JPS62172244A - Method for measuring concentration of liquid mixture of solvent and hydrogen fluoride - Google Patents

Method for measuring concentration of liquid mixture of solvent and hydrogen fluoride

Info

Publication number
JPS62172244A
JPS62172244A JP61013818A JP1381886A JPS62172244A JP S62172244 A JPS62172244 A JP S62172244A JP 61013818 A JP61013818 A JP 61013818A JP 1381886 A JP1381886 A JP 1381886A JP S62172244 A JPS62172244 A JP S62172244A
Authority
JP
Japan
Prior art keywords
solvent
concentration
hydrogen fluoride
liquid mixture
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61013818A
Other languages
Japanese (ja)
Inventor
Masaaki Harazono
正昭 原園
Katsuhiko Ito
勝彦 伊藤
Masami Kanegae
鐘ケ江 正己
Masahiro Watanabe
正博 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61013818A priority Critical patent/JPS62172244A/en
Publication of JPS62172244A publication Critical patent/JPS62172244A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to measure the concn. of a liquid mixture with high accuracy and high efficiency, by quantifying the composition of the liquid mixture of a solvent and hydrogen fluoride from the quantity of a fluoride ion according to absorptimetric analysis. CONSTITUTION:The quantity of a fluoride ion is measured not only at a time when the solution mixture of a solvent and hydrogen fluoride is diluted to proper quantity receiving no effect due to the solvent from a measuring aspect by pure water but also at a time when a large amount of the solvent coexists and the composition of the solution mixture of the solvent and hydrogen fluoride is calculated from the correlation between both measured values. The quantity of the fluoride ion is calculated by absorptimetry, a conductivity method or an ion electrode method. By this method, highly accurate measurement can be performed and the etching treatment of a wafer in a semiconductor apparatus can be achieved with high efficiency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は浴剤と弗化水素との混合溶液の組成を測定する
方法に関し、例えば半導体装置の製造において、ウェハ
の表面をエツチング作用により加工処理および清浄化処
理する処理液の組成を測定する方法に関するものである
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for measuring the composition of a mixed solution of a bath agent and hydrogen fluoride. The present invention relates to a method for measuring the composition of a processing solution used for processing and cleaning.

〔従来の技術〕[Conventional technology]

特開昭55−44798 g公報には、シリコン表面の
清浄化方法として、シリコン表面なHF/H,0の蒸気
に曝して水溶性被膜を形成し、蒸気に曝された該表面を
洗滌することなく水を基剤とするシリコンを食刻しない
清浄液で処理する方法が記載されている。特開昭56−
168072号公報には、溶剤を加熱して発生させた蒸
気中に被乾燥物を位置させ、溶剤からの蒸気のみで被乾
燥物を乾燥させる蒸気乾燥方法が記載されている。
JP-A-55-44798G describes a method for cleaning silicon surfaces that involves exposing the silicon surface to HF/H,0 steam to form a water-soluble film, and then washing the surface exposed to the steam. A method of treating water-based silicone with a non-etching cleaning solution is described. Japanese Unexamined Patent Publication 1973-
Japanese Patent No. 168072 describes a steam drying method in which an object to be dried is placed in steam generated by heating a solvent, and the object to be dried is dried only by the vapor from the solvent.

特開昭56−168078号公報には、溶剤を加熱して
蒸気を発生させる蒸気発生源と、被乾燥物から落下して
米た水分と溶剤を受ける受槽と、溶剤の温度を測定する
温度測定装置と、溶剤の比重を測定する比重測定装置と
、温度測定装置と比重測定装置とからの信号に基づいて
溶剤の濃度を判定する七二り装置とから成る蒸気乾燥装
置が示されている。
JP-A-56-168078 discloses a steam generation source that heats a solvent to generate steam, a receiving tank that receives rice water and solvent that fall from the material to be dried, and a temperature measurement device that measures the temperature of the solvent. A steam drying apparatus is shown comprising a specific gravity measuring device for measuring the specific gravity of the solvent, and a seven-point device for determining the concentration of the solvent based on signals from the temperature measuring device and the specific gravity measuring device.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述公報に示されたウニ八表面の二酸化珪素のエツチン
グ処理による清浄化方法においては。
In the cleaning method by etching silicon dioxide on the surface of sea urchin octopus, which is disclosed in the above-mentioned publication.

