JPS62171937A - Production of glass article - Google Patents

Production of glass article

Info

Publication number
JPS62171937A
JPS62171937A JP1364686A JP1364686A JPS62171937A JP S62171937 A JPS62171937 A JP S62171937A JP 1364686 A JP1364686 A JP 1364686A JP 1364686 A JP1364686 A JP 1364686A JP S62171937 A JPS62171937 A JP S62171937A
Authority
JP
Japan
Prior art keywords
glass
temperature
furnace
poise
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1364686A
Other languages
Japanese (ja)
Other versions
JPH0660024B2 (en
Inventor
Yoichi Ishiguro
洋一 石黒
Hiroo Kanamori
弘雄 金森
Gotaro Tanaka
豪太郎 田中
Futoshi Mizutani
太 水谷
Tatsuo Saito
達男 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61013646A priority Critical patent/JPH0660024B2/en
Publication of JPS62171937A publication Critical patent/JPS62171937A/en
Publication of JPH0660024B2 publication Critical patent/JPH0660024B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To obtain a glass rod or glass pipe free from bend, by depositing glass soot on surface of a column or cylinder of high-purity glass and clarifying the deposited glass soot under specific condition. CONSTITUTION:Glass soot is deposited on a surface of a first column or cylinder of a high-purity glass and is clarified in a high-temperature furnace to obtain the second column or cylinder. The heat-treatment is carried out under a condition to give a shrinkage of deposited glass soot of <=15% within a temperature range to give a glass viscosity of <=10<16> poise and >=10<9> poise. The heat- treatment is preferably carried out by using a soaking pit as the high- temperature furnace and raising the temperature of the furnace at a rate of >=2 deg.C/min on an average between a temperature range to give a glass viscosity of <=10<16> poise and >=10<9> poise (between standby temperature and clarification temperature).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガラス物品の製造方法に係わシ、詳しくは高純
度ガラスの円柱体(ロンド)または円筒体(パイプ)の
表面にガラス微粒子を積層させた後高温炉に挿入し積層
したガラス微粒子を透明化し新たな円柱体または円筒体
を製造する方法に於て、ガラス微粒子が透明化する際に
生じる円柱体または円筒体の曲りを防ぐ方法に関するも
のである。本発明によシ製造された高純度ガラスの円柱
状または円筒管状ガラス物品は、光フアイバ用母材とし
て好適に使用することができる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing glass articles, and more specifically, the present invention relates to a method for manufacturing glass articles, and more specifically, the present invention relates to a method for manufacturing glass articles, and more specifically, the present invention relates to a method for manufacturing a glass article, and more specifically, the present invention relates to a method for manufacturing a glass article. A method for preventing bending of the cylinder or cylindrical body that occurs when the glass particles become transparent, in a method of manufacturing a new cylinder or cylinder by inserting the laminated glass particles into a high-temperature furnace and making them transparent. It is related to. The cylindrical or cylindrical tubular glass article of high purity glass produced according to the present invention can be suitably used as a base material for optical fiber.

