JPS6217100A - Production of beryl single crystal - Google Patents

Production of beryl single crystal

Info

Publication number
JPS6217100A
JPS6217100A JP15573185A JP15573185A JPS6217100A JP S6217100 A JPS6217100 A JP S6217100A JP 15573185 A JP15573185 A JP 15573185A JP 15573185 A JP15573185 A JP 15573185A JP S6217100 A JPS6217100 A JP S6217100A
Authority
JP
Japan
Prior art keywords
beryl
flux
temp
single crystal
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15573185A
Other languages
Japanese (ja)
Inventor
Takashi Oguri
小栗 隆志
Masaaki Takeuchi
正明 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsushima Kogyo KK
Original Assignee
Matsushima Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushima Kogyo KK filed Critical Matsushima Kogyo KK
Priority to JP15573185A priority Critical patent/JPS6217100A/en
Publication of JPS6217100A publication Critical patent/JPS6217100A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To control the generation of a coexistent mineral, to increase the yield of the titled beryl single crystal and to improve the quality by controlling the temp. of the surface of a liq. flux to a specified temp. in the method for growing a bery single crystal by a temp. difference method or an annealing method. CONSTITUTION:One or more kinds selected from V2O5, lithium molybdate, sodium molybdate, potassium molybdate, MoO3 and Li2O is used as the flux, BeO, Al2O3 and SiO2 as the beryl components and Cr2O3 as the colorant are dissolved in the flux and a beryl single crystal is grown by a temp. difference method or an annealing method. In this method, the temp. of the liq. flux surface is controlled in the range -6-2 deg.C with respect to the temp. of the beryl growing part. In the conventional molten salt method, the temp. of the liq. flux surface has been regulated >=10 deg.C lower than the temp. of the beryl growing part. Consequently, the output of beryl is decreased due to the rapid cooling of the liq. flux surface and the transparency is deteriorated. The problems can be solved by this method, the yield of the beryl single crystal is increased and the quality is also improved.

Description

【発明の詳細な説明】 〔産業上の利用分針〕 本発明は、溶融塩(フラックス)法によるベリル単結晶
の補遺方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Minute Hand] The present invention relates to a method for supplementing beryl single crystals by a molten salt (flux) method.

〔発明の概要〕[Summary of the invention]

本発明は温度差法あるいは徐冷法でベリル単結範囲に制
御することにLシ、共存鉱物の発生を抑え、得ら五る結
晶の品質を向上させたものである。
The present invention improves the quality of the obtained crystals by controlling the beryl single crystals using a temperature difference method or slow cooling method, suppressing the generation of coexisting minerals.

(従来の技術〕        − 従来溶融塩法は、フラックス液面の温度がベリル育gg
の温度に対して10℃以上低か2魁(発明が解決しよう
としている問題点及び目的〕しかし、前述の従来技術で
はフラックス液面が急激に冷える九め、エメラルドの微
結晶又は戸リストパライトが発生し易く、ベリルの生成
量を低下させiす、又育成時に包有物として堰り込まれ
透明度を低下させるなど品質に重大な影響を与えていた
という問題点を有する。
(Conventional technology) - In the conventional molten salt method, the temperature of the flux liquid surface is
(Problems and objectives to be solved by the invention) However, in the above-mentioned prior art, the flux liquid surface cools down rapidly. This has the problem of having a serious impact on quality, such as reducing the amount of beryl produced, and being burrowed in as inclusions during growth, reducing transparency.

本発明は以上の問題点を解決するもので、その目的とす
るところはベリル単結晶の収量を増大させ、品質にも優
れtベリル単結晶の製造方法を提供するところにある。
The present invention is intended to solve the above-mentioned problems, and its purpose is to increase the yield of beryl single crystals and provide a method for producing t-beryl single crystals with excellent quality.

(問題点を解決する九めの手段〕 本発明のベリル単結晶製造方法は、フラックス〔実施例
〕 以下に本発明の方法を実施例に基づいて説明する。
(Ninth Means for Solving the Problems) The beryl single crystal production method of the present invention uses flux [Examples] The method of the present invention will be described below based on Examples.

〔実施例−1〕 (1)#剤(フラックス) ’/20s トL i 0Hfj20 : 1(7)’
jLf&テIK#用いる。
[Example-1] (1) # agent (flux) '/20s ToLi0Hfj20: 1(7)'
Use jLf &TeIK#.

(2)  溶解方法 Φ ptルツボとルツボ炉を用い、上記フラックス11
000℃で溶解する。
(2) Melting method Φ Using a PT crucible and a crucible furnace, the above flux 11
Melts at 000℃.