処理工数が多くてt産的に不適当であり、処理中に異物
および汚染物が再付着するおそれがある。また、ウニ・
・を連続的に溶剤の蒸気中で乾燥処理していくと、非水
溶性成分の濃度が上昇してゆき、蒸気乾燥にとって好ま
しくない事態が生ずる。
This method requires a large number of processing steps and is unsuitable in terms of productivity, and there is a risk that foreign matter and contaminants may re-deposit during the processing. Also, sea urchin
・Continuously drying in solvent vapor increases the concentration of water-insoluble components, resulting in an unfavorable situation for steam drying.

この問題を解決するため、HF/H,0/溶剤の混合蒸
気にさらすことにより所望の二酸化珪素をエツチングし
て清浄化処理と蒸気乾燥処理を同時に行う方法が考えら
れる。しかし、この方法でウエノ)を処理するためには
、発生させた蒸気の濃度を常時正確に管理していないと
、ウェハの処理枚数および溶剤と弗化水素を供給してか
らの経過時間により所望のエツチング処理を得ることが
できなくなるという別の問題点を生ずる。この問題点を
解決するためKは、ウェハ処理部分の混合蒸気濃度を精
度よ(測定して混合蒸気濃度を制御する必要がある。こ
れに対して、蒸気発生用の溶剤の濃度を、溶液の温度と
比重とを測定することによって求める方法は前述公報に
記載されているが、HF/H,O/溶剤のよ5な3成分
の混合蒸気濃度をそれぞれ測定する方法は知られていな
い。
In order to solve this problem, a method can be considered in which the desired silicon dioxide is etched by exposing it to a mixed vapor of HF/H,0/solvent, thereby carrying out the cleaning treatment and the steam drying treatment at the same time. However, in order to process wafers using this method, the concentration of the generated vapor must be constantly and accurately controlled. Another problem arises in that it becomes impossible to obtain an etching process. To solve this problem, K needs to accurately measure the mixed vapor concentration in the wafer processing area to control the mixed vapor concentration. Although a method for determining the concentration by measuring temperature and specific gravity is described in the above-mentioned publication, there is no known method for measuring the mixed vapor concentration of three components such as HF/H and O/solvent.

本発明は、ウェハなどを処理するための、溶剤と弗化水
素との混合溶液から成る処理液の濃度を測定する方法を
得ることを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for measuring the concentration of a processing solution consisting of a mixed solution of a solvent and hydrogen fluoride for processing wafers and the like.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の特徴は、溶剤と弗化水素の混合溶液を溶剤によ
る測定上の影響のない適量に純水希釈したときと、溶剤
が多量に共存したときの弗素イオン量を測定する点にあ
る。すなわち、両者の測定値の相関関係より、溶剤と弗
化水素の混合溶液の組成を求めることに特徴がある。
The feature of the present invention is that the amount of fluorine ions is measured when a mixed solution of a solvent and hydrogen fluoride is diluted with pure water to an appropriate amount that the solvent does not affect the measurement, and when a large amount of solvent coexists. That is, the method is characterized in that the composition of the mixed solution of the solvent and hydrogen fluoride is determined from the correlation between the measured values of both.

弗素イオン量は吸光光度法、導電率法、イオン電極法な
ど、各種の方法によって行うことができる。
The amount of fluorine ions can be determined by various methods such as an absorption photometry method, a conductivity method, and an ion electrode method.