〔従来の技術] ガラス原料の火炎加水分解等で得られたガラス微粒子の
積層体を透明ガラス化する方法として高温炉中に保持す
る方法、または高温炉中の加熱域を移動させ順次透明化
していく方法がある。第1の方法では第3図(a)のよ
うな装置(均熱炉)を使用する。第3図(&)において
21はヒーター、22は保温材、24は炉心管であシ、
ガラス微粒子の積層体5は回転可能に作られた支持棒2
3に吊)下げられ、待機温度にある炉中に挿入設置され
る。その後第3図ら)の時間・炉温グラフに示されるよ
うに炉温は徐々に上げられ最終的にガラス微粒子の積層
体は透明化される。ガラス微粒子の積層体が透明化する
までの間を利用し、ガラス微粒子の脱水、またはガラス
微粒子へのフッ素などの添加を行なうことも可能である
。−力筒2の方法では第4図6)のような装置(ゾーン
炉)を使用する。なお、第4図(a)における符番の意
味するところは、第4図(a)のものと同じである。ガ
ラス微粒子の積層体5は回転および上下動可能に作られ
た支持棒2311C吊シ下げられ、ヒータ21直上まで
下降して設置される。次いでヒーター21を脱水、フッ
素添加、透明化等に適した温度に昇温し該温度に保持し
、その加熱域中へガラス微粒子の積層体を通過させ、加
熱処理し、耕的にはヒータ21を透明化温度に保持した
中ヘガラス微粒子の積層体5を通過させ、透明化する〔
第1〜第3トラバース、第4図(b)参照〕。ガラス微
粒子の積層体5がその中心に高純度ガラスの円柱体また
は円筒体を持たない構造の場合、これらのガラス微粒子
の積層体は上記2種の方法で透明ガラス化することによ
って真直な円柱状ロッドまたは円筒状パイプとすること
ができる。
[Prior art] A method for transparently vitrifying a laminate of glass particles obtained by flame hydrolysis of glass raw materials is to hold it in a high-temperature furnace, or to sequentially make it transparent by moving the heating zone in the high-temperature furnace. There is a way to go. In the first method, an apparatus (soaking furnace) as shown in FIG. 3(a) is used. In Fig. 3 (&), 21 is a heater, 22 is a heat insulator, 24 is a furnace tube,
The laminate 5 of glass fine particles is supported by a rotatable support rod 2.
3) and inserted into the furnace at standby temperature. Thereafter, as shown in the time/furnace temperature graph in Figure 3, etc., the furnace temperature is gradually raised, and finally the layered body of glass fine particles becomes transparent. It is also possible to dehydrate the glass particles or add fluorine or the like to the glass particles using the period until the glass particle laminate becomes transparent. - In the method of Itsutsu 2, a device (zone furnace) as shown in Fig. 4, 6) is used. The meanings of the numbers in FIG. 4(a) are the same as those in FIG. 4(a). The laminated body 5 of glass particles is suspended from a support rod 2311C made to be rotatable and movable up and down, and is lowered and installed directly above the heater 21. Next, the temperature of the heater 21 is raised to a temperature suitable for dehydration, fluoridation, transparency, etc., and held at that temperature. is passed through a laminate 5 of glass fine particles held at a transparent temperature to become transparent [
1st to 3rd traverses, see FIG. 4(b)]. When the laminate 5 of glass fine particles has a cylindrical body of high-purity glass at its center or a structure without a cylindrical body, the laminate of glass fine particles can be made into a straight cylindrical shape by transparent vitrification using the above two methods. It can be a rod or a cylindrical pipe.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところがガラス微粒子の積層体がその中心に高純度ガラ
スの円柱状ロッドまたは円筒状パイプを持つ構造の場合
、加熱処理・透明化の条件によっては真直な円柱体(ロ
ッド)または円筒体(パイプ)が得られなかった。
However, if the stack of glass particles has a structure with a cylindrical rod or cylindrical pipe made of high-purity glass at its center, depending on the conditions of heat treatment and transparency, it may become a straight cylindrical body (rod) or cylindrical body (pipe). I couldn't get it.

すなわち第5図に示すように水平面からの距離tを持つ
曲がシが生じた。得られたロッドまたはパイプに曲りが
あると後の加工に手数がかかるばかりでなく、ロッドま
たはパイプが屈折率分布を持つ場合、屈折率分布が偏シ
同心円状でなくなってしまい光フアイバ用母材として使
用した場合、偏心率が大きくなるという問題点があった
In other words, as shown in FIG. 5, the song having a distance t from the horizontal plane was distorted. If the obtained rod or pipe is bent, not only will it take more time to process it later, but if the rod or pipe has a refractive index distribution, the refractive index distribution will no longer be eccentrically concentric, making it difficult to use as a base material for optical fibers. There was a problem in that the eccentricity ratio increased when used as

本発明は上記問題点を解決し、その中心に高純度ガラス
の円柱体または円筒体をもつガラス微粒子積層体からも
曲がりなく、ガラスロッド又iガラスパイプを製造でき
る方法を意図するものである。
The present invention solves the above-mentioned problems and aims at a method of manufacturing a glass rod or i-glass pipe without bending even from a glass fine particle laminate having a high-purity glass cylinder or cylindrical body at its center.

