JPS62172207A - Optical measuring apparatus - Google Patents

Optical measuring apparatus

Info

Publication number
JPS62172207A
JPS62172207A JP1550386A JP1550386A JPS62172207A JP S62172207 A JPS62172207 A JP S62172207A JP 1550386 A JP1550386 A JP 1550386A JP 1550386 A JP1550386 A JP 1550386A JP S62172207 A JPS62172207 A JP S62172207A
Authority
JP
Japan
Prior art keywords
cylindrical body
lens
collimator lens
laser
holding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1550386A
Other languages
Japanese (ja)
Inventor
Masamichi Suzuki
正道 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsutoyo Manufacturing Co Ltd
Original Assignee
Mitsutoyo Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsutoyo Manufacturing Co Ltd filed Critical Mitsutoyo Manufacturing Co Ltd
Priority to JP1550386A priority Critical patent/JPS62172207A/en
Publication of JPS62172207A publication Critical patent/JPS62172207A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To prevent lowering in measuring accuracy caused by the thermal expansion and contraction of a collimator lens, by correcting the focus of the collimator lens by forming a lens holding member so as to enable the same to thermally extend and contract along the optical axis of the collimator lens. CONSTITUTION:A laser beam emitter 50 is constituted of a laser beam emitting semiconductor 52, a collimator lens 54 made of a synthetic resin for converting the beam from said semiconductor 52 to parallel beam having a predetermined cross-sectional shape,and a lens holding member 56 supporting said lens and formed so as to be made thermally expandable and contractable along the optical axis of the lens 54 so as to correct the focus of the lens 54 changing with change in temp. The member 56 is constituted of a first cylindrical body 60 and a second cylindrical body 62. The cylindrical body 62 is formed of a material having coefficient of linear expansion smaller than that of the cylindrical body 60 and mounted to the cylindrical body 62 in a thermally pandable and contractable manner on the basis of the leading end side of the cylindrical body 60. By this constitution, even if the lens 54 is made of the synthetic resin, the variation in the focal distance of the lens 54 caused by thermal expansion and contraction can be corrected automatically.

Description

【発明の詳細な説明】 (産業上の利用分野] この発明は光学式測定装置に係り、特に、レーザビーム
を利用して被測定物の寸法等を測定する光学式測定装置
の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an optical measuring device, and more particularly to an improvement in an optical measuring device that uses a laser beam to measure the dimensions of an object to be measured.

(従来の技術] 従来、回転走査ど−ム(レーザビーム)をレンズにより
このレンズと集光レンズ間を通る平行走査ビームに変換
し、該レンズと集光レンズの間に被測′;l物を買ぎ、
この被測定物によって前記平行走査ビームが遮られて牛
じる11部又は明部の時間の良さから被測定物の寸法を
測定する光学式測定装置dがあった。
(Prior Art) Conventionally, a rotating scanning beam (laser beam) is converted into a parallel scanning beam passing between this lens and a condensing lens by a lens, and an object to be measured is placed between the lens and the condensing lens. buy,
There is an optical measuring device (d) that measures the dimensions of the object to be measured based on the time of the 11th part or bright area where the parallel scanning beam is blocked by the object to be measured.

これ(よ、例えば第3図に示す如く、レーザ管10から
レーザご−ム12を固定ミラー14に向けて発振し、こ
の固定ミラー14により反射されたレーザご一ム12を
多角形回転ミラー16によって回転走査ビーム17に変
換し、この走査ビーム17をレンズ18によって平行走
査ビーム20に変換し、この平行走査ご−ム20により
レンズ18と集光レンズ220間に配置した被測定物2
4を高速走査し、その時被測定物24によって生じる暗
部又は明部の時間の長さから、被測定物240走査方向
くY方向〉寸法を測定するものである。
For example, as shown in FIG. The scanning beam 17 is converted into a parallel scanning beam 20 by the lens 18, and the object to be measured 2 placed between the lens 18 and the condensing lens 220 is detected by the parallel scanning beam 20.
4 is scanned at high speed, and the dimensions of the object to be measured 240 in the scanning direction and the Y direction are measured from the length of time of dark or bright areas generated by the object to be measured 24 at that time.