本発明の一態様によれば、測定する混合液に共存する溶
剤の量を変えて弗素イオンの解離度を測定する、濃度測
定方法が提供される。このようにすることにより、弗素
イオン量と共存する溶剤の濃度との両者を測定すること
ができる。
According to one aspect of the present invention, a concentration measuring method is provided in which the degree of dissociation of fluorine ions is measured by changing the amount of a solvent coexisting in a mixed liquid to be measured. By doing so, both the amount of fluorine ions and the concentration of the coexisting solvent can be measured.

本発明の別の態様によれば、ランタンアリザリンコンブ
レクソンを試薬として用い弗素と中レート剤との反応に
おいて、共存する溶剤の量を変えることにより、溶剤の
増感作用の差から溶剤の濃度を測定する、濃度測定方法
が提供される。
According to another aspect of the present invention, in the reaction between fluorine and an intermediate rate agent using lanthanum alizarin combination as a reagent, the concentration of the solvent can be adjusted based on the difference in the sensitizing effect of the solvent by changing the amount of the coexisting solvent. A method for measuring concentration is provided.

〔作用〕[Effect]

本発明によれば、測定精度2〜5%の高f#度で測定が
可能であり、半導体装置におけるウェハのエツチング処
理が著しくi昭能率で達成することができる。
According to the present invention, measurement can be performed at a high f# degree with a measurement accuracy of 2 to 5%, and etching processing of wafers in semiconductor devices can be accomplished with remarkable efficiency.

〔実施例〕〔Example〕

実施例1 第1図は本発明の一笑施例として弗素イオンtを吸光光
度法により測定した場合の吸光度と弗素イオン濃度との
関係を示す緘図である。
Example 1 FIG. 1 is a diagram showing the relationship between absorbance and fluorine ion concentration when fluorine ions t were measured by spectrophotometry as an example of the present invention.

第1図において縦軸には、ランタンアリザリンコンブレ
クンン吸光光度法で弗素イオンとツキレート剤としてラ
ンタンアリプリンコンブレクンン試薬を用いて反応させ
、波長620rLmで測定した吸光度が、横軸には弗素
イオン濃度がそれぞれ示されている。第1図は溶剤が例
えば2−プロパノールの場合を示しており、曲−Aは2
−ブaパノールが測定液中に2%以下共存した場合の弗
素イオン濃度に対する吸光度の変化を示している。弗素
イオン濃度が増加すると、それに伴りて吸光度も増加し
ており、従って、測定液の吸光度を測定することにより
弗素イオン濃度を求めることができる。このときの関係
式はつぎのとおりに表わせる。
In Figure 1, the vertical axis shows the absorbance measured at a wavelength of 620 rLm when fluoride ions were reacted with lanthanum alizarin combination spectrophotometry using a lanthanum alipurine combination reagent as a chelating agent, and the horizontal axis shows the absorbance of fluorine ions. Ion concentrations are shown for each. Figure 1 shows the case where the solvent is, for example, 2-propanol, and track-A is 2-propanol.
- shows changes in absorbance with respect to fluorine ion concentration when 2% or less of panol coexists in the measurement solution. As the fluorine ion concentration increases, the absorbance also increases, and therefore, the fluorine ion concentration can be determined by measuring the absorbance of the measurement liquid. The relational expression at this time can be expressed as follows.

FE%) = a×1”+bxI+c    =111
ここに、Iは測定夜中の2−プロパノール共存量が2チ
以下のときの吸光度、cLνbHcは定数であるから(
1)式を解くことにより、弗素イオンは度を求めること
ができる。(但し2−ブaパノール2チ以下共存)曲i
wBは2−プaノくノールが2チ以上共存したときの吸
光度を示している。
FE%) = a×1”+bxI+c =111
Here, I is the absorbance when the amount of 2-propanol coexisting during the measurement night is 2 or less, and cLνbHc is a constant, so (
1) By solving the equation, the degree of fluorine ion can be determined. (However, 2-bu-a-panol or less coexist) Song i
wB indicates the absorbance when two or more 2-panol coexist.