〔問題点を解決するための手段] 本発明者等が上記従来技術の問題点で述べたような円柱
体または円筒体に生じる曲りの原因について調査した結
果、その原因は、ガラス微粒子の積層体が収縮する時の
温度であることがわかった。この温度はガラス微粒子の
積層体を構成している物質によって変化するのでより 
一般的にはガラスの「粘性」で規定することが好ましい
。本発明者等が確認したところ、ガラスの粘性が10 
’ poise以上である温度でガラス微粒子の積層体
を収縮させると円柱状ロッド、または円筒状パイプの曲
シが大きくなった。
[Means for Solving the Problems] As a result of the inventors' investigation into the cause of the bending that occurs in cylinders or cylindrical bodies as described in the above-mentioned problem with the prior art, it was found that the cause was a laminate of glass particles. was found to be the temperature at which it contracts. This temperature varies depending on the material that makes up the laminate of glass particles, so
Generally, it is preferable to define it by the "viscosity" of the glass. The inventors confirmed that the viscosity of glass was 10
' When the laminate of glass particles was contracted at a temperature higher than poise, the curvature of the cylindrical rod or cylindrical pipe became large.

10 ’ poiseという粘性は、純5ill ガラ
スの場合で1500℃に相当し、またフッ素を1重量係
合む石英ガラスの場合は1350℃に相当する。しかし
、粘性が10 ’ poise以上ある温度範囲であっ
ても、収縮率が15係以下である場合は実際使用する場
合問題となるような曲がシは生じなかった。
A viscosity of 10' poise corresponds to 1500° C. for pure 5ill glass and 1350° C. for quartz glass with one weight of fluorine incorporated. However, even in a temperature range where the viscosity was 10' poise or more, when the shrinkage rate was 15 or less, no bending occurred which would be a problem in actual use.

このような事実よシ本発明者等はガラスの粘性が10 
’ poise以上と彦るような温度範囲でのガラス微
粒子積層体の収縮率を15係以下とすれば曲シの少ない
円柱体(ガラスロッド)または円筒体(ガラスパイプ)
を得られることを知った。ガラスの粘性が’ ”’ 1
)O1se以上の温度範囲ではガラス微粒子の積層体の
収縮は事実上おこらない。なお本明細書における収縮率
はガラス微粒子積層体の (加熱時の長さの減少/加熱処理前の長さ)×100(
4)であられされる。したがって収縮率が15俤ならば
体積は加熱処理前の約cL6倍となる。
Based on these facts, the inventors of the present invention believe that the viscosity of glass is 10
'If the shrinkage rate of the glass fine particle laminate in the temperature range of 15% or less in a temperature range of 15% or higher, a cylindrical body (glass rod) or cylindrical body (glass pipe) with little bending can be achieved.
I learned that I can get . The viscosity of glass is '``' 1
) In a temperature range of O1se or higher, the laminate of glass particles practically does not shrink. Note that the shrinkage rate in this specification is (reduction in length during heating/length before heat treatment) x 100 (
4) Hail upon you. Therefore, if the shrinkage rate is 15, the volume will be about 6 cL as much as before the heat treatment.

上記の知見に基き到達した本発明は、高純度ガラスの第
1の円柱体または円筒体の表面にガラス微粒子を積層さ
せた後、高温炉中にて積層したガラス微粒子を透明化し
、第2の円柱体または円筒体を製造する方法において、
ガラスの粘性が1016 poi日e以下10 ’ p
oise以上となるような温度範囲でのガラス微粒子の
積層体の収縮率を15係以下とすることを特徴とする、
ガラス物品の製造方法である。
The present invention, which has been achieved based on the above knowledge, consists of laminating glass fine particles on the surface of a first cylindrical body or cylindrical body made of high-purity glass, and then transparentizing the laminated glass fine particles in a high-temperature furnace. In a method of manufacturing a cylindrical body or a cylindrical body,
The viscosity of glass is less than 10'p
characterized in that the shrinkage rate of the laminate of glass particles is 15 factors or less in a temperature range of 15 oise or higher;
A method for manufacturing a glass article.

