JPS6217112A - Method for coating inner wall of converter with slag - Google Patents

Method for coating inner wall of converter with slag

Info

Publication number
JPS6217112A
JPS6217112A JP15680285A JP15680285A JPS6217112A JP S6217112 A JPS6217112 A JP S6217112A JP 15680285 A JP15680285 A JP 15680285A JP 15680285 A JP15680285 A JP 15680285A JP S6217112 A JPS6217112 A JP S6217112A
Authority
JP
Japan
Prior art keywords
converter
slag
wall
reducing gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15680285A
Other languages
Japanese (ja)
Inventor
Hiroshi Sugimoto
博司 杉本
Manabu Miyamoto
学 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP15680285A priority Critical patent/JPS6217112A/en
Publication of JPS6217112A publication Critical patent/JPS6217112A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/44Refractory linings

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To inhibit the oxidation of a refractory lining forming the inner wall of a converter by splashing molten slag remaining on the bottom of the converter after the tapping of steel on the inner wall of the converter with an inert or reducing gas spouted from a main lance and by substituting with the inert or reducing gas for the atmosphere in the converter. CONSTITUTION:Molten slag remaining on the bottom of a converter for manufacturing steel after the tapping of steel is splashed on the inner wall of the converter with an inert or reducing gas spouted from the tip of a main lance to coat the inner wall with the molten slag. At the same time, the inert or reducing gas is substituted for the atmosphere in the converter.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、製鋼用転炉の内壁をなす耐火内張材を、出鋼
後の残留溶融スラグで被覆するスラグコーティング方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a slag coating method for coating a refractory lining material forming the inner wall of a steelmaking converter with residual molten slag after tapping.

〈従来の技術〉 一般に、製鋼用の転炉は、酸素やガスの吹込方法に上り
上吹転炉、上下吹転炉等に分けられ、例えば上下吹転炉
では、炉内に溶銑や屑鉄の主原料および造滓剤、媒溶剤
をなす石灰石、軽焼ドロマイトなどの副原料を投入した
後、メインランスを介して上方から酸素を吹き込むとと
乙に、下方から不活性ガス等を吹き込み、主に溶銑中の
炭素および珪素を燃焼させて主原料を昇温させながら、
副原料から溶融スラグを生成させて、脱炭その他の精錬
を行なって、溶鋼を製造している。
<Prior art> In general, converters for steelmaking are divided into top-blown converters, top-bottom blowing converters, etc. depending on the method of oxygen and gas injection.For example, in top-bottom blowing converters, hot metal or scrap iron is After inputting the main raw materials, slag-forming agents, and auxiliary materials such as limestone and light calcined dolomite, which serve as solvents, oxygen is blown from above through the main lance, and inert gas etc. is blown from below through the main lance. While burning the carbon and silicon in the hot metal and raising the temperature of the main raw material,
Molten steel is produced by generating molten slag from auxiliary raw materials and performing decarburization and other refining processes.

上記転炉の内壁をなす耐火内張材には、炭素を黒鉛やタ
ールとして含有するマグネシアカーボン質煉瓦(主要成
分:MgO+C)やマグネシアドロマイトカーボン質煉
瓦(主要成分:MgO+CaO+C)などが用いられて
いる。そして、この耐火内張材は、略1700℃以上の
溶銑や溶融スラグおよび炉内の高温酸素雰囲気に絶えず
晒されるという苛酷な使用環境にあるため、含有炭素の
酸化消失とマグネシアのスラグへの溶解によって著しい
侵食や損傷を受ける。即ち、(イ)高温雰囲気中の酸素
により耐火物中の黒鉛が酸化消失する、(ロ)スラブ中
の酸化物(特にFed)により耐火物中の黒鉛が酸化消
失する、(ハ)上記(イ)、(ロ)の反応後、スラグに
よりマグネシア(MgO)骨材が溶損する等の原因によ
って、耐火物が損耗し、その寿命か短縮する。このよう
な耐火物の寿命短縮は、転炉休止を伴う頻繁な内壁補修
をもたらすのみならず、転炉稼動費に大きな割合を占め
る耐火物費用や工費の増大をらたらす。
Magnesia carbon bricks (main components: MgO+C) and magnesia dolomite carbon bricks (main components: MgO+CaO+C), which contain carbon in the form of graphite and tar, are used for the refractory lining material that forms the inner walls of the converter. . Since this refractory lining material is used in a harsh environment where it is constantly exposed to hot metal and molten slag at approximately 1,700°C or higher and a high-temperature oxygen atmosphere inside the furnace, the carbon contained in it is lost by oxidation and the magnesia dissolves into the slag. Significant erosion and damage is caused by That is, (a) graphite in the refractory is oxidized and lost by oxygen in a high-temperature atmosphere, (b) graphite in the refractory is lost by oxidation by oxides (especially Fed) in the slab, and (c) graphite in the refractory is lost by oxidation due to oxygen in the high temperature atmosphere. After the reactions in ) and (b), the refractories are worn out due to factors such as the magnesia (MgO) aggregate being eroded by the slag, shortening its lifespan. Such a shortened lifespan of refractories not only results in frequent repairs to the inner walls accompanied by shutdown of the converter, but also increases the cost of refractories and construction costs, which account for a large proportion of the operating costs of the converter.