第2図は吸光度の変化、すなわち同一弗素イオン量に対
して2−プロパツールが2%以上共存したときと2%以
下のときとの吸光度の比、すなわち、第1図の曲線Bと
曲線Aとの比と、2−プロパツールの濃度との関係を示
す線図である。このときの吸光度の比と2−プロパツー
ルの濃度との間には次の関係式が得られる。
Figure 2 shows the change in absorbance, i.e. the ratio of absorbance when 2-propanol coexists at 2% or more and 2% or less for the same amount of fluorine ions, ie, curve B and curve A in Figure 1. FIG. 2 is a diagram showing the relationship between the ratio of 2-propanol and the concentration of 2-propanol. The following relational expression is obtained between the absorbance ratio and the concentration of 2-propanol at this time.

2−プロパツール(%) = dxI7V+g  −t
21ここにI′は測定液中の2−プロパツール共存量が
2%以上のときの吸光度、d+gは定数測定液中に2−
プロパツールが2%以上共存したときの吸光度〔I′〕
と、2チ以下共存したときの吸光度(I)をそれぞれ測
定することにより、混合溶液中の2−プロパツールの濃
度を求めることができる。
2-proper tool (%) = dxI7V+g -t
21 Here, I' is the absorbance when the coexisting amount of 2-propanol in the measurement solution is 2% or more, and d+g is the constant
Absorbance when 2% or more of propatool coexists [I']
By measuring the absorbance (I) when 2-propanol and 2-propanol coexist, the concentration of 2-propanol in the mixed solution can be determined.

実施例2 第3図は本発明の第2実施例として、2−プ、<ノール
が2チ以下共存のときの弗素イオン濃度を導電率法によ
って測定した場合の、導電率と弗素イオン濃度との関係
を示す線図である、第3図において縦軸には測定液の導
電率が、横軸には弗素イオン濃度が、それぞれ示される
Example 2 As a second example of the present invention, Fig. 3 shows the relationship between the conductivity and the fluorine ion concentration when the fluorine ion concentration was measured by the conductivity method when 2-P and <Nol coexisted. In FIG. 3, which is a diagram showing the relationship between the two, the vertical axis shows the conductivity of the measurement liquid, and the horizontal axis shows the fluorine ion concentration.

測定液中の弗素イオンが増加すると、測定液の導電率も
増加する。このときの関係式はF−C%)=fX、S”
+fXS+ん     ・(31ここにSは測定液の導
電率、f、12hは定数である。
As the fluorine ions in the measurement liquid increase, the conductivity of the measurement liquid also increases. The relational expression in this case is F-C%)=fX,S"
+fXS+ (31 Here, S is the conductivity of the measurement liquid, and f and 12h are constants.

測定液中に溶剤、例えば2−プロパツールが2チ以上共
存していると、fitlJ定液中の弗素イオンの解離度
が低下して、導電率が減少する。
If two or more solvents, such as 2-propanol, coexist in the measurement solution, the degree of dissociation of fluorine ions in the fitlJ constant solution decreases, and the conductivity decreases.

第4図は溶液中の弗素濃度を一定として2−プロパツー
ルの濃度を増加させたときの導電率の変化を示し、この
とき次の関係式が得られるr<チ)= i XS稲ノ’
X S’−14・・・ (4)ここに、りは測定液に溶
剤が共存しているときの導電率、i+jtkは定数であ
る。
Figure 4 shows the change in electrical conductivity when the concentration of 2-propanol is increased while keeping the fluorine concentration in the solution constant. At this time, the following relational expression is obtained: r<ch)=i XS Inano'
X S'-14... (4) Here, ri is the conductivity when a solvent coexists in the measurement liquid, and i+jtk is a constant.

以上の(3) + (4)式に実施例1と同様に、測定
液中に2−プロパツールが2%以上共存したときの導電
率S′と、2%以下共存したときの導電率Sとをそれぞ
れ測定した結果を代入して(3)。
In the above equations (3) + (4), as in Example 1, the conductivity S' when 2% or more of 2-propanol coexists in the measurement solution and the conductivity S when 2% or less of 2-propertool coexists. (3) by substituting the results of measuring each.