即ち、平行走査ビーム20の明■8は、集光レンズ22
の焦点位置にある受光素子26の出力電圧の変化となっ
て検出され、該受光素子26からの信号は、プリアンプ
28に入力され、ここで増幅された後、セグメント選択
回路30に送られる。このしグメント選択回路30は、
受光素子26の出力電圧から被測定物24が走査されて
いる時間tの間だけゲート回路32を開くための電圧V
を発生して、ゲート回路32に出力するようにされてい
る。このゲート回路32には、クロックパルス発振器3
4からクロックパルスCPが入力されているので、ゲー
ト回路からは被測定物24の走査方向寸法(例えば外径
)に対応した時間tに対応するクロックパルスPを計数
回路36に入力する。
That is, the bright part 8 of the parallel scanning beam 20 is the condenser lens 22.
The signal from the light receiving element 26 is input to the preamplifier 28, where it is amplified and then sent to the segment selection circuit 30. This segment selection circuit 30 is
A voltage V for opening the gate circuit 32 only during the time t during which the object to be measured 24 is scanned from the output voltage of the light receiving element 26.
is generated and output to the gate circuit 32. This gate circuit 32 includes a clock pulse oscillator 3
Since the clock pulse CP is input from 4, the gate circuit inputs the clock pulse P corresponding to the time t corresponding to the scanning direction dimension (for example, outer diameter) of the object to be measured 24 to the counting circuit 36.

計数回路36は、このクロックパルスPを計数して、デ
ジタル表示器38に計数信号を出力し、デジタル表示器
38は被測定物24の走査方向寸法即ち外径をデジタル
表示することになる。一方、前記多角形回転ミラー16
は、前記クロックパルス発振器34出力を分周する分周
回路40及びこれにより分周されパワーアンプ42によ
り増幅されたクロックパルスに基づき駆動されているパ
ルスモータ44により、前記クロックパルス発振器34
出力のクロックパルスCPと同期して回転され、測定精
度をN持するようにされている。
The counting circuit 36 counts the clock pulses P and outputs a counting signal to the digital display 38, and the digital display 38 digitally displays the dimension in the scanning direction, that is, the outer diameter of the object 24 to be measured. On the other hand, the polygonal rotating mirror 16
The clock pulse oscillator 34 is controlled by a frequency dividing circuit 40 that divides the frequency of the output of the clock pulse oscillator 34 and a pulse motor 44 that is driven based on the clock pulses whose frequency is divided by this and amplified by a power amplifier 42.
It is rotated in synchronization with the output clock pulse CP to maintain a measurement accuracy of N.

ところで、前記レーザ管10に代わって、レーザ発光半
導体を用いるようにした光学式測定装置がある。
By the way, there is an optical measuring device that uses a laser-emitting semiconductor instead of the laser tube 10.

この場合、レーザ発光半導体から発生されるレーザ光は
、拡散するために、コリメータレンズによりこれを平行
ビームとしなければならない。
In this case, the laser light generated from the laser-emitting semiconductor must be converted into a parallel beam by a collimator lens in order to be diffused.

このコリメータレンズは、その特性及びレンズ加工上の
都合から、複数枚のガラスレンズを組合わけるのが一般
的であった。
This collimator lens is generally made of a plurality of glass lenses, due to its characteristics and convenience in lens processing.

これに対しては、近年、装置の小形化、畠産性の観点か
ら、コリメータレンズを合成樹脂からなる一体成型レン
ズとする試がなされている。
In response to this, in recent years, attempts have been made to make the collimator lens an integrally molded lens made of synthetic resin, from the viewpoint of downsizing the device and improving productivity in the field.

(発明が解決しようとする問題点1 しかしながら、上記のような合成樹脂装のレンズは、ガ
ラス製のレンズと比較づると、その491m張係数が大
きいために、温度変化によって、レンズ直径方向に伸縮
するに際して、焦点距離が大ぎく変動することになる。
(Problem to be Solved by the Invention 1) However, the synthetic resin-covered lens described above has a larger tensile coefficient of 491 m than a glass lens, so it expands and contracts in the lens diameter direction due to temperature changes. In doing so, the focal length will vary considerably.