そのため、従来から耐火物の保護および延命を図るべく
、塩基度の高い(CaO/SiO2≧3)スラブの粘性
に着目して、第3図(a)、 (b)に示す如く、直立
する炉体21をトラニオン軸21aの回りに矢印の如く
前後に略90°ずつ傾動させて、前回チャージでこの炉
底21bに残留した溶融スラグ22を内壁に沿って流動
させ、装入側および出射側の耐火物表面21e、21e
’を付着・凝固したスラブで夫々被覆して、上記(イ)
の損耗を防ぐ方法が行なわれていた。しかし、この方法
による限り、第3図(c)に示す如く、なるほど装入側
と出射側の耐火物表面21e、21e’は被覆されて損
耗は防止できても、溶融スラグが流動し得ないトラニオ
ン軸側の耐火物表面21f、21r’は全く被覆されず
、著しい損耗をきたす。このため、この部分に高価な吹
付材を吹付けて補修しなければならず、そうなると前述
と同様の費用上の問題等が生じる。
Therefore, in order to protect and extend the life of refractories, attention has been focused on the viscosity of slabs with high basicity (CaO/SiO2≧3). The body 21 is tilted back and forth by approximately 90 degrees as shown by the arrow around the trunnion shaft 21a, and the molten slag 22 remaining on the furnace bottom 21b from the previous charging is made to flow along the inner wall, and the molten slag 22 is Refractory surfaces 21e, 21e
The above (a)
Measures were taken to prevent wear and tear. However, as long as this method is used, as shown in FIG. 3(c), although the refractory surfaces 21e and 21e' on the charging side and the exit side are coated to prevent wear and tear, the molten slag cannot flow. The refractory surfaces 21f and 21r' on the trunnion shaft side are not coated at all and suffer significant wear. Therefore, this part must be repaired by spraying an expensive spraying material, which causes the same cost problems as mentioned above.

そこで、最近、上記問題を解決するスラグブローコーテ
ィングなる方法が提案されている。この方法は、第4図
に示すように、出鋼後炉体21を水平に倒し、その底部
に溜った残留溶融スラグ22中に、図示しない台車に基
端を回動可能に枢支されたノズルバイブ23の先端を浸
漬し、この先端から圧縮空気(図中の矢印参照)を噴射
して、溶融スラグをトラニオン軸側の耐火物表面21r
に向けて飛散させ、ここに付着、凝固させて表面を被覆
するらのである。
Therefore, recently, a method called slag blow coating has been proposed to solve the above problem. In this method, as shown in Fig. 4, after tapping, the furnace body 21 is laid down horizontally, and the base end is rotatably supported on a cart (not shown) in the residual molten slag 22 accumulated at the bottom of the furnace body 21. The tip of the nozzle vibe 23 is immersed, and compressed air (see arrow in the figure) is injected from the tip to blow the molten slag onto the refractory surface 21r on the trunnion shaft side.
It scatters toward the surface, where it adheres and solidifies, coating the surface.