■ ベリル育成部の温度がルツボ底部の温度より5℃低
くなるように制御し、さらにフラックス液面とベリル育
[部t−第1表に示し7?:3種類の温度差にy!if
御する。
■ Control the temperature of the beryl growing part so that it is 5°C lower than the temperature of the bottom of the crucible, and further check the flux level and the beryl growing part [part t - 7 as shown in Table 1]. : y to 3 types of temperature difference! if
control

■ At、O327tとBe010fの混合焼結体を投
入し溶解する。
(2) A mixed sintered body of At, O327t and Be010f is introduced and melted.

■ 3日後、At! 03とBooの溶解1it’に発
光分光分析装置ll用いてチェックする。
■ Three days later, At! The dissolution of 03 and Boo is checked using an emission spectrometer II.

各成分ともに亀和溶″siの80チ以上溶解しているこ
とを分析確認する。
It is confirmed by analysis that each component has dissolved at least 80% of Kamewayu'si.

■ ドープ剤としてC,、r!os焼結体を1.1f(
重量比でAt、03の4.1チ)投入し溶解する。
■ C,,r! as a doping agent! The os sintered body was heated to 1.1f (
At weight ratio: 4.1 h of At, 03) and dissolve.

■ 810.(水晶)を55p投入し溶解する。■ 810. Add 55p of (crystal) and dissolve.

′ ■ 2日後、各原材料物質が飽和しているか発光分
光分析装置を用いてチェックする66放分ともに飽和溶
解量の80eI6以上溶解していることを分析確認する
After two days, use an emission spectrometer to check whether each raw material is saturated or not. It is confirmed by analysis that each of the 66 components has dissolved at least 80eI6, which is the saturated dissolution amount.

(3)  ベリルの育成 ■ 改良確認用のベリル結晶片t−2日間投入する。(3) Cultivating Beryl ■ Add beryl crystal pieces for t-2 days to confirm improvement.

成長状況と共存鉱物の生成の有無をチェ・−ツクする。Check the growth status and presence or absence of coexisting minerals.

■ 育成用のベリル種子結晶片を投入する。■ Insert beryl seed crystal pieces for breeding.

■ フラックスの温度15℃上げ、24時間保持し種子
結晶表面をエツチングする。
■ Raise the temperature of the flux by 15°C and hold for 24 hours to etch the surface of the seed crystal.

■ もとのm度まで4℃/ d a、 yの徐冷速度で
徐冷する。
■ Slowly cool to the original temperature at a slow cooling rate of 4°C/d a, y.

■ 徐冷が終了しtらAt、amとBaOの混合焼結体
(Azlo3 とB c、 Oの比が重量比で3=1に
なる工うにし次混合体)、Cr103の焼結体、水晶t
−7日ごとに追加し60日間育成させる。(追加する原
材、  料物質の量は発光分光分析装置により、その都
度分析して決定する。) 17j、比較例としてフラックスの液面とベリル育成部
の温度差が上述の範囲外であるものを2橿頌用意し、同
じ二うに育成する。
■ After the slow cooling is completed, a mixed sintered body of At, am and BaO (a mixed sintered body in which the ratio of Azlo3, Bc, and O is 3=1 by weight), a sintered body of Cr103, crystal t
-Additionally every 7 days and grow for 60 days. (The amount of raw materials and raw materials to be added is determined each time by analysis using an emission spectrometer.) 17j. As a comparative example, the temperature difference between the flux level and the beryl growing area is outside the above range. Prepare two odes and train them to be the same.

(4)  品質チェック 種子結晶の成長量のチェック及び、種子表面に共存鉱物
を包有していないか詞ぺる。
(4) Quality check: Check the amount of seed crystal growth and check whether the seed surface contains coexisting minerals.

(結果) 結晶の成長量、′及び品質評価を下記の第1表に示す。(result) The amount of crystal growth, ' and quality evaluation are shown in Table 1 below.

なお、フラックス液面の温度をベリル育成部の温度に対
して何度変化させ友かを第1表ではΔでとして表わす。
In Table 1, the degree to which the temperature of the flux liquid surface is changed relative to the temperature of the beryl growing area is expressed as Δ.

第1表 第1表から明らかな如く、本発明の請求の範囲内では共
存鉱物を全く包有していない極めて良質の一すル単結晶
が得られ友。
As is clear from Table 1, within the scope of the claims of the present invention, extremely high quality single crystals containing no coexisting minerals can be obtained.

これに対し、上述の範囲外である比較例1.2は、1に
ついては共存鉱物の包有がみられ、又2についてはベリ
ルが非常にわずかしか成長しないため実用的でない。
On the other hand, in Comparative Examples 1 and 2, which are outside the above-mentioned range, inclusion of coexisting minerals is observed in 1, and very little beryl grows in 2, so they are not practical.

