JPS6217038B2 - - Google Patents

Info

Publication number
JPS6217038B2
JPS6217038B2 JP54500004A JP50000478A JPS6217038B2 JP S6217038 B2 JPS6217038 B2 JP S6217038B2 JP 54500004 A JP54500004 A JP 54500004A JP 50000478 A JP50000478 A JP 50000478A JP S6217038 B2 JPS6217038 B2 JP S6217038B2
Authority
JP
Japan
Prior art keywords
chamber
electrolyte
gas
electrode
upper chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54500004A
Other languages
Japanese (ja)
Other versions
JPS54500071A (en
Inventor
Furanshisu Gutsudoritsuji
Reimondo Aanesuto Purimurei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Development Corp UK
Original Assignee
National Research Development Corp UK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Development Corp UK filed Critical National Research Development Corp UK
Publication of JPS54500071A publication Critical patent/JPS54500071A/ja
Publication of JPS6217038B2 publication Critical patent/JPS6217038B2/ja
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/036Bipolar electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/23Oxidation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

請求の範囲  氎平な有孔板によ぀お䞊郚宀ず䞋郚宀ずに分
割されか぀前蚘぀の宀は䞊郚宀から䞋郚宀に電
解液を導く導管によ぀お連通されおいる電気化孊
槜であ぀お、 䞊郚宀は該有孔板を底壁ずする䞊郚開攟の電極
宀およびその䞡偎端に蚭けられた電解液出入口お
よび電極宀の䞊郚の気䜓収集宀からなり、 䞋郚宀は気䜓を前蚘有孔板の孔を経お䞊郚宀内
の電極宀䞭に䟛絊する気䜓䟛絊宀ずその底郚に䜍
眮する反応枈の電解液をプヌルするための受噚郚
ずより構成されおいる、 こずを特城ずする電気化孊槜。
Claim 1: An electrochemical cell that is divided into an upper chamber and a lower chamber by a horizontal perforated plate, and the two chambers are communicated by a conduit that leads an electrolyte from the upper chamber to the lower chamber. The upper chamber consists of an electrode chamber with an open top having the perforated plate as a bottom wall, an electrolyte inlet/outlet provided at both ends of the electrode chamber, and a gas collection chamber above the electrode chamber, and the lower chamber collects gas through the perforated plate. An electrochemical device characterized in that it is composed of a gas supply chamber that supplies gas to an electrode chamber in an upper chamber through a hole in a plate, and a receiver section located at the bottom of the chamber for pooling the reacted electrolyte. Tank.

 電解液入口ず電解液出口はおのおのせきによ
぀お圢成されおいる特蚱請求の範囲第項蚘茉の
電気化孊槜。
2. The electrochemical cell according to claim 1, wherein the electrolyte inlet and the electrolyte outlet are each formed by a weir.

 電解液入口せきの頂郚は電解液出口の頂郚よ
り高く、そしお電解液出口せきの頂郚は電極の頂
郚よりも高い特蚱請求の範囲第項蚘茉の電気化
孊槜。
3. The electrochemical cell according to claim 2, wherein the top of the electrolyte inlet weir is higher than the top of the electrolyte outlet, and the top of the electrolyte outlet weir is higher than the top of the electrode.

 せきは有孔板から盎立する板によ぀お圢成さ
れおいる特蚱請求の範囲第たたは項蚘茉の電
気化孊槜。
4. The electrochemical cell according to claim 2 or 3, wherein the weir is formed by a plate standing upright from a perforated plate.

 間隔をおいた平行な関係で配眮されお、電解
液入口ず電解液出口ずの間にチダンネルを圢成す
る、垂盎の板様電極の耇極の配列を含む特蚱請求
の範囲第項蚘茉の電気化孊槜。
5. A bipolar array of vertical plate-like electrodes arranged in spaced parallel relationship to form a channel between an electrolyte inlet and an electrolyte outlet. Electrochemical bath.

 耇極型電極は電気絶瞁性材料から䜜られた有
孔板䞊に静眮され、そしお有孔板䞭の孔は隣接電
極間のほが䞭倮に隔眮された列で配眮されおいる
特蚱請求の範囲第項蚘茉の電気化孊槜。
6. A claim in which the bipolar electrodes are placed on a perforated plate made of electrically insulating material, and the holes in the perforated plate are arranged in rows spaced approximately centrally between adjacent electrodes. The electrochemical cell according to item 5.

 䞊郚宀から䞋郚宀ぞの導管立䞋り管によ
぀お、反応枈の電解液をプヌルぞ攟出するため
に、電解液出口せきから䞋郚宀の底郚ぞ導びかれ
おいる特蚱請求の範囲第項蚘茉の電気化孊槜。
7. A conduit (down pipe) from the upper chamber to the lower chamber leads from the electrolyte outlet weir to the bottom of the lower chamber in order to discharge the reacted electrolyte into the pool. The electrochemical cell according to item 2.

 新らしい電解液を電解液入口せきぞ攟出する
ために、䞊郚宀を通぀お䞋に䌞びる立䞊り管を含
む特蚱請求の範囲第項蚘茉の電気化孊槜。
8. The electrochemical cell of claim 7 including a riser extending downward through the upper chamber for discharging fresh electrolyte into the electrolyte inlet weir.

 隔眮された平行な関係で配眮されお電解液入
口せきず電解液出口せきずの間にチダンネルを圢
成する垂盎の板様の耇極の配列を含み、該電極の
配列は䞊郚宀の察面する偎壁䞭に差蟌たれた末端
電極を含む特蚱請求の範囲第項蚘茉の電気化孊
槜。
9 comprising an array of vertical plate-like bipolar electrodes arranged in spaced parallel relationship to form a channel between an electrolyte inlet weir and an electrolyte outlet weir, the array of electrodes being arranged on opposite sides of the upper chamber; 2. An electrochemical cell as claimed in claim 1, including a terminal electrode inserted into the side wall of the cell.

 垂盎方向に積み重ねられた、電極宀を有す
る䞊郚宀ず、耇数の䞭間宀、および䞋郚宀ずから
なり、該䞊郚宀、䞭間宀、䞋郚宀は氎平な有孔板
によ぀お分割されか぀䞊郚宀から䞭間宀、䞭間宀
から䞋郚宀に向぀お順次に電解液を導く導管によ
぀お連通されおいる倚段電気化孊槜であ぀お、 該䞊郚宀および䞭間宀には、有孔板を底壁ずす
る䞊郚開攟の電極宀およびその䞡偎壁に蚭けられ
た電解液出入口および電極宀の䞊郚の気䜓収集宀