〈発明が解決しようとする問題点〉 ところが、上記従来のスラグブローコーティング法では
、台車やノズルパイプ23などスラグブロー用の専用設
備およびその現場操作要員力q〜2名必要であるうえ、
炉内の目視確認や台車駆動によるノズルパイプの炉深さ
方向への移動等作業が煩雑になるという欠点があり、出
鋼間隔の短い操業の場合、各ヂャージ毎の実施が時間的
に不可能になる。また、ノズルバイブ23の先端をスラ
グ22中に浸漬しているので、スラグの付着によるノズ
ル詰まりが生じたり、スラグの飛散方向の制御が難しい
ため、内壁円周面に亘る均一な被覆が得にくいという欠
点がある。さらに、ブロー用ガスに圧縮空気を使用して
いるため、かえって炉内を急速に酸化雰囲気に置換する
ことになり、スラグ被覆が不十分な耐火物表面の酸化を
助長し、耐火物の寿命を縮めるという大きな欠点がある
<Problems to be Solved by the Invention> However, the above-mentioned conventional slag blow coating method requires specialized equipment for slag blowing, such as a cart and nozzle pipe 23, and a staff of q to 2 people to operate it on site.
It has the disadvantage that the work such as visual inspection inside the furnace and moving the nozzle pipe in the depth direction of the furnace by driving a trolley becomes complicated, and in the case of an operation with short tapping intervals, it is impossible to perform it for each charge due to time constraints. become. In addition, since the tip of the nozzle vibrator 23 is immersed in the slag 22, the nozzle may become clogged due to slag adhesion, and it is difficult to control the direction of slag scattering, making it difficult to obtain a uniform coating over the circumferential surface of the inner wall. There is a drawback. Furthermore, since compressed air is used for blowing gas, the inside of the furnace is rapidly replaced with an oxidizing atmosphere, which promotes oxidation on the surface of refractories with insufficient slag coating and shortens the life of the refractories. It has the big drawback of shrinking.

そこで、本発明の目的は、スラグブロー用の専用設備や
その現場作業員が不要で、炉底に残留した溶融スラグを
倒炉せずに簡単な作業で均等に飛散させ、このスラグで
炉内壁の耐火物表面をくまなく被覆するとともに、炉内
雰囲気を不活性または還元性に保持し、耐火物の保護、
延命を図ることができる転炉内壁のスラグコーティング
方法を提供することである。
Therefore, the purpose of the present invention is to disperse the molten slag remaining at the bottom of the furnace evenly with a simple operation without having to topple the furnace, without requiring special equipment for slag blowing or on-site workers, and to use this slag to blow the inner walls of the furnace. It coats the entire surface of the refractory, maintains the atmosphere inside the furnace inert or reducing, protects the refractory,
It is an object of the present invention to provide a method for coating the inner wall of a converter with slag, which can extend the life of a converter.

〈問題点を解決するだめの手段〉 上記目的を達成するため、本発明のスラグコーティング
方法は、製綱用の転炉において、出鋼後に転炉底に残留
した溶融スラグを、メインランス先端から不活性ガスま
たは還元性ガスを噴出させて跳ね飛ばし、転炉内壁に付
着させて、この内壁面を被覆するとともに、転炉内を上
記不活性ガスまたは還元性ガスで置換することを特徴と
する。
<Means for Solving the Problems> In order to achieve the above object, the slag coating method of the present invention is applied to a converter for making steel by removing the molten slag remaining at the bottom of the converter from the tip of the main lance after tapping the steel. The method is characterized in that the inert gas or reducing gas is ejected and splashed, and is attached to the inner wall of the converter to cover the inner wall surface, and the inside of the converter is replaced with the above-mentioned inert gas or reducing gas. .