〔実施例−2〕 (1)溶剤(フラックス) 実施例−1と同じ。[Example-2] (1) Solvent (flux) Same as Example-1.

(2)  溶解方法 実施例−1と同じ。(2) Dissolution method Same as Example-1.

(3)  ベリルの育成 実施例−1■〜■と同じ。(3) Cultivating Beryl Same as Example-1■ to ■.

■ 徐冷速度4℃/ d a yで100℃徐冷する。■ Slowly cool to 100°C at a slow cooling rate of 4°C/d ay.

ま几比較例としてフラックスの液面とベリル育成部の温
度差が、上述の範冊外であるものを2種類用意し、同じ
ように育成する。
As a comparative example, two types were prepared in which the temperature difference between the flux level and the beryl growing area was outside the above-mentioned range, and the beryl was grown in the same manner.

(4)  品質チェック 実施例−1と同じ。(4) Quality check Same as Example-1.

(結果) 結晶の成長t、及び品質評価を下記の!gg2表に示す
。なお、フラックス液面の温度をベリル育成部のm度に
対して何度変化させ友かを第2表ではΔTとして表わす
(Results) The crystal growth and quality evaluation are as follows! It is shown in Table gg2. In addition, in Table 2, the number of times the temperature of the flux liquid surface is changed relative to m degrees of the beryl growing area is expressed as ΔT.

M2表 第2表から明らかな如く、本発明の請求の範囲内では共
存鉱物を全く包有していない極めて良質のベリル単結晶
が得られ比。
As is clear from Table M2, within the scope of the claims of the present invention, extremely high quality beryl single crystals containing no coexisting minerals can be obtained.

これに対し、上述の範囲外である比較例1.2は、1に
ついては共存鉱物の包有がみられ、又2についてはベリ
ルが非常にわずかしか成長しないため実用的でない。
On the other hand, in Comparative Examples 1 and 2, which are outside the above-mentioned range, inclusion of coexisting minerals is observed in 1, and very little beryl grows in 2, so they are not practical.

〔実I壱例−3〕 (1)溶剤(7ラツクス) L12MOO4とMo03i1:1の割合で1〜用いる
[Example 1-3] (1) Solvent (7 lux) L12MOO4 and Mo03i are used in a ratio of 1 to 1:1.

(2)  溶解方法 ■ 溶i#s温度900℃で上6己フラックスを溶解す
る。装置、治具は実施例−1と同じ。
(2) Melting method ■ Melt the upper 6 flux at a melting temperature of 900°C. The equipment and jig are the same as in Example-1.

■ フラックス液面の温度とベリル育成部の温度を第3
表に示しt3種類の温度差に制御する。
■ The temperature of the flux liquid surface and the temperature of the beryl growing part are
The temperature is controlled to three different temperature differences as shown in the table.

■ At、0315fとBe08fの混合焼結体を投入
し溶解する。
(2) A mixed sintered body of At, 0315f and Be08f is charged and melted.

■ 3日後、*t2 o3 とBeOの溶解量を発光分
光分析装e+用いてチェックする。
(3) After 3 days, check the dissolved amounts of *t2 o3 and BeO using an emission spectrometer e+.

各成分ともに胞頗溶解着の80%以上溶解していること
を分析確認する。
Analyze and confirm that each component has dissolved at least 80% of the cystocyst.

■ ドープ剤としてCr2O3焼結体をα7を投入し溶
解する。
(2) Add α7 to the Cr2O3 sintered body as a doping agent and dissolve it.

■ 810!(水晶)t−35f投入し溶解する。■ 810! (Crystal) Add t-35f and dissolve.

■ 2日後、各原材料物質が飽和しているか     
:発光分光分析装置を用いてチェックする。
■ After 2 days, are each raw material saturated?
: Check using an emission spectrometer.

各成分ともに飽和溶解量の80優以上溶解していること
を分析確認する。
It is confirmed by analysis that each component is dissolved in a saturated amount of 80 or more.

(3)ベリルの育成 実施例−1と同じ (4)  品質チェック 実施例−1と同じ (結果) 結晶の成長量、及び品質評価を下記の第3表に示す。な
お、フラックス液面の温度をベリル育成部の温度に対し
て何度変化させ次かを第3表ではΔTとして表わす。
(3) Same as Beryl Growth Example-1 (4) Same as Quality Check Example-1 (Results) The amount of crystal growth and quality evaluation are shown in Table 3 below. In Table 3, the number of times the temperature of the flux liquid surface is changed relative to the temperature of the beryl growing area is expressed as ΔT.