本発明の特に好ましい実施態様としては、次のものを挙
げることができる。すなわち高温炉として均熱炉を使用
し、ガラスの粘性が1016poise以下、109p
oise以上となる温度範囲での炉温の平均上昇率が2
℃/分以上として行なう上記方法、および高温炉として
ゾーン炉を使用し、ガラスの粘性が1016 po1s
e以下、10 ’ poiqe以上となる温度範囲でガ
ラス微粒子の積層体がヒータ内部にある時間が30分以
下として行う上記方法である。
Particularly preferred embodiments of the invention include the following. That is, a soaking furnace is used as a high-temperature furnace, and the viscosity of the glass is 1016 poise or less, 109 p.
The average rate of increase in furnace temperature in the temperature range above oise is 2
℃/min or more, and a zone furnace is used as the high temperature furnace, and the viscosity of the glass is 1016 po1s.
The above method is carried out in a temperature range of 10'poiqe or less, and the time the glass fine particle laminate remains inside the heater is 30 minutes or less.

本発明においては、ガラスの粘性が1ol11pois
e以下1D’ poise以上となる温度範囲でのガラ
ス微粒子積層体の収縮率を15係以下とすることによシ
、透明化後のガラス体の曲がシを防止できるが、この理
由は次のとおりである。
In the present invention, the viscosity of the glass is 1 ol 11 pois.
By setting the shrinkage rate of the glass fine particle laminate to a factor of 15 or less in a temperature range of 1D' poise or more, bending of the glass body after transparentization can be prevented, but the reason for this is as follows. That's right.

ガラスの粘性と収縮の関係は表1のよう如示すことがで
きる。
The relationship between glass viscosity and shrinkage can be shown as shown in Table 1.

表1 表から明らかなように粘性が1016 poise未満
で収縮が起こるのであるが 1026〜169poie
θの粘性となる温度範囲では曲がシの原因となる力が働
く。したがって、この粘性1016〜109 pois
eとなる温度範囲での収縮を抑え、収縮は主に粘性10
 ’ poise以下の温度範囲で起こるようにすれば
、曲がりを防止できる。本発明者らの詳細な検討によれ
ば、粘性1016〜10 ’ poi8eとなる温度範
囲での収縮率を15係以下とすると、この温度範囲での
曲がりが生じない。
Table 1 As is clear from the table, contraction occurs when the viscosity is less than 1016 poise, but between 1026 and 169 poise.
In the temperature range where the viscosity of θ occurs, a force that causes bending acts. Therefore, this viscosity is 1016 to 109 pois
The shrinkage is suppressed in the temperature range where the viscosity is 10.
'Bending can be prevented by allowing it to occur in a temperature range below poise. According to detailed studies by the present inventors, if the shrinkage rate in the temperature range where the viscosity is 1016 to 10' poi8e is set to 15 factors or less, bending does not occur in this temperature range.

ところで、第2図は均熱炉を用いて積層体を透明化する
場合の、温度と積層体の長さの関係を示すグラフであり
、縦軸は積層体の長さを、横軸は温度を示す。同図中白
線イ(実線)け昇温速度が小さい(1℃/分)場合を示
し、積層体の初期長さはZ!  、加熱後の長さはt2
  である。また曲線口(鎖線)は昇温速度が大きい(
3℃/分)場合を示し、積層体の初期長さけt1′、加
熱後の長さは1 、/である。イ、口の収縮率は、 で表わされる。
By the way, Figure 2 is a graph showing the relationship between temperature and length of the laminate when the laminate is made transparent using a soaking furnace.The vertical axis represents the length of the laminate, and the horizontal axis represents the temperature. shows. The white line A (solid line) in the same figure shows the case where the temperature increase rate is small (1°C/min), and the initial length of the laminate is Z! , the length after heating is t2
It is. In addition, the temperature rise rate is large at the curved opening (dashed line) (
3°C/min), the initial length of the laminate is t1', and the length after heating is 1. B. The contraction rate of the mouth is expressed as.

第2図から明らかなように収縮率は温度だけでなく、そ
の温度での保持時間にも依存するもので、昇温速度を6
0℃/分以上とすれば(曲線口)η== 1016〜1
09の温度に母材が保持される時間が短かくなシ、従っ
てその温度範囲での収縮率が小さくなり母材の曲がりに
対して好影響を与えることがわかる。
As is clear from Figure 2, the shrinkage rate depends not only on the temperature but also on the holding time at that temperature.
If it is 0℃/min or more (curved mouth) η== 1016~1
It can be seen that the time that the base material is held at the temperature of 09 is short, and therefore the shrinkage rate in that temperature range is small, which has a favorable effect on the bending of the base material.