く作用〉 出鋼後の転炉底に残留した流動性に富む溶融スラブ(1
400〜15008C)は、メインランス先端からの不
活性ガスまたは還元性ガスの噴射によって、メインラン
スを中心として略均等に放射状に転炉内壁面に沿って上
方へ吹き上げられたり飛散せしめられる一方、噴射され
た上記不活性ガスまたは還元性ガスは、既存の炉内の空
気を急速に追い出して炉内を置換する。転炉内壁而に略
均等に吹き上げられ飛散t+Lめられた上記溶融スラブ
は、そこで炉内雰囲気(不活性ガスまたは還元性ガス)
と広い面積で接触し、冷却されて、内壁をなす耐火物表
面で凝固して均一な被覆を形成する。このスラグ被覆に
よって耐火物の酸化や損耗の防止が図られる。
Effect〉 The highly fluid molten slab remaining at the bottom of the converter after tapping (1
400 to 15008C) are blown up or scattered upward along the inner wall surface of the converter in a radial manner centered around the main lance by injecting inert gas or reducing gas from the tip of the main lance, while The inert gas or reducing gas that is released quickly displaces the air in the existing furnace by displacing it. The above-mentioned molten slab, which is blown up and scattered almost uniformly on the inner wall of the converter, is then exposed to the furnace atmosphere (inert gas or reducing gas).
It is cooled and solidified on the refractory surface that forms the inner wall, forming a uniform coating. This slag coating prevents oxidation and wear of the refractory.

〈実施例〉 以下、本発明を図示の実施例により詳細に説明する。<Example> Hereinafter, the present invention will be explained in detail with reference to illustrated embodiments.

第1図において、lは出鋼後トラニオン軸1aの回りに
傾動して直立した転炉、2は前回チャージでこの転炉底
1bに残留した溶融スラグ、3は図示しないウィンチで
昇降駆動され、上記転炉lの中心に上方から鉛直に挿入
されたメインランス、4はこのメインランス3に吹錬用
酸素を供給する酸素配管、5はこの酸素配管に介設した
電動バルブ、6はこの電動バルブ5下流側の酸素配管4
に接続され、電動バルブ7を備えた不活性ガス配管、8
a、8bは夫々上記メインランス3に接続した冷却水供
給管および冷却水排出管、9は上記電動バルブ5,7.
メインランス昇降ウィンチ等を信号線を介して遠隔操作
する計器室である。
In FIG. 1, 1 is a converter that is tilted upright around a trunnion shaft 1a after tapping, 2 is molten slag remaining on the bottom 1b of the converter from the previous charging, and 3 is driven up and down by a winch (not shown). A main lance is inserted vertically into the center of the converter l from above, 4 is an oxygen pipe that supplies oxygen for blowing to this main lance 3, 5 is an electric valve installed in this oxygen pipe, 6 is this electric Oxygen piping 4 downstream of valve 5
an inert gas pipe connected to and equipped with an electric valve 7, 8
a, 8b are a cooling water supply pipe and a cooling water discharge pipe connected to the main lance 3, respectively, and 9 is the electrically operated valve 5, 7.
This is a control room where the main lance lifting winch, etc. are remotely controlled via signal lines.

上記メインランス3は、第2図に示すように、外側をキ
ャスタブル耐火物10で被覆され、その内側に夫々半環
状で上記冷却水供給管8aに連なる注水管11aと、上
記冷却水排出管8bに連なるとともにメインランス先端
部で上記往水管11aに連なる復水管11bとが延在し
、さらに中心部に上記酸素配管4に連なる酸素供給管1
2が延在している。
As shown in FIG. 2, the main lance 3 is coated on the outside with a castable refractory 10, and on the inside there are a semi-annular water injection pipe 11a connected to the cooling water supply pipe 8a, and a cooling water discharge pipe 8b. and a condensate pipe 11b which is connected to the outgoing water pipe 11a at the tip of the main lance, and an oxygen supply pipe 1 which is connected to the oxygen pipe 4 in the center.
2 is extended.

以上の装置を用いて、次のような手順で転炉内壁のスラ
グコーティングを行なう。
Using the above-mentioned apparatus, slag coating is performed on the inner wall of the converter according to the following procedure.