従って、コリメータレンズを通過したレーザビームの直
径が回転ミラー面において拡大されることになる。
Therefore, the diameter of the laser beam that has passed through the collimator lens is expanded at the rotating mirror surface.

レーザビームの径が大きくなると、該レーザビームが測
定対象物を走査したとぎの測定対象物のエツジの検出精
度が当然低下することになるという問題点が生じる。
As the diameter of the laser beam becomes larger, a problem arises in that the accuracy of detecting edges of the object to be measured when the laser beam scans the object naturally decreases.

【発明の目的] この発明は上記問題点に鑑みてなされたーしのであって
、レーザ発光半導体から発光されるレーザ光を平行ビー
ムに変換するためのコリメータレンズを合成樹脂製とし
、且つ該コリメータレンズの熱伸縮に基づく焦点圧ばの
変化を吸収して測定r+’i庭の低下を防止するように
した光学式測定装置を提供することを目的とする。
[Object of the Invention] The present invention has been made in view of the above-mentioned problems, and includes a collimator lens made of synthetic resin for converting laser light emitted from a laser-emitting semiconductor into a parallel beam, It is an object of the present invention to provide an optical measuring device that absorbs changes in focal point pressure due to thermal expansion and contraction of a lens and prevents a decrease in measurement r+'i.

[問題点を解決するための手段1 この発明は、測定対象物にレーザビームを照射J゛るレ
ーザ発光器と、前記測定対象物を通過又は反射した前記
レーザビームを受光して電気信号に変換する光電変換器
と、この光電変換器からの電気信号を処理して前記測定
対蒙物の寸法等を算出υる電子回路と、を有してなる光
学式測定装置にd5いて、前記レーザ発光器を、レーザ
発光半導体と、このレーザ発光半導体からの光を所定断
面形状の平行ビームに変換するための合成樹脂製の一体
成型のコリメータレンズと、このコリメータレンズを支
持し、且つ、湿度変化により変化する該コリメータレン
ズの焦点を前記レーザ発光半導体の所定位置に矯正すべ
く前記コリメータレンズの光軸に沿って熱伸縮可能に形
成されたレンズ保持部材と、を含んで構成することによ
り上記目的を達成するものである。
[Means for Solving the Problems 1] The present invention includes a laser emitter that irradiates a laser beam onto an object to be measured, and receives the laser beam that has passed through or reflected from the object to be measured and converts it into an electrical signal. and an electronic circuit that processes the electric signal from the photoelectric converter to calculate the dimensions of the object to be measured, etc. The device includes a laser-emitting semiconductor, an integrally molded collimator lens made of synthetic resin for converting the light from the laser-emitting semiconductor into a parallel beam with a predetermined cross-sectional shape, and a collimator lens that supports the collimator lens and that The above object is achieved by comprising a lens holding member formed to be thermally expandable and contractible along the optical axis of the collimator lens in order to correct the changing focus of the collimator lens to a predetermined position of the laser light emitting semiconductor. It is something to be achieved.

又、前記レンズ保持部材を、互に異なるVA膨張係数の
材13+からなる複数の筒状体から構成して上記目的を
達成するものである。
Further, the above object is achieved by constructing the lens holding member from a plurality of cylindrical bodies made of materials 13+ having different VA expansion coefficients.

又、前記レンズ保持部材を、前記レーザ発光半導体が取
イ・]けられる支持ベースに取付けられた第1筒状体と
、前記コリメータレンズをその内側に、同軸的に保持す
ると共に前記第1筒状体内にその軸方向少なくとも一部
が軸方向移動可能に嵌装される第2筒状体と、から構成
することにより上記目的を達成するものである。
Further, the lens holding member is attached to a first cylindrical body attached to a support base from which the laser emitting semiconductor is taken, and the collimator lens is held coaxially inside the first cylindrical body and the first cylinder. The above object is achieved by comprising a second cylindrical body which is fitted into the cylindrical body so that at least a portion of the second cylindrical body is movable in the axial direction.

