and Pc of KF* = Place
Introducing l□ into equation (1) to obtain equation (2).

”M /”F e −Cx2MCl2a/PFe”C7
0) ”” (2)(ここでC! K”、。/KM) す、中1とし、その他の成分の活量を相互作用動係aa
 )を用いて他元素の補正を行なってHenry基準の
活量で示すとaMぼPMCl  /p、。′o6に対し
一2α         2 次式では示されるのでこれにょシ定量化することができ
る。
"M/"Fe-Cx2MCl2a/PFe"C7
0) ”” (2) (Here, C! K”, ./KM) Let the activity of the other components be the interaction coefficient aa.
) is used to correct for other elements and expressed as Henry standard activity: aM PMCl /p. 'o6 can be expressed as a -2α quadratic equation, so it can be quantified.

〔作用〕[Effect]

不活性ガスにハロゲンガスを混入してこれを溶湯に反応
させることによシ溶湯中の測定対象成分をハロゲン化物
に変えてガス化させる。そして、この反応ガス生成物を
取シ出して分析することにより溶湯中の各成分を定量す
ることができる。
By mixing halogen gas into the inert gas and reacting it with the molten metal, the component to be measured in the molten metal is converted into a halide and gasified. By extracting and analyzing this reaction gas product, each component in the molten metal can be quantified.

〔実施例〕〔Example〕

例1 本発明の方法をRH炉に適用した例を第1図に示す。R
H炉は、同図に示すように、取鍋1及びその上に配設さ
れた真空槽2よりなっている。真空槽2の底部には溶湯
の吸上管3と吐出管4が設けられ、吸上管3の途中には
アルゴンガスの通気管5が接続されている。一方、真空
槽の上部には大径の排気管6が接続されている。本発明
の方法を適用するにあたっては、このようなRH炉の通
気管5の途中にハロゲンガスを設定した比率で混合する
装置(図示されていない。)を設けるとともに排気管6
にはガス取出管7を接続し、これを質量分析計8に接続
した。
Example 1 An example in which the method of the present invention is applied to an RH furnace is shown in FIG. R
As shown in the figure, the H furnace consists of a ladle 1 and a vacuum chamber 2 disposed above it. A molten metal suction pipe 3 and a discharge pipe 4 are provided at the bottom of the vacuum chamber 2, and an argon gas ventilation pipe 5 is connected to the middle of the suction pipe 3. On the other hand, a large diameter exhaust pipe 6 is connected to the upper part of the vacuum chamber. When applying the method of the present invention, a device (not shown) for mixing halogen gas at a set ratio is provided in the middle of the vent pipe 5 of such an RH furnace, and the exhaust pipe 6
A gas take-off tube 7 was connected to the tube, and this was connected to a mass spectrometer 8.

このような装置を用い、アルゴンガスに塩素ガスを0.
1容積チになるように混合して真空槽に通気して排出ガ
スのhtct3とF e C10を内標準としてAt/
Feに対し、溶湯中のアルミニウムの含有量を変えて検
量線を求めた。
Using such a device, add 0.0% chlorine gas to argon gas.
Mix the mixture to 1 volume, ventilate it in a vacuum chamber, and use the exhaust gas htct3 and FeC10 as internal standards to At/
A calibration curve was determined for Fe by varying the content of aluminum in the molten metal.

その結果、At/FeとAt含有量は第4図に示すよう
に良好な直線関係にあシ、本法によって溶鋼中Atが、
迅速に、かつ正確に定量できることを確認した。
As a result, At/Fe and At content have a good linear relationship as shown in Figure 4, and by this method, At in molten steel can be
It was confirmed that it could be quantified quickly and accurately.

例2 本発明の方法をBAP炉に適用した例を第2図に示す。Example 2 FIG. 2 shows an example in which the method of the present invention is applied to a BAP furnace.

RAP炉は同図に示すように、取@1の底面にはポージ
スレンガよりなる不活性ガス導入口9が設けられ、そこ
にはアルゴンガスの通気管5が接続されている。一方、
取鍋1の上部には排出ガスの集気のために開口部が大径
になった排気管6が配設されている。このよりなりAP
炉に例1と同様に−・ログンガス混合装置及び質量分析
計8を取り付けて実施例1と同様な手法によシ検量線を
求め、アルミニウムを定量したところ溶湯を汲取シ化学
分析した結果とよく一致した結果が得られた。
As shown in the figure, the RAP furnace is provided with an inert gas inlet 9 made of Poges brick at the bottom of the tray 1, to which an argon gas vent pipe 5 is connected. on the other hand,
An exhaust pipe 6 having a large diameter opening is provided at the top of the ladle 1 to collect exhaust gas. AP from this
In the same manner as in Example 1, a log gas mixing device and a mass spectrometer 8 were attached to the furnace, and a calibration curve was determined using the same method as in Example 1.The amount of aluminum was determined. Consistent results were obtained.

〔発明の効果〕〔Effect of the invention〕

本発明の方法は不活性ガスに−・ロダンガスを混入する
とともにハロゲン化物の分析装置を取シ付けるだけでよ
く、迅速に多成分の分析を容易に行なうことができる。
The method of the present invention requires only mixing rodan gas with an inert gas and attaching a halide analyzer, making it possible to quickly and easily analyze multiple components.

そして、特別な励起源らるいは安定湯面の確保等の配慮
が一切必要なく、安定して測定を行なうことができる。
Furthermore, measurements can be carried out stably without the need for any special excitation source or consideration for ensuring a stable hot water level.