したがって、本発明において、ガラスの粘性が1016
〜109 poiseの温度範囲における積層体の収縮
率を15係以下とする方法としては、例えば均熱炉使用
の場合に上記温度範囲における炉温の平均昇温速度を2
℃/分以上として行う方法や、ゾーン炉使用の際には上
記温度範囲において積層体がヒータ内部にある時間を3
0分以下として行う方法等が挙げられる。ただしこれ等
の例示の方法に限られるものでなく、ガラス粘性が10
16〜109 poiseの温度範囲における積層体の
収縮率を15係以下とできる手段〔実施例〕 実施例1 中心がGe01 を含む石英ガラスで、その周囲が純シ
リカである、ガラスロッド1の表面に、0VPO法によ
シトーチ2から生成したガラス微粒子3を積層してガラ
ス微粒子堆積層4を形成し、ガラス微粒子積層体5を得
た〔第1図(a) 。
Therefore, in the present invention, the viscosity of the glass is 1016
As a method for reducing the shrinkage rate of the laminate to 15 coefficients or less in the temperature range of ~109 poise, for example, when using a soaking furnace, the average heating rate of the furnace temperature in the above temperature range is set to 2
℃/min or more, or when using a zone furnace, the time the laminate is inside the heater in the above temperature range is 3.
Examples include a method in which the heating time is set to 0 minutes or less. However, the method is not limited to these examples, and the glass viscosity is 10
Means for reducing the contraction rate of the laminate to 15 factors or less in the temperature range of 16 to 109 poise [Example] Example 1 On the surface of the glass rod 1 whose center is quartz glass containing Ge01 and whose surroundings are pure silica. The glass fine particles 3 produced from the torch 2 were laminated by the 0VPO method to form a glass fine particle deposit layer 4 to obtain a glass fine particle laminate 5 [FIG. 1(a)].

(b)〕。該積層体5を第3図(、)のような均熱炉中
に挿入設置し、待機温度よ!71650℃まで、五3℃
/分の昇温速度で昇温しながら加熱し、透明ガラス化し
た〔第1図(C)〕。
(b)]. The laminate 5 is inserted into a soaking furnace as shown in Fig. 3 (,), and the standby temperature is reached! Up to 71650℃, 53℃
The mixture was heated while increasing the temperature at a temperature increase rate of 1/2 min to form transparent glass [Figure 1 (C)].

この結果得られた外径40m、全長300wmのガラス
ロッドの曲シは、第5図のtについて、t=200μと
極めて小さかった。またこのガラスロッドを紡糸したと
ころ、偏心率184、波長1.55μにおける損失が0
.23dB/kmの良好なファイバを得た。
The bending of the resulting glass rod with an outer diameter of 40 m and a total length of 300 wm was extremely small at t=200μ in FIG. Furthermore, when this glass rod was spun, the loss at an eccentricity of 184 and a wavelength of 1.55μ was 0.
.. A good fiber of 23 dB/km was obtained.

なおファイバの偏心率は で表される。The eccentricity of the fiber is It is expressed as

本実施例1において、積層体4の粘性は約1500℃で
10 ’ poiseとなる。上記したと同条件で同サ
イズに作成した積層体を均熱炉中に設置し、待機温度よ
l) 10 ’ poiseの粘性を示す1500℃ま
で五3℃/分の昇温速度で加熱し、直ちに炉外に取)出
し収縮率を測定したところ、13チであった。
In Example 1, the viscosity of the laminate 4 is 10' poise at about 1500°C. A laminate made to the same size under the same conditions as described above was placed in a soaking furnace and heated at a heating rate of 53°C/min to 1500°C showing a viscosity of 10' poise from the standby temperature. When it was immediately taken out of the furnace and its shrinkage rate was measured, it was found to be 13 inches.

比較例1 実施例1と同じ方法で作成したガラス微粒子積層体を第
3図(a)のような均熱炉に挿入設置し、待機温度から
1400℃まで1.5℃/分で昇温し、その後1400
℃にて2時間保持して透明ガラス化した(第6図)。こ
のとき1400℃におけるガラスの粘性は10 ’ p
oise以上であシ、収縮率は55%(透明化)であっ
た。
Comparative Example 1 A glass particle laminate prepared in the same manner as in Example 1 was inserted into a soaking furnace as shown in Figure 3(a), and the temperature was raised from the standby temperature to 1400°C at a rate of 1.5°C/min. , then 1400
It was held at ℃ for 2 hours to form transparent vitrification (Fig. 6). At this time, the viscosity of the glass at 1400°C is 10'p
oise or more, the shrinkage rate was 55% (transparent).