更に、前記第2筒状体を、前記第1筒状体よりも小さい
線膨張係数の材料から形成すると共に、前記第1筒状体
の先端側を基準として熱伸縮可能に取付け、前記コリメ
ータレンズを、前記第2筒状体の前記レーザ発光半導体
側端部近傍に支持することにより上記目的を達成するも
のである。
Furthermore, the second cylindrical body is formed from a material having a coefficient of linear expansion smaller than that of the first cylindrical body, and is attached so as to be thermally expandable and contractible with respect to the distal end side of the first cylindrical body, and the collimator lens is supported near the end of the second cylindrical body on the side of the laser emitting semiconductor, thereby achieving the above object.

[作用] この発明において、温度変化により、コリメータレンズ
が伸縮して、その焦点距離が変化した場合でも、レンズ
保持部材が同じく温度変化によって熱伸縮し、コリメー
タレンズの焦点距離変動を矯正する。
[Function] In the present invention, even when the collimator lens expands and contracts due to temperature changes and its focal length changes, the lens holding member also thermally expands and contracts due to temperature changes, correcting the focal length fluctuation of the collimator lens.

〔実施例1 以下本発明の実施例を図面を参照して説明する。[Example 1 Embodiments of the present invention will be described below with reference to the drawings.

この実施例は、第1図に示されるように、前記紀3図に
示されるような光学式測定装置において、レーザ発光器
50を、レーザ発光半導体52と、このレーザ発光半導
体52からの光を所定断面形状の平行ビームに変換する
ための合成樹脂製の一体成型のコリメータレンズ54と
、このコリメータレンズ54を支持し、且つ、温度変化
により変化する該コリメータレンズ54の焦点を前記レ
ーザ発光半導体52の所定位置に矯正すべく前記コリメ
ータレンズ54の光軸に沿って熱伸縮可能に形成された
レンズ保持部材56と、を含んで構成したちのである。
As shown in FIG. 1, this embodiment uses an optical measuring device as shown in FIG. A collimator lens 54 made of synthetic resin is integrally molded to convert the beam into a parallel beam having a predetermined cross-sectional shape. and a lens holding member 56 that is formed to be thermally expandable and contractible along the optical axis of the collimator lens 54 in order to correct the collimator lens 54 to a predetermined position.

+iff記レンズ保持部材56は、前記レーザ発光半導
体52が取イ」けられる支持ベース58に取付けられた
第1筒状体60と、1)う記コリメータレンズ54をそ
の内側に、同軸的に保持すると共に前記第1箇状体60
内にその軸方向少なくとも一部が軸方向移動可能に嵌装
される第2筒状体62と、から構成されている。
The lens holding member 56 coaxially holds the first cylindrical body 60 attached to the support base 58 from which the laser emitting semiconductor 52 is removed, and 1) the collimator lens 54 inside thereof. At the same time, the first article 60
A second cylindrical body 62 is fitted therein such that at least a portion of the second cylindrical body 62 is movable in the axial direction.

前記第2筒状体62は、合成病脂により形成される前記
第1筒状体60よりも小さい線膨張係数の材料であるア
ルミニウムから形成されると共に、前記第1筒状体60
の先端側を基準として熱伸縮可能に取付けられている。
The second cylindrical body 62 is made of aluminum, which is a material with a linear expansion coefficient smaller than that of the first cylindrical body 60, which is made of synthetic fat.
It is attached so that it can be expanded and contracted by heat with the tip side as a reference.

具体的には、前記第2筒状体62は、支持ベース58と
反対側の端部近傍が小径部62Aとされ、支持ベース5
8側の大径部62Bにおいて前記第1筒状体62に嵌装
されると共に、両者間の段部62Cに当接するナツト部
材64によって、軸方向に位置規制されている。
Specifically, the second cylindrical body 62 has a small diameter portion 62A near the end opposite to the support base 58, and has a small diameter portion 62A near the end opposite to the support base 58.
The large diameter portion 62B on the 8th side is fitted into the first cylindrical body 62, and its position is regulated in the axial direction by a nut member 64 that abuts on the stepped portion 62C between the two.

ナツト部材64は第1筒状体60の先端に螺合されてい
る。
The nut member 64 is screwed onto the tip of the first cylindrical body 60.