(4)式を解くことにより、混合液中の弗素イオン濃度
と2−プロパツールの濃度とを求めることができる。
By solving equation (4), the fluorine ion concentration and the 2-propertool concentration in the mixed liquid can be determined.

実施例5 第5図は弗素イオン濃度をイオン電極法によって測定し
た場合の電極電位と弗素イオン濃度との関係を示す線図
である。
Example 5 FIG. 5 is a diagram showing the relationship between electrode potential and fluorine ion concentration when the fluorine ion concentration is measured by the ion electrode method.

第5図において縦軸には測定液中の電極電位が示され、
横軸には弗素イオン濃度が対数目盛で示されており、両
者の間には次の関係式が成立する。
In FIG. 5, the vertical axis shows the electrode potential in the measurement solution,
The horizontal axis shows the fluorine ion concentration on a logarithmic scale, and the following relational expression holds between the two.

n! ここに、Eは電極電位、Eoは電極の標準電位Rは気体
定数、Tは絶対温度、Fはファラデ一定数、ルはイオン
電荷(fL=1)、F″′は弗素イオン濃度を示す。
n! Here, E is the electrode potential, Eo is the standard potential of the electrode R is the gas constant, T is the absolute temperature, F is the Faraday constant, L is the ionic charge (fL=1), and F''' is the fluorine ion concentration.

測定液中に溶剤、例えば2−プロパツールが共存してい
る場合は、溶剤が共存しないときの曲Hcに対比して曲
線りに示すように勾配が変らずに平行移動している。す
なわち、電極の標準電位E0が共存している溶剤の量に
よって変化する。
When a solvent, for example 2-propertool, coexists in the measurement liquid, the slope does not change and moves in parallel, as shown by the curve, compared to the curve Hc when no solvent coexists. That is, the standard potential E0 of the electrode changes depending on the amount of coexisting solvent.

第6図はこのときの共存する溶剤(2−プロパツール)
の濃度と電極の標準電位E0との関係を示す線図であり
、次の(61式によって表わされる。
Figure 6 shows the coexisting solvent at this time (2-proper tool)
This is a diagram showing the relationship between the concentration of and the standard potential E0 of the electrode, and is expressed by the following equation (61).

Eo= l x I PA+m      −461こ
こにEoは電極の標進電位、IpAは2−プロパツール
の濃度、t、mは定数である。
Eo = l x I PA + m -461 where Eo is the advanced potential of the electrode, IpA is the concentration of 2-propertool, and t and m are constants.

式(51と式(6)からE + E。を求めることによ
って、混合液中の弗素イオン濃度と2−プロパツールの
磁度とをそれぞれ求めることができる。
By determining E + E from equation (51) and equation (6), the fluorine ion concentration in the mixed liquid and the magnetism of 2-propertool can be determined, respectively.

以上述べた実施例に示す如く、溶剤がアルコール等の水
溶性溶剤と弗化水素および水を含む処理液であれば、イ
ンラインで迅速にそれぞれの濃度を求めることが可能で
ある。
As shown in the embodiments described above, if the solvent is a treatment liquid containing a water-soluble solvent such as alcohol, hydrogen fluoride, and water, it is possible to quickly determine the respective concentrations in-line.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、半導体装置の製造において、ウェハの
エツチング処理時における混合蒸気の濃度をインライン
で迅速に測定することが可能となり、エツチング処理の
生産性を著しく高めることができる。特に、ウェハのエ
ツチング処理量は処理時における混合蒸気の#に度に対
して対数的に変化することが知られており、混合蒸気の
一部をサンプリングして本発明による濃度測定方法で混
合蒸気の組成を求めて、処理を行う装置の処理条件にフ
ィードバックして制御を行うことにより、高f#度かつ
高能率のウエノ1処理が可能となる。
According to the present invention, in the manufacture of semiconductor devices, it is possible to quickly measure the concentration of mixed vapor in-line during the etching process of a wafer, and the productivity of the etching process can be significantly improved. In particular, it is known that the amount of wafer etching processing changes logarithmically with respect to the # of the mixed vapor during processing. By determining the composition of Ueno 1 and controlling it by feeding it back to the processing conditions of the processing apparatus, it becomes possible to perform Ueno 1 processing with high f# degree and high efficiency.