第3表 第5表から明らかな如く、本発明の請求の範囲内では共
存鉱物を全く包有していない極めて良質のベリル単結晶
が得られ几。
As is clear from Tables 3 and 5, very high quality beryl single crystals containing no coexisting minerals can be obtained within the scope of the claims of the present invention.

これに対し、上述の範囲外である比較例1.2は、1に
ついては共存鉱物の包Mがみられ、又2についてはベリ
ルが非常にわずかしか成長しない九め実用的でない。
On the other hand, in Comparative Examples 1 and 2, which are outside the above-mentioned range, in 1, coexistence mineral envelopment M is observed, and in 2, beryl grows very little, making it impractical.

〔発明の効果〕〔Effect of the invention〕

以上述べ友ように、本発明のベリル単結晶の製ることに
エリ、共存鉱物の発生を抑えることができ、収率の増大
、品質の向上が図れる。
As mentioned above, the production of the beryl single crystal of the present invention is advantageous in that the generation of coexisting minerals can be suppressed, thereby increasing the yield and improving the quality.

本発明は人工ベリル単結晶の合成方法として、多大な効
果を育するものである。
The present invention has great effects as a method for synthesizing artificial beryl single crystals.

以  上that's all

Claims (1)

【特許請求の範囲】[Claims] 五酸化バナジウム、モリブデン酸リチウム、モリブデン
酸ナトリウム、モリブデン酸カリウム、三酸化モリブデ
ン、酸化リチウムの中から選ばれた1種又は2種以上を
溶剤(フラックス)として用い、この中にベリル成分と
なる酸化ベリリウム(BeO)、酸化アルミニウム(A
l_2O_3)、二酸化ケイ素(SiO_2)、および
着色剤として酸化クロム(Cr_2O_3)等を溶解し
て温度差法あるいは徐冷法でベリル単結晶を成長させる
方法において、フラックス液面の温度をベリル育成部の
温度に対して−6℃〜2℃の範囲に制御することを特徴
とするベリル単結晶の製造方法。
One or more selected from vanadium pentoxide, lithium molybdate, sodium molybdate, potassium molybdate, molybdenum trioxide, and lithium oxide are used as a solvent (flux), and the oxidized beryl component is used as a solvent (flux). Beryllium (BeO), aluminum oxide (A
1_2O_3), silicon dioxide (SiO_2), and chromium oxide (Cr_2O_3) as a coloring agent to grow a beryl single crystal by a temperature difference method or slow cooling method, in which the temperature of the flux liquid surface is adjusted to the temperature of the beryl growth zone. A method for producing a beryl single crystal, characterized in that the temperature is controlled within a range of -6°C to 2°C.
JP15573185A 1985-07-15 1985-07-15 Production of beryl single crystal Pending JPS6217100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15573185A JPS6217100A (en) 1985-07-15 1985-07-15 Production of beryl single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15573185A JPS6217100A (en) 1985-07-15 1985-07-15 Production of beryl single crystal

Publications (1)

Publication Number Publication Date
JPS6217100A true JPS6217100A (en) 1987-01-26

Family

ID=15612218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15573185A Pending JPS6217100A (en) 1985-07-15 1985-07-15 Production of beryl single crystal

Country Status (1)

Country Link
JP (1) JPS6217100A (en)

Similar Documents

Publication Publication Date Title
JPH0152359B2 (en)
US2516983A (en) Micaceous compositions
JPS6217100A (en) Production of beryl single crystal
CA1079613A (en) Process for synthesizing and growing single crystalline beryl out of a molten salt
JPH0250080B2 (en)
JPS59111992A (en) Synthesis of single crystal of artificial beryl
JPS6317297A (en) Production of ruby single crystal
US2693421A (en) Synthetic monocrystalline rutile
JPH0421543A (en) Crystallized glass
US3674455A (en) Process for the synthesis of glass and single crystal germanates of identical composition
JPS6287495A (en) Production of artificial beryl single crystal
US3431066A (en) Method for producing yttrium aluminum oxide garnet crystals
JPS59141481A (en) Production of artificial iolite single crystal
JPS61209998A (en) Production of beryllium single crystal
JPS62235299A (en) Production of beryl single crystal
JPS6287493A (en) Production of ruby single crystal
JPS61209997A (en) Production of beryllium single crystal
JPS6131398A (en) Method for synthesizing chrysoberyl single crystal
JPS6197195A (en) Production of single crystal of beryl
JPH0319199B2 (en)
JPS59141482A (en) Synthesis of sugilite single crystal
JP2002179497A (en) Method for producing potassium niobate and potassium niobate
JPH0353278B2 (en)
JPS6221797A (en) Production of beryl single crystal
JPS59107995A (en) Synthesizing method of artificial alexandrite single crystal