又、+iff記第2筒状体62の支持ベース58側の端
部と第1百状体60の内周フランジ66との間に(ユ圧
縮コイルばね68が装架されていて、第2筒状休62は
その段部62Cがナツト部材64に圧接するように付勢
されている。
Additionally, a compression coil spring 68 is installed between the end of the second cylindrical body 62 on the support base 58 side and the inner circumferential flange 66 of the first centrifugal body 60. The conditioner 62 is biased so that its stepped portion 62C comes into pressure contact with the nut member 64.

前記コリメータレンズ54は、1)U2第2筒状体62
の前記レーザ発光半導体52側端部近傍に支持されてい
る。
The collimator lens 54 includes: 1) U2 second cylindrical body 62;
is supported near the end on the side of the laser emitting semiconductor 52 .

第1図の符号70は第2筒状体62の内周に形成された
内周溝を示し、]コリメータレンズ4は弾性接む剤72
により直径方向仲、縮可能な状態で内周溝70内にその
外周部を保持されている。
Reference numeral 70 in FIG. 1 indicates an inner peripheral groove formed on the inner periphery of the second cylindrical body 62;
The outer circumferential portion is held within the inner circumferential groove 70 in a diametrically retractable state.

第1図の符号58A及び60△は支持ベース58、及び
、第1筒状体60のフランジ60Bに形成されたポル1
〜孔を示す。
Reference numerals 58A and 60Δ in FIG.
~ indicates a hole.

第1筒状体60はこれらボルト孔58A、60Aに、径
方向に余裕をもって挿通されるボルト74A及びこれに
螺合するナツト74Bによってル−ザ光光半導体52の
光軸に対して]リメータレンズ54の光軸合わぼ調整可
能に取付けられるようになっている。
The first cylindrical body 60 is connected to the optical axis of the loser optical semiconductor 52 by a bolt 74A inserted into the bolt holes 58A, 60A with a margin in the radial direction and a nut 74B screwed thereto. 54, the optical axis alignment can be adjusted.

ここで、前記第1局状体60の長さ、第2筒状体60.
62における段部62Gから内周溝70までの距離、及
びこれらの材質は、温度変化によりコリメータレンズ5
4がその径方向に伸縮し、これによって該コリメータレ
ンズ54の焦点距離が増減したとぎに、第1筒状体60
及び第2筒状体62の熱伸縮による内周f+’l’i 
70の支持ベース58からの距#i変化が前記焦点距離
の変化を矯正するj:うに予め選択される。
Here, the length of the first cylindrical body 60, the length of the second cylindrical body 60.
The distance from the stepped portion 62G to the inner circumferential groove 70 in the collimator lens 5 and the material of these materials may vary due to temperature changes.
4 expands and contracts in its radial direction, thereby increasing or decreasing the focal length of the collimator lens 54, the first cylindrical body 60
and the inner circumference f+'l'i due to thermal expansion and contraction of the second cylindrical body 62
The distance #i change from the support base 58 of 70 is preselected to correct the focal length change.

次に上記実施例の作用を説明する。Next, the operation of the above embodiment will be explained.

まず、第2図(B)に示される基準状態から、温度上昇
によりコリメータレンズ54が直径方向に膨張し、その
厚さが第2図(A)に示されるように薄くなった場合、
同図に実線で示されるように、コリメータレンズ54の
焦点54Aはレーザ発光半導体52よりも後側に距離S
1ずれることになる。
First, when the collimator lens 54 expands in the diametrical direction due to temperature rise from the reference state shown in FIG. 2(B), and its thickness becomes thinner as shown in FIG. 2(A),
As shown by the solid line in the figure, the focal point 54A of the collimator lens 54 is located a distance S behind the laser emitting semiconductor 52.
It will be shifted by 1.

このとき、同じく熱膨張により第1筒状体60はその軸
方向に伸長し、又、第28状体62は段部62Cを基準
として第1筒状体60と反対方向に伸長する。
At this time, the first cylindrical body 60 also expands in its axial direction due to thermal expansion, and the 28th cylindrical body 62 extends in the opposite direction to the first cylindrical body 60 with respect to the step portion 62C.