本発明により混合蒸気を測定すると、濃度測定精度とし
て2〜5%の高精度が得られる。
When mixed vapor is measured according to the present invention, a high concentration measurement accuracy of 2 to 5% can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例として、弗素イオン6度を
吸光光度法により測定したときの吸光度と弗素イオン濃
度との関係を示す線図、第2図は第1実施例において、
測定液中に2−プOハノールが2多以上共存したときと
しないときとの吸光度の比と2−プロパノール濃度との
関係を示す線図、第5図は本発明の第2実施例として弗
素イオン濃度を導を家法により迎1定したとぎの導電率
と弗素イオン1度との関係を示す線図、第4図は第2実
施例において測定液の導電率と共存する2−プロパツー
ルとの関係を示す線図つ 第5図は本発明の第3実施例として、弗素イオン量をイ
オン電極法により測定したときの電極電位と弗素イオン
濃度との関係を示す線図、第6図は第6実施例において
、を極の侃卑寛位と共存する2−プロパツールとの関係
を示す線図である。 /f″″′X
FIG. 1 is a diagram showing the relationship between absorbance and fluorine ion concentration when 6 degrees of fluorine ion is measured by spectrophotometry as a first embodiment of the present invention, and FIG. 2 is a diagram showing the relationship between absorbance and fluorine ion concentration in the first embodiment.
FIG. 5 is a diagram showing the relationship between the absorbance ratio and the 2-propanol concentration when two or more 2-propanols coexist in the measurement solution and when two or more 2-propanols coexist in the measurement solution. A diagram showing the relationship between the conductivity and the fluorine ion once the ion concentration is determined by the standard method, and Figure 4 shows the 2-proper tool that coexists with the conductivity of the measurement liquid in the second example. Figure 5 is a diagram showing the relationship between the electrode potential and fluorine ion concentration when the amount of fluorine ions is measured by the ion electrode method as a third embodiment of the present invention, Figure 6 is a diagram showing the relationship between the electrode potential and the fluorine ion concentration. is a diagram showing the relationship between the extreme lateral and permissive positions and the coexisting 2-proper tool in the sixth embodiment. /f″″′X

Claims (1)

【特許請求の範囲】 1、溶剤と弗化水素との混合液の組成を、弗素イオン量
より定量することを特徴とする溶剤と弗化水素との混合
液の濃度測定方法。 2、前記弗素イオン量を、吸光光度法、導電率法、もし
くはイオン電極法で測定することを特徴とする特許請求
の範囲第1項記載の溶剤と弗化水素との混合液の濃度測
定法。
[Scope of Claims] 1. A method for measuring the concentration of a mixture of a solvent and hydrogen fluoride, characterized in that the composition of the mixture of the solvent and hydrogen fluoride is determined based on the amount of fluorine ions. 2. A method for measuring the concentration of a mixed solution of a solvent and hydrogen fluoride according to claim 1, characterized in that the amount of fluorine ions is measured by an absorption photometry method, a conductivity method, or an ion electrode method. .
JP61013818A 1986-01-27 1986-01-27 Method for measuring concentration of liquid mixture of solvent and hydrogen fluoride Pending JPS62172244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61013818A JPS62172244A (en) 1986-01-27 1986-01-27 Method for measuring concentration of liquid mixture of solvent and hydrogen fluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61013818A JPS62172244A (en) 1986-01-27 1986-01-27 Method for measuring concentration of liquid mixture of solvent and hydrogen fluoride

Publications (1)

Publication Number Publication Date
JPS62172244A true JPS62172244A (en) 1987-07-29