まず、転炉(処理名鋼重8oトン)内の溶銑を精錬する
場合、計器室9からの遠隔操作により、メインランス3
先端はウィンチの昇降駆動で溶銑面上方1〜3mの高さ
に保持され、電動バルブ5が開かれて(矢印0.)、上
記メインランス先端のノズから240 Nm3/min
程度の流量で酸素ガスが噴射され、この酸素ガスによっ
て吹錬が行なわれる。なお、このとき電動バルブ7は閉
じられており、不活性ガスとしてのArガスはメインラ
ンス3に供給されない。次に、」二足吹錬が完了すると
、計器室9からの遠隔操作により、電動バルブ5が閉じ
られて酸素ガスの供給が止まるとともに、メインランス
先端はウィンチの上昇で炉口1c上方まで引上げられ、
続いて転炉1を第1図の紙面に垂直な方向へトラニオン
軸+aの回りに略90゜後方へ傾動して、出鋼口1dか
ら吹錬の終った溶鋼を受鋼鍋(図示せず)に排出する。
First, when refining hot metal in a converter (processing name steel weight: 8 tons), the main lance 3 is
The tip is held at a height of 1 to 3 m above the hot metal surface by the winch's lifting and lowering drive, and the electric valve 5 is opened (arrow 0.) to generate 240 Nm3/min from the nozzle at the tip of the main lance.
Oxygen gas is injected at a certain flow rate, and blowing is performed using this oxygen gas. Note that at this time, the electric valve 7 is closed, and Ar gas as an inert gas is not supplied to the main lance 3. Next, when the two-legged blowing is completed, the electric valve 5 is closed by remote control from the control room 9 to stop the supply of oxygen gas, and the tip of the main lance is raised above the furnace mouth 1c by the winch. is,
Subsequently, the converter 1 is tilted approximately 90 degrees rearward around the trunnion axis +a in a direction perpendicular to the plane of the paper in FIG. ).

出鋼が終ると、転炉Iを再び傾動させてもとの直立位置
まで戻し、ウィンチの下降によってメインランス3の先
端を、炉底1bに残留した前回チャージの溶融スラグ(
2)面上力30〜50cmの高さまで接近させ、次いで
遠隔操作により電動バルブ7を開いて(矢印Ar )A
rガスをメインランス先端のノズルから50〜134 
Nm’/minの流量で約0.2〜2分間程噴射させる
。高温(1400〜■500°C)て流動性に富む溶融
スラグは、その中心部に上方から図示の矢印の如く高速
で吹き付けられたArガスによって、メインランス3を
中心として略均等に放射状に図中の破線で示す如く転炉
内壁而に沿って上方へ吹き上げられたり、飛散せしめら
れる。一方、噴射された上記Arガスは、炉内の空気を
図中の矢印の如く急速に追い出して空気と置換する。そ
して、転炉内壁面に略均等に吹き上げられ飛散せしめら
れた上記溶融スラグは、Arガスとなった炉内雰囲気と
広い面積で接触し、冷却されて、内壁を構成するマグネ
ノアカーボ二ノ質煉瓦やマグネシアドロマイトカーボン
質煉瓦等からなる耐火物1eの表面で凝固して、均一な
被覆を形成する。
When tapping is finished, the converter I is tilted again to return to its original upright position, and the winch is lowered to move the tip of the main lance 3 away from the molten slag from the previous charge remaining in the furnace bottom 1b (
2) Approach the surface to a height of 30 to 50 cm, then open the electric valve 7 by remote control (arrow Ar)
50~134 r gas from the nozzle at the tip of the main lance
It is injected for about 0.2 to 2 minutes at a flow rate of Nm'/min. The molten slag, which is highly fluid at a high temperature (1,400 to 500°C), is radially distributed approximately evenly around the main lance 3 by Ar gas that is blown into the center from above at high speed as shown by the arrows in the figure. As shown by the broken line in the middle, it is blown upward and scattered along the inner wall of the converter. On the other hand, the injected Ar gas rapidly expels the air in the furnace as shown by the arrow in the figure and replaces it with air. The molten slag, which is blown up and scattered almost evenly on the inner wall surface of the converter, comes into contact with the atmosphere inside the furnace which has become Ar gas over a wide area, and is cooled to form the magnenocarbonite bricks that constitute the inner wall. It solidifies on the surface of the refractory material 1e made of carbonaceous bricks, magnesia dolomite, etc., and forms a uniform coating.