ここで、第1筒状体60は合成樹脂よりなり、又第2筒
状体62はアルミニュウムであって、前者の熱膨張係数
が後者のそれよりも大きいために、結果として第2筒状
体62の内周溝70即ちコリメータレンズ54の位置は
、支持ベース58に対してこれよりも遠ざかる方向に距
離S2移動することになる。
Here, the first cylindrical body 60 is made of synthetic resin, and the second cylindrical body 62 is made of aluminum, and since the thermal expansion coefficient of the former is larger than that of the latter, as a result, the second cylindrical body 62 is made of synthetic resin. 62, that is, the position of the collimator lens 54 is moved by a distance S2 in a direction further away from the support base 58.

この移動伍S2は、Mi′i述の如く、前記コリメータ
レンズ54の温度変化に基づく焦点距離の変化を矯正す
るようにされているのでS z =31となり、熱膨張
により焦点距離が変化した該コリメータレンズ54の焦
点54Aは、第2図(A)で2点鎖線で示されるように
、レーザ発光半導体52のHpB位買に矯正されること
になる。
As mentioned in Mi'i, this movement S2 is designed to correct the change in the focal length due to the temperature change of the collimator lens 54, so S z =31, and the change in focal length due to thermal expansion is corrected. The focal point 54A of the collimator lens 54 is corrected to the HpB level of the laser light emitting semiconductor 52, as shown by the two-dot chain line in FIG. 2(A).

前記とは反対に、第2図(C)に示されるように、基l
(+−状態から、温度低下上〇よってコリメータレンズ
54がその径方向にIl!2縮して、レンズρざが51
1大し、焦点54Aがコリメータレンズ54側に距離$
3変位したときも、I)h記とは逆方向に内周!i/r
 70が距−ts4(=83)移動して、焦点54Aを
レーザ発光半導体52の基準位置に矯正することになる
Contrary to the above, as shown in FIG. 2(C), the group l
(From the +- state, the collimator lens 54 contracts in its radial direction by Il!2 due to the temperature drop, and the lens ρ radius increases by 51
1 larger, the distance of the focal point 54A to the collimator lens 54 side is $
Even when displaced by 3, the inner circumference is in the opposite direction to I) h! i/r
70 moves by a distance of -ts4 (=83) to correct the focal point 54A to the reference position of the laser light emitting semiconductor 52.

なd3上記実施例において、レンズ保持部材5 G(J
5、腺膨張係数が異なる材質の第1筒状体60及0第2
筒状体62を含/v″′c栴成したものであるが本発明
はこれに限定されるものでなく、温度変化に基づくコリ
メータレンズ5/lの焦点7[uの変化を補うものであ
ればよい。
d3 In the above embodiment, the lens holding member 5 G(J
5. The first cylindrical body 60 and the second cylindrical body made of materials with different glandular expansion coefficients.
Although the cylindrical body 62 is formed by /v'''c, the present invention is not limited thereto. Good to have.

従って、1個の筒状体のみからレンズ保持部材を474
成するようにしてもよい。
Therefore, from only one cylindrical body, 474 lens holding members can be assembled.
It is also possible to do so.

但し、上記実施例のように、相異なる線膨張係数の第1
筒状体60及び第2筒状体62によりレンズ保持部材5
6を構成した關含は、これら第1筒状体60及V第2@
状体62の材質を適宜選択して組合わせることにより、
コリメータレンズ54の熱変化に基づく焦点距離変動を
より正確に」14i Jることができるという利点があ
る。
However, as in the above embodiment, the first
The lens holding member 5 is held by the cylindrical body 60 and the second cylindrical body 62.
6 is composed of these first cylindrical body 60 and V second@
By appropriately selecting and combining the materials of the shaped body 62,
There is an advantage that the focal length variation based on the thermal change of the collimator lens 54 can be more accurately controlled.

又、このようにすると、第1筒状体60のtA 質を一
定とし、第2筒状体62のみの長ざ及び材質を適宜選択
することによって、容易にコリメータレンズ54の焦点
変動を矯正することがでさる。
Moreover, in this case, by keeping the tA quality of the first cylindrical body 60 constant and appropriately selecting the length and material of only the second cylindrical body 62, it is possible to easily correct the focal fluctuation of the collimator lens 54. That's a big deal.