Family

ID=11843860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61013818A Pending JPS62172244A (en) 1986-01-27 1986-01-27 Method for measuring concentration of liquid mixture of solvent and hydrogen fluoride

Country Status (1)

Country Link
JP (1) JPS62172244A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0579104A1 (en) * 1992-07-08 1994-01-19 Toppan Printing Co., Ltd. Dampening water controller
US6091639A (en) * 1993-08-27 2000-07-18 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device and data programming method
US6169690B1 (en) 1993-08-27 2001-01-02 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device
CN105158407A (en) * 2015-10-09 2015-12-16 天津市捷威动力工业有限公司 Method for measuring HF content of electrolyte containing LiBOB

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0579104A1 (en) * 1992-07-08 1994-01-19 Toppan Printing Co., Ltd. Dampening water controller
US6091639A (en) * 1993-08-27 2000-07-18 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device and data programming method
US6169690B1 (en) 1993-08-27 2001-01-02 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device
US6344999B1 (en) 1993-08-27 2002-02-05 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device and data programming method
US6353557B2 (en) 1993-08-27 2002-03-05 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device and data programming method
US6738293B1 (en) 1993-08-27 2004-05-18 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device and data programming method
US6785166B2 (en) 1993-08-27 2004-08-31 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device and data programming method
US7064979B2 (en) 1993-08-27 2006-06-20 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device and data programming method
CN105158407A (en) * 2015-10-09 2015-12-16 天津市捷威动力工业有限公司 Method for measuring HF content of electrolyte containing LiBOB

Similar Documents

Publication Publication Date Title
Laroff et al. Equilibrium and kinetics of the acid dissociation of several hydroxyalkyl radicals
KR0185180B1 (en) Apparatus for continuously controlliing the peroxide and ammonia concentration in a bath
Nancollas et al. Guidelines for the determination of stability constants
Sokalski et al. Determination of true selectivity coefficients of neutral carrier calcium selective electrode
CN107132263A (en) The method of testing of aluminium composition in aluminium etching solution
JPS62172244A (en) Method for measuring concentration of liquid mixture of solvent and hydrogen fluoride
TW204396B (en)
JPH11194120A (en) Method and apparatus for quantitative analysis of mixed acid solution in etching process as well as etching control method and preparation of the mixed acid solution
Acker et al. Chemical analysis of acidic silicon etch solutions: II. Determination of HNO3, HF, and H2SiF6 by ion chromatography
Dzyazko et al. Ion-exchange properties and mobility of Cu2+ ions in zirconium hydrophosphate ion exchangers
Kittrick Accuracy of several immiscible displacement liquids
Smith et al. Direct Titration of Potassium with Tetraphenylborate. Amperometric Equivalence-Point Detection
Chang et al. A simple method for determining the critical micellar concentration of a surfactant
Rinker et al. The formation of the S2O4-free radical in dimethylformamide
JPS6211520A (en) Mixing method for chemical liquid
JPS5857371B2 (en) LITAO3
Shin et al. Spectrophotometric determination of the acid dissociation constants for cacodylic acid and p-nitrophenol at elevated temperatures
JPH06230002A (en) Concentrating determination method of metal ion
Gondek et al. Etching Silicon with Aqueous Acidic Ozone Solutions: Reactivity Studies and Surface Investigations
JPS5961036A (en) Method of detecting end point of plasma etching
WO1999012026A1 (en) Quantitative analysis method, quantitative analyzer, and etching controlling method for mixed acid fluid in etching process, and process for producing said mixed acid fluid
JPH04249748A (en) Measuring method of constituent concentration of mixture of hydrogen peroxide and ammonia
CN116754349B (en) ICP-OES-based digestion method for lithium sulfide impurity elements and content determination method thereof
JPH05273122A (en) Infrared absorption measuring method for impurity in silicon crystal
Chopra et al. An optical method for monitoring metal contamination during aqueous processing of silicon wafers