通常、スラグは粗鋼トン当り略20〜80kg使用され
、従って、80トン転炉では残mスラグは1.6〜6.
4トンとなる。このうち、約lO%は吹錬時に炉口から
外部へ飛散(いわゆるスロッピング)して排出され、約
10〜20%が出鋼面の成分調整で排出され、数%が出
鋼中に受鋼鍋へ排出される。そのため、用銅後転炉底に
残留するスラグは、略1〜5トンとなる。この残留スラ
ブを上記の如く飛散させ、その結果として転炉内壁の耐
火物表面に付着したスラグ厚さを内壁全面に亘って、レ
ーザー光線炉壁残厚測定装置で調査した。
Normally, approximately 20 to 80 kg of slag is used per ton of crude steel, so in an 80 ton converter, the remaining m slag is 1.6 to 6.
It will be 4 tons. Of this, about 10% is emitted by scattering to the outside from the furnace mouth during blowing (so-called slopping), about 10 to 20% is emitted by adjusting the composition of the tapped surface, and a few percent is received during tapping. Discharged into a steel pot. Therefore, the amount of slag remaining at the bottom of the converter after copper is approximately 1 to 5 tons. This residual slab was scattered as described above, and as a result, the thickness of the slag adhering to the refractory surface of the converter inner wall was investigated over the entire inner wall using a laser beam furnace wall residual thickness measuring device.

この測定によって、耐火物表面に略均−に約50〜60
mmの厚さでスラグ被覆が形成されていることが確認さ
れた。
According to this measurement, approximately 50 to 60
It was confirmed that a slag coating was formed with a thickness of mm.

上記実施例では、転炉を直立させ、転炉底中央へ上方か
ら鉛直に挿入したメインランスの先端(スラグに浸漬せ
ず)からArガスを噴射してスラグをブローするので、
内壁円周面に亘る均一なスラグ被覆が得られるとと乙に
、既設のウィンチを利用してブローノズル位置の制御が
簡単かつ正確にでき、スラグの付着によるノズル詰まり
も生じない。その上、メインランスの昇降、電動バルブ
の開閉、転炉の傾動等を計器室9から集中して遠隔操作
しているので、スラグブロー用の専用設備やその現場作
業員がいらず、スラグブローの能率も上がる。このよう
な本実施例によるスラグ被覆の効果を一例として具体的
数値で示せば、内壁補修に用いていた耐火物吹付材の使
用量はlチャージ当り50〜80kg減少でき、転炉の
耐用寿命は従来の1400チヤージから1600ヂヤー
ジまで延長できた。
In the above embodiment, the converter is stood upright, and Ar gas is injected from the tip of the main lance (not immersed in the slag) inserted vertically into the center of the bottom of the converter from above to blow the slag.
In addition to obtaining uniform slag coverage over the circumferential surface of the inner wall, the blow nozzle position can be easily and accurately controlled using an existing winch, and nozzle clogging due to slag adhesion does not occur. Furthermore, since the lifting and lowering of the main lance, the opening and closing of electric valves, the tilting of the converter, etc. are centrally controlled remotely from the control room 9, there is no need for specialized equipment for slag blowing or on-site workers. efficiency will also increase. If the effect of the slag coating according to this embodiment is shown in concrete numerical values as an example, the amount of refractory spraying material used for repairing inner walls can be reduced by 50 to 80 kg per 1 charge, and the service life of the converter can be reduced by 50 to 80 kg. It was possible to extend the charge from the conventional 1400 charge to 1600 charge.

なお、上記実施例ではブローガスとしてArを用いたが
、これに代えてHe、N2等の他の不活性ガスもしくは
CO等の還元性ガスを用いることもてきる。さらに、炉
内の空気と置換したArガスを休炉中に逃がさないよう
、炉口部に蓋を設けて、耐火物表面の酸化防止を一層完
全にすることもできる。
Although Ar was used as the blow gas in the above embodiments, other inert gases such as He and N2 or reducing gases such as CO may be used instead. Further, a lid may be provided at the furnace mouth to prevent the Ar gas that replaced the air in the furnace from escaping during the furnace shutdown, thereby making it possible to further completely prevent oxidation of the refractory surface.