この場合、第2筒状体62のみを交換するので、第1筒
状体60の中心軸とレーザ発光半導体52の中心軸を予
め整列させてJ5 <ことによって、第2 fil状体
62の交換の都度光軸合わせをづ−る必要がないという
利点がある。
In this case, since only the second cylindrical body 62 is replaced, the central axis of the first cylindrical body 60 and the central axis of the laser-emitting semiconductor 52 are aligned in advance and the second filtration body 62 is replaced. This has the advantage that there is no need to align the optical axis each time.

なJ3、レンズ保持部材56は3以上の筒状体から(1
4成するようにしてもよい。
J3, the lens holding member 56 is made of three or more cylindrical bodies (1
It may be configured to have four components.

【発明の効果1 本発明は上記のように構成したので、レーザ発光器の一
部を構成するコリメータレンズを合成1テj脂ツ1とし
ても、熱伸縮に基づく該コリメータレンズの焦点距離の
変動を自動的に、且つ機械的に矯正して、コリメータレ
ンズの焦点をレーザ発光半導体の基準位置に合致させる
ことができるという優れた効果を有1′る。
Effects of the Invention 1 Since the present invention is configured as described above, even if the collimator lens constituting a part of the laser emitter is synthesized in one piece, the focal length of the collimator lens will change due to thermal expansion and contraction. This has the excellent effect of automatically and mechanically correcting the focal point of the collimator lens to match the reference position of the laser emitting semiconductor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る光学式測定装置の実施例を示す断
面図、第2図は同実施例の作用を示す模式図、第3図は
本発明が適用されるべき光学式測定装置の一般的構成を
示すブロック図である。 50・・・レーザ発光器、 52・・・レーザ発光半導
体、54・・・コリメータレンズ、 56・・・レンズ保持部材、 58・・・支持ベース、 60・・・第1筒状体、  62・・・第2筒状体。
FIG. 1 is a sectional view showing an embodiment of an optical measuring device according to the present invention, FIG. 2 is a schematic diagram showing the operation of the same embodiment, and FIG. 3 is a sectional view of an optical measuring device to which the present invention is applied. FIG. 2 is a block diagram showing a general configuration. 50... Laser emitter, 52... Laser emitting semiconductor, 54... Collimator lens, 56... Lens holding member, 58... Support base, 60... First cylindrical body, 62... ...Second cylindrical body.

Claims (4)