また、製鋼プロセスにおいては常に全成分の分析を要求
されるわけではなく、例えば溶銑脱S1プロセスではS
l、脱PプロセスではPの分析を中心に行なえば足シる
が、本発明の方法はこのような要求にも容易に適応でき
るものである。本発明の方法においてはプローブ等を使
用しないでよいところからコストの問題なく任意回数あ
るいは連続的に測定することができ、その結果精錬工程
管理を適切に行なうことができる。
In addition, analysis of all components is not always required in the steelmaking process; for example, in the hot metal desaturation S1 process, S
l. In the P removal process, it would be difficult to focus on analyzing P, but the method of the present invention can be easily adapted to such requirements. Since the method of the present invention does not require the use of probes or the like, it is possible to perform measurements any number of times or continuously without any cost problems, and as a result, the refining process can be appropriately controlled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はいずれも本発明の方法の実施に利用
される装置の一例を示すものである。第3図は各種塩化
物の温度と蒸気圧の関係を示すものである。第4図は溶
湯中のAt/FeとAt含有量との関係を示すグラフで
ちる。
1 and 2 both show an example of an apparatus used to carry out the method of the present invention. FIG. 3 shows the relationship between temperature and vapor pressure of various chlorides. FIG. 4 is a graph showing the relationship between At/Fe and At content in the molten metal.

Claims (1)

【特許請求の範囲】[Claims] 溶湯を不活性ガスで攪拌しながら炉外精錬するに当り、
前記不活性ガス中にハロゲンガスを混合することにより
溶湯中の成分をハロゲン化物に変え、溶湯から放出され
る該ハロゲン化物ガスを定量することを特徴とする、不
活性ガス導入炉外精錬炉における溶湯中の成分の直接分
析方法
When refining molten metal outside the furnace while stirring it with inert gas,
In an inert gas introduction external refining furnace, characterized in that a component in the molten metal is changed to a halide by mixing a halogen gas in the inert gas, and the halide gas released from the molten metal is quantified. Direct analysis method for components in molten metal
JP61015419A 1986-01-27 1986-01-27 Method for directly analyzing molten metal of refining furnace out of inert gas introducing furnace Granted JPS62172262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61015419A JPS62172262A (en) 1986-01-27 1986-01-27 Method for directly analyzing molten metal of refining furnace out of inert gas introducing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61015419A JPS62172262A (en) 1986-01-27 1986-01-27 Method for directly analyzing molten metal of refining furnace out of inert gas introducing furnace

Publications (2)

Publication Number Publication Date
JPS62172262A true JPS62172262A (en) 1987-07-29
JPH0521506B2 JPH0521506B2 (en) 1993-03-24

Family

ID=11888238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61015419A Granted JPS62172262A (en) 1986-01-27 1986-01-27 Method for directly analyzing molten metal of refining furnace out of inert gas introducing furnace

Country Status (1)

Country Link
JP (1) JPS62172262A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58218650A (en) * 1982-06-15 1983-12-19 Showa Alum Ind Kk Method and apparatus for measuring hydrogen content in molten aluminum base metal
JPS59211521A (en) * 1983-05-16 1984-11-30 Japan Metals & Chem Co Ltd Manufacture of low aluminum ferroboron

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58218650A (en) * 1982-06-15 1983-12-19 Showa Alum Ind Kk Method and apparatus for measuring hydrogen content in molten aluminum base metal
JPS59211521A (en) * 1983-05-16 1984-11-30 Japan Metals & Chem Co Ltd Manufacture of low aluminum ferroboron

Also Published As

Publication number Publication date
JPH0521506B2 (en) 1993-03-24

Similar Documents

Publication Publication Date Title
EP0215483B1 (en) Method of spectroscopically determining the composition of molten iron
CN106537123B (en) The manufacturing method of the analysis method of nitrogen in test button, the analytical equipment of nitrogen in test button, the nitrogen concentration adjusting method in molten steel and steel
CN108020541A (en) The method of sulfur content in inductively coupled plasma emission spectrography measure ferrosilicon
US2336075A (en) Method for the rapid direct analysis of oxygen in steel
Frech Rapid determination of antimony in steel by flameless atomic-absorption
JPS62172262A (en) Method for directly analyzing molten metal of refining furnace out of inert gas introducing furnace
JP6825711B2 (en) Molten component estimation device, molten metal component estimation method, and molten metal manufacturing method
CN108872200B (en) Detection method for sulfur content adsorbed on coke surface
Langmyhr et al. Atomic absorption spectrometric determination of aluminium in whole blood
Bye et al. Determination of alkylmercury compounds in fish tissue with an atomic absorption spectrometer used as a specific gas chromatographic detector
US2991684A (en) Method of supervising metallurgical and metal melting processes
CN108693169A (en) The assay method of the content of phosphorus
Yagov et al. A portable atomic emission spectrometer based on a drop-spark discharge for analyzing solutions
CN107037038A (en) The method of each element content in simultaneous determination aluminium electrolyte
JPS6042644A (en) Continuous analyzing method of component of molten metal in refining container
Kirshenbaum et al. Extension of isotopic method for determining oxygen in metals to copper containing 0.01 to 0.1 weight% of oxygen
JPH08184565A (en) On-line analytical method for element in molten steel
JPS61250556A (en) Probe for quantitative analysis of c, s, n and h in molten steel
CN108956259B (en) Method for detecting free carbon in continuous casting mold flux
WO2022244408A1 (en) Slag component analysis method, slag basicity analysis method, and molten iron refining method
JPS62191763A (en) Method for quantitative analysis of element in steel
KR900001569B1 (en) Analitic method for quantity of carbon in steel by using ultraviolet
JPH0546501B2 (en)
SU1048380A1 (en) Method of determination of general nitrogen content in organic specimens
Wasik Simultaneous determination of major and minor constituents in cement and steel by inductively coupled plasma atomic emission spectrometry