この結果得られた外径40■、全長300■のガラスロ
ッドの曲シは第5図のtについて、t=S鱈と大きく、
またこのガラスロッドを紡糸して得たファイバの偏心率
は2憾と大きかった。
The curve of the resulting glass rod with an outer diameter of 40 cm and a total length of 300 cm is large as t=S in Fig. 5.
Furthermore, the eccentricity of the fiber obtained by spinning this glass rod was as large as 2.

実施例2 中心が純シリカで周囲がフッ素を1重量係合んだ石英ガ
ラスである。ガラスロッドの表面に、WAD法によりガ
ラス微粒子を積層し、外径110m、全長450mの積
層体を得た。該積層体を第3図(a)のような均熱炉中
に設置挿入し、待機温度よ、91soo℃まで&3℃/
分で昇温しながら加熱し、透明ガラス化した。なお、こ
のときの粘性が10 ” poiseとなる温度は約1
350℃で、同条件で積層体を加熱し1350℃に昇温
し九時直ちに取シ出したものの収縮率は12壬であった
。また炉内に導入するガスは1100℃以下ではHe 
 100%、1100℃以上1500℃まで8iF4 
5 ’A、He 97 %とした。この結果得られた外
径40箇、長さ300■のガラスロッドの曲シは第5図
のtについてt=150pと極めて小さかった。また、
このガラスロッドを紡糸したところ、偏心率1.0 %
1.55μでの損失が(L 21 ap/7の良好なフ
ァイバとなった。
Example 2 The center was made of pure silica and the surrounding area was made of quartz glass in which 1 weight of fluorine was incorporated. Glass particles were laminated on the surface of the glass rod by the WAD method to obtain a laminate having an outer diameter of 110 m and a total length of 450 m. The laminate was placed in a soaking furnace as shown in Fig. 3(a), and the standby temperature was raised to 91 soo℃ and 3℃/
The mixture was heated while increasing the temperature over a period of 30 minutes, and turned into transparent vitrification. The temperature at which the viscosity becomes 10" poise is approximately 1
The laminate was heated at 350° C. under the same conditions and the temperature was raised to 1350° C., and when it was taken out immediately at 9 o'clock, the shrinkage rate was 12 mm. In addition, the gas introduced into the furnace is He at temperatures below 1100°C.
100%, 8iF4 from 1100℃ to 1500℃
5'A, He was 97%. The bending of the resulting glass rod with an outer diameter of 40 and a length of 300 cm was extremely small as t=150p in FIG. Also,
When this glass rod was spun, the eccentricity was 1.0%.
The fiber had a good loss at 1.55 μ (L 21 ap/7).

実施例3 実施例2と同じ方法で作ったガラス微粒子の積層体を第
4図(a)のようなゾーン炉を使用し、加熱処理・透明
化した。このゾーン炉のヒーター長は150mであシ、
加熱処理・透明化の条件は表2に示すとお夛である。
Example 3 A laminate of glass particles produced in the same manner as in Example 2 was heat-treated and made transparent using a zone furnace as shown in FIG. 4(a). The heater length of this zone furnace is 150m.
The conditions for heat treatment and transparency are shown in Table 2.

表2 第1段階でガラス微粒子の積層体へフッ素を添加し、第
2段階でフッ素の揮散を防ぎつつ、透明ガラス化してい
る。第1段階でのガラスの粘性は101’ I)O1s
e程変であり、この時の収縮率は8%と小さかった。こ
の方法で得られた外径40m、長さ300mのガラスロ
ッドの曲シは第5図のtについてt=250μと極めて
小さく、またこのガラスロッドを紡糸したところ偏心率
1.1%、1.55μでの損失が0.21 dB/bの
良好なファイバとなった。
Table 2 In the first step, fluorine is added to the laminate of glass particles, and in the second step, the laminate is made into transparent glass while preventing volatilization of the fluorine. The viscosity of the glass in the first stage is 101' I) O1s
The shrinkage rate at this time was as small as 8%. The bending of the glass rod with an outer diameter of 40 m and a length of 300 m obtained by this method was extremely small at t = 250 μ in Fig. 5, and when this glass rod was spun, the eccentricity was 1.1%. A good fiber was obtained with a loss of 0.21 dB/b at 55μ.