〈発明の効果〉 以上の説明で明らかなように、本発明の転炉内壁のスラ
グコーティング方法は、出鋼後に転炉底に残留した溶融
スラグを、メインランス先端から不活性ガスまたは還元
性ガスを噴出させて跳ね飛ばし、転炉内壁に付着させて
、この内壁面を被覆するとともに、転炉内を上記不活性
ガスまたは還元性ガスで置換するようにしているので、
簡単な設備でもって、均一な上記被覆と炉内の不活性ま
たは還元性雰囲気があいまって内壁を形成する耐火内張
材の酸化と損耗を防止でき、また上記被覆が次回吹錬初
期におけるスラグ生成前の酸化性雰囲気および低塩基度
スラグに対して耐火内張材を保護するので、内壁補修の
頻度が減少し、従って、転炉維持費を低減でき、転炉の
耐用寿命を大幅に延ばすことができて、顕著な効果を奏
する。
<Effects of the Invention> As is clear from the above explanation, the method for coating the inner wall of a converter with slag according to the present invention removes the molten slag remaining at the bottom of the converter after tapping by inert gas or reducing gas from the tip of the main lance. The inert gas or reducing gas is ejected and splashed and attached to the inner wall of the converter to coat the inner wall surface, and the inside of the converter is replaced with the above-mentioned inert gas or reducing gas.
With simple equipment, the combination of the uniform coating described above and the inert or reducing atmosphere inside the furnace can prevent oxidation and wear of the refractory lining material forming the inner wall, and the coating can also prevent slag formation at the beginning of the next blowing process. Protecting the refractory lining against previous oxidizing atmospheres and low basicity slag reduces the frequency of internal wall repairs, thus reducing converter maintenance costs and significantly extending the service life of the converter. It is possible to achieve remarkable effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す模式図、第2図は第1
図の■−■断面図、第3図(a)、 (b)、 (c)
は転炉の各断面図、第4図は従来のスラグコーティング
方法を示す図である。 !・・・転炉、Ib・・・転炉底、le・・・耐火物、
2・・・溶融スラグ、3・・・メインランス、4・・・
酸素配管、6・・不活性ガス配管、9・・・計器室。
Fig. 1 is a schematic diagram showing one embodiment of the present invention, and Fig. 2 is a schematic diagram showing an embodiment of the present invention.
■-■ Cross-sectional view of the figure, Figure 3 (a), (b), (c)
4 is a cross-sectional view of a converter, and FIG. 4 is a diagram showing a conventional slag coating method. ! ... Converter, Ib... Converter bottom, le... Refractory,
2... Molten slag, 3... Main lance, 4...
Oxygen piping, 6...Inert gas piping, 9...Control room.

Claims (2)

【特許請求の範囲】[Claims] (1)製鋼用の転炉において、出鋼後に転炉底に残留し
た溶融スラグを、メインランス先端から不活性ガスまた
は還元性ガスを噴出させて跳ね飛ばし、転炉内壁に付着
させて、この内壁面を被覆するとともに、転炉内を上記
不活性ガスまたは還元性ガスで置換して、転炉内壁を形
成する耐火内張材の酸化防止を図ったことを特徴とする
転炉内壁のスラグコーティング方法。
(1) In a converter for steelmaking, the molten slag remaining at the bottom of the converter after tapping is splashed by inert gas or reducing gas jetted from the tip of the main lance, and the slag is deposited on the inner wall of the converter. A slag for the inner wall of a converter, which coats the inner wall surface and replaces the inside of the converter with the above-mentioned inert gas or reducing gas to prevent oxidation of the refractory lining material forming the inner wall of the converter. Coating method.
(2)上記特許請求の範囲第1項に記載の転炉内壁のス
ラグコーティング方法において、上記不活性ガスまたは
還元性ガスの噴出が、転炉を直立させた状態で垂直なメ
インランスから行なわれることを特徴とする転炉内壁の
スラグコーティング方法。
(2) In the method for slag coating an inner wall of a converter according to claim 1, the inert gas or reducing gas is ejected from a vertical main lance with the converter standing upright. A slag coating method for the inner wall of a converter.
JP15680285A 1985-07-15 1985-07-15 Method for coating inner wall of converter with slag Pending JPS6217112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15680285A JPS6217112A (en) 1985-07-15 1985-07-15 Method for coating inner wall of converter with slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15680285A JPS6217112A (en) 1985-07-15 1985-07-15 Method for coating inner wall of converter with slag