【特許請求の範囲】[Claims] (1)測定対象物にレーザビームを照射するレーザ発光
器と、前記測定対象物を通過又は反射した前記レーザビ
ームを受光して電気信号に変換する光電変換器と、この
光電変換器からの電気信号を処理して前記測定対象物の
寸法等を算出する電子回路と、を有してなる光学式測定
装置において、前記レーザ発光器を、レーザ発光半導体
と、このレーザ発光半導体からの光を所定断面形状の平
行ビームに変換するための合成樹脂製の一体成型のコリ
メータレンズと、このコリメータレンズを支持し、且つ
、温度変化により変化する該コリメータレンズの焦点を
前記レーザ発光半導体の所定位置に矯正すべく前記コリ
メータレンズの光軸に沿つて熱伸縮可能に形成されたレ
ンズ保持部材と、を含んで構成した光学式測定装置。
(1) A laser emitter that irradiates a laser beam onto an object to be measured, a photoelectric converter that receives the laser beam that has passed through or reflected from the object to be measured and converts it into an electrical signal, and electricity from the photoelectric converter. An optical measuring device comprising: an electronic circuit that processes signals to calculate the dimensions, etc. of the object to be measured; An integrally molded collimator lens made of synthetic resin for converting into a parallel beam having a cross-sectional shape, supporting this collimator lens, and correcting the focal point of the collimator lens, which changes due to temperature changes, to a predetermined position of the laser light emitting semiconductor. and a lens holding member formed to be thermally expandable and contractible along the optical axis of the collimator lens.
(2)前記レンズ保持部材は、互に異なる線膨張係数の
材料からなる複数の筒状体から構成された特許請求の範
囲第1項記載の光学式測定装置。
(2) The optical measuring device according to claim 1, wherein the lens holding member is constituted by a plurality of cylindrical bodies made of materials having mutually different coefficients of linear expansion.
(3)前記レンズ保持部材は、前記レーザ発光半導体が
取付けられる支持ベースに取付けられた第1筒状体と、
前記コリメータレンズをその内側に、同軸的に保持する
と共に前記第1筒状体内にその軸方向少なくとも一部が
軸方向移動可能に嵌装される第2筒状体と、から構成さ
れた特許請求の範囲第2項記載の光学式測定装置。
(3) The lens holding member includes a first cylindrical body attached to a support base to which the laser emitting semiconductor is attached;
A second cylindrical body that coaxially holds the collimator lens inside the second cylindrical body, and at least a portion of the second cylindrical body is fitted in the first cylindrical body so as to be movable in the axial direction. 2. The optical measuring device according to item 2.
(4)前記第2筒状体は、前記第1筒状体よりも小さい
線膨張係数の材料から形成されると共に、前記第1筒状
体の先端側を基準として熱伸縮可能に取付けられ、前記
コリメータレンズは、前記第2筒状体の前記レーザ発光
半導体側端部近傍に支持されてなる特許請求の範囲第3
項記載の光学式測定装置。
(4) the second cylindrical body is formed from a material with a coefficient of linear expansion smaller than that of the first cylindrical body, and is attached to be able to expand and contract thermally with respect to the distal end side of the first cylindrical body; The collimator lens is supported near the end of the second cylindrical body on the side of the laser emitting semiconductor.
Optical measuring device as described in section.
JP1550386A 1986-01-27 1986-01-27 Optical measuring apparatus Pending JPS62172207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1550386A JPS62172207A (en) 1986-01-27 1986-01-27 Optical measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1550386A JPS62172207A (en) 1986-01-27 1986-01-27 Optical measuring apparatus

Publications (1)

Publication Number Publication Date
JPS62172207A true JPS62172207A (en) 1987-07-29

Family

ID=11890605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1550386A Pending JPS62172207A (en) 1986-01-27 1986-01-27 Optical measuring apparatus

Country Status (1)

Country Link
JP (1) JPS62172207A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008199863A (en) * 2007-02-16 2008-08-28 Nitto Electric Works Ltd Ground terminal structure of housing for electrical/electronic equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008199863A (en) * 2007-02-16 2008-08-28 Nitto Electric Works Ltd Ground terminal structure of housing for electrical/electronic equipment

Similar Documents

Publication Publication Date Title
US4431267A (en) Optical system which provides a collimated light beam
JP4398863B2 (en) How to assemble the camera module
US4532402A (en) Method and apparatus for positioning a focused beam on an integrated circuit
US3205774A (en) Thermally compensated plastic triplet lens
US3555280A (en) Automatic focus sensor and control
US3614456A (en) Apparatus for maintaining a recording radiation spot on a record carrier
JP2002340624A (en) Detector for rotation angle, and rotary disc therefor
US20140198222A1 (en) Optical monitoring device for an imaging system
SE437579B (en) DEVICE FOR READING AN OPTICAL RECORDER WITH A RADIATOR-REFLECTING INFORMATION STRUCTURE
JPH1166219A (en) Bar code reader and its focus control method
JPS62172207A (en) Optical measuring apparatus
TW200402525A (en) Rotation angle detection apparatus and rotary disk for same
US4820042A (en) Optical cavity systems
JP2010101808A (en) Method and device for measuring radius of curvature
US11111955B2 (en) Method for fixing a fiber having a fiber Bragg grating sensor segment onto a component and bearing device with such a fiber
Bautsch et al. Traceable calibration of Shack–Hartmann wavefront sensors employing spherical wavefronts
US20080296477A1 (en) Optical system for inducing focus diversity
JP3912644B2 (en) Glass tube measurement method
JPS62183411A (en) Laser light source device
CN110779689B (en) Device and method for measuring thermal focal length of laser medium
JPS58178306A (en) Lens holder
JP3694800B2 (en) Optical encoder
JPH04144474A (en) Semiconductor laser collimeter device
JPH0430485Y2 (en)
JPH04184725A (en) Grating optical device