比較例2 実施例3と同じ方法でガラス微粒子の積層体を作成し、
加熱処理・透明化した。加熱処理・透明化の条件は表3
のとおりである。
Comparative Example 2 A laminate of glass particles was created in the same manner as in Example 3,
Heat treated and made transparent. Table 3 shows the conditions for heat treatment and transparency.
It is as follows.

表3 第1段階でのガラスの粘性は約10!0poise。Table 3 The viscosity of the glass in the first stage is approximately 10!0 poise.

ガラスの収縮率は18優で、既に曲シが生じていた。こ
の方法で得られた外径40m、長さ500mのガラスロ
ッドの曲シは第5図のtについてt=e■と大きく、曲
シ修正後紡糸ファイバ化したところ偏心率も4%と大き
かった。
The shrinkage rate of the glass was 18, and bending was already occurring. The curve of the glass rod with an outer diameter of 40 m and a length of 500 m obtained by this method was as large as t=e■ in relation to t in Figure 5, and when the curve was corrected and spun into fiber, the eccentricity was as large as 4%. .

〔発明の効果〕〔Effect of the invention〕

本発明の示した範囲内で、ガラス微粒子の積層体を加熱
処理、透明化すると、曲がシの少ない円柱状ロッドまた
は1円筒状パイプが得られる。
If a laminate of glass particles is heat-treated to make it transparent within the scope of the present invention, a cylindrical rod or cylindrical pipe with less bending can be obtained.

この円柱状ロッドまたは円筒状パイプを使用することに
よって加工の手間をかけず、偏心の少ガい光ファイバを
製造することができる。
By using this cylindrical rod or cylindrical pipe, it is possible to manufacture an optical fiber with less eccentricity and less effort in processing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)ないしくc)は本発明の実施例1を説明す
る図であって、(a)および(b)はガラス微粒子積層
体形成工程を示す側面図および断面図、(C)は該積層
体を透明化する工程順と炉温の経時調整を示す図、 第2図はガラスの温度と収縮率の関係を示すグラフ、 第3図(a)は均熱炉の説明図で、同(b)は均熱炉を
用いる場合の透明化の工程順と炉温の経時調整を示す図
、 第4図(a)はゾーン炉の説明図で、同(b)はゾーン
炉を用いる場合の透明化の工程順と炉温の経時調整を示
す図、 第5図はガラス積層体の曲がりを説明する断面図、 第6図Nは比較flllJ 1における工程順と経時調
整を示す図である。
FIGS. 1(a) to 1(c) are diagrams illustrating Example 1 of the present invention, in which (a) and (b) are side views and cross-sectional views showing the step of forming a glass fine particle laminate, and (C) Figure 2 is a graph showing the relationship between glass temperature and shrinkage rate, and Figure 3 (a) is an explanatory diagram of a soaking furnace. , Figure 4(b) is a diagram showing the process order of transparency and temporal adjustment of furnace temperature when using a soaking furnace, Figure 4(a) is an explanatory diagram of a zone furnace, and Figure 4(b) is an illustration of a zone furnace. Figure 5 is a cross-sectional view illustrating the bending of the glass laminate; Figure 6N is a diagram showing the process order and adjustment over time in Comparison flllJ 1. It is.

Claims (3)