Publications (1)

Publication Number Publication Date
JPS6217112A true JPS6217112A (en) 1987-01-26

Family

ID=15635639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15680285A Pending JPS6217112A (en) 1985-07-15 1985-07-15 Method for coating inner wall of converter with slag

Country Status (1)

Country Link
JP (1) JPS6217112A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212233A (en) * 1992-10-16 1994-08-02 Technological Resources Pty Ltd Method of protecting refractory lining in gas space of metallurgical reacting container
WO1995008650A1 (en) * 1993-09-20 1995-03-30 Centro Sviluppo Materiali S.P.A. Process and installation for repairing the lining of steelmaking converters
KR100399308B1 (en) * 1998-12-21 2004-02-05 주식회사 포스코 A method of slag splash coating in an oxygen converter
KR100490737B1 (en) * 2000-11-30 2005-05-24 주식회사 포스코 Slag coating mixed powder and slag coating method by splasing on the wall firebrick in converter
KR100625372B1 (en) * 1998-10-05 2006-09-18 제이에프이 스틸 가부시키가이샤 Method for slag coating of converter wall
RU2632738C1 (en) * 2016-05-10 2017-10-09 Олег Николаевич Скубаков Method for applying skull on converter lining

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212233A (en) * 1992-10-16 1994-08-02 Technological Resources Pty Ltd Method of protecting refractory lining in gas space of metallurgical reacting container
WO1995008650A1 (en) * 1993-09-20 1995-03-30 Centro Sviluppo Materiali S.P.A. Process and installation for repairing the lining of steelmaking converters
KR100625372B1 (en) * 1998-10-05 2006-09-18 제이에프이 스틸 가부시키가이샤 Method for slag coating of converter wall
KR100399308B1 (en) * 1998-12-21 2004-02-05 주식회사 포스코 A method of slag splash coating in an oxygen converter
KR100490737B1 (en) * 2000-11-30 2005-05-24 주식회사 포스코 Slag coating mixed powder and slag coating method by splasing on the wall firebrick in converter
RU2632738C1 (en) * 2016-05-10 2017-10-09 Олег Николаевич Скубаков Method for applying skull on converter lining

Similar Documents

Publication Publication Date Title
US4796277A (en) Melting furnace for melting metal
RU2740949C1 (en) Method for production of super pure aluminum deoxidised for production of high-quality metal products
CS198138B2 (en) Blowing apparatus,dipped under level of molten metal
JPS6217112A (en) Method for coating inner wall of converter with slag
US3812275A (en) Steel production method and apparatus
US20180202012A1 (en) Method of making steel using a single installation, and installation
WO1999020966A1 (en) Structure of metallurgical furnace and operating method using the same metallurgical furnace
Barker et al. Oxygen steelmaking furnace mechanical description and maintenance considerations
US3452971A (en) Stationary refractory-lined reaction vessel
US3396958A (en) Apparatus for recovering an unburnt waste gas in an oxygen top-blowing converter
JP2544720Y2 (en) Tuyere structure of gas injection nozzle for molten metal container
JP2624504B2 (en) Converter structure with no falling furnace
JPS6328817A (en) Furnace body cooling method of converter
CN114985715B (en) Ladle equipment with multiple groups of air bricks and ladle smelting control method
US843582A (en) Converter plant.
RU2116355C1 (en) Method of converter charging and device for its embodiment
US3951643A (en) Steel production method
JPS61246309A (en) Continuous steel making method using plural divided type refining furnaces
JPS5837941Y2 (en) Top blowing lance for outside furnace refining
RU29719U1 (en) Blast Furnace Swing Trough Bathtub
SU548628A1 (en) Apparatus for producing smelting products from a blast furnace
JP3370544B2 (en) Flame spray repair method
JPH03134487A (en) Construction method for castable refractory
JPS61246307A (en) Divided type refining furnace for continuous steel making
JPH0598336A (en) Molten metal refining vessel and operation method thereof