【特許請求の範囲】[Claims] (1)高純度ガラスの第1の円柱体または円筒体の表面
にガラス微粒子を積層させた後、高温炉中にて積層した
ガラス微粒子を透明化し、第2の円柱体、または円筒体
を製造する方法において、ガラスの粘性が10^1^6
poise以下10^9poise以上となるような温
度範囲でのガラス微粒子の積層体の収縮率を15%以下
とすることを特徴とする、ガラス物品の製造方法。
(1) After laminating glass particles on the surface of a first cylinder or cylindrical body made of high-purity glass, the laminated glass particles are made transparent in a high-temperature furnace to produce a second cylinder or cylindrical body. In this method, the viscosity of the glass is 10^1^6
A method for manufacturing a glass article, characterized in that the shrinkage rate of a laminate of glass particles is 15% or less in a temperature range of 10^9 poise or less.
(2)高温炉として均熱炉を使用し、ガラスの粘性が1
0^1^6poise以下、10^9poise以上と
なる温度範囲での炉温の平均上昇率が2℃/分以上とし
て行う特許請求の範囲第(1)項記載の方法。
(2) A soaking furnace is used as a high-temperature furnace, and the viscosity of the glass is 1.
The method according to claim (1), wherein the method is carried out at an average rate of increase in the furnace temperature of 2° C./min or more in a temperature range of 0^1^6 poise or less and 10^9 poise or more.
(3)高温炉としてゾーン炉を使用し、ガラスの粘性が
10^1^6poise以下、10^9poise以上
となる温度範囲で、ガラス微粒子の積層体がヒータ内部
にある時間が30分以下として行う特許請求の範囲第(
1)項記載の方法。
(3) Using a zone furnace as a high-temperature furnace, the temperature range is such that the viscosity of the glass is 10^1^6 poise or less and 10^9 poise or more, and the time that the glass fine particle stack remains inside the heater is 30 minutes or less. Claim No. (
The method described in section 1).
JP61013646A 1986-01-27 1986-01-27 Method for manufacturing glass article Expired - Lifetime JPH0660024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61013646A JPH0660024B2 (en) 1986-01-27 1986-01-27 Method for manufacturing glass article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61013646A JPH0660024B2 (en) 1986-01-27 1986-01-27 Method for manufacturing glass article

Publications (2)

Publication Number Publication Date
JPS62171937A true JPS62171937A (en) 1987-07-28
JPH0660024B2 JPH0660024B2 (en) 1994-08-10

Family

ID=11838992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61013646A Expired - Lifetime JPH0660024B2 (en) 1986-01-27 1986-01-27 Method for manufacturing glass article

Country Status (1)

Country Link
JP (1) JPH0660024B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0626351A1 (en) * 1993-05-24 1994-11-30 Litespec, Inc. Process for sintering porous optical fibre preforms

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251143A (en) * 1984-05-25 1985-12-11 Furukawa Electric Co Ltd:The Treatment of base material for optical glass

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251143A (en) * 1984-05-25 1985-12-11 Furukawa Electric Co Ltd:The Treatment of base material for optical glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0626351A1 (en) * 1993-05-24 1994-11-30 Litespec, Inc. Process for sintering porous optical fibre preforms

Also Published As

Publication number Publication date
JPH0660024B2 (en) 1994-08-10

Similar Documents

Publication Publication Date Title
JPS62171937A (en) Production of glass article
JP2813752B2 (en) Manufacturing method of optical waveguide preform
JP2836302B2 (en) Method for manufacturing glass articles
JPH0281004A (en) Optical fiber and its production
JP2985493B2 (en) Manufacturing method of optical fiber preform
JPS6086047A (en) Manufacture of glass preform for optical fiber
JPH1171125A (en) Production of preform for optical fiber
JPH0316930A (en) Production of optical fiber having complicate refractive index distribution
JP3036993B2 (en) Manufacturing method of synthetic quartz glass member
JP3498590B2 (en) Manufacturing method of preform for optical fiber
JP4565221B2 (en) Optical fiber preform
JPH01286932A (en) Production of optical fiber preform
JPS63151639A (en) Production of glass preformer for optical fiber
JP4403623B2 (en) Optical fiber preform manufacturing method
JPH04260630A (en) Production of preform optical fiber
JPS61168544A (en) Production of glass tube mainly composed of quartz
JPS63123829A (en) Production of preform for optical fiber
JPS63285128A (en) Production of optical fiber preform
JP2004307281A (en) Method of manufacturing fluorine added quartz glass article
JPH03232732A (en) Production of glass preform for hydrogen-resistant optical fiber
JPH03113405A (en) Water shielding type optical fiber
JPH04119940A (en) Production of glass body
JPH01270533A (en) Production of optical fiber
JP2994829B2 (en) Manufacturing method of preform for optical fiber
JPS59454B2 (en) Manufacturing method of fiber base material for optical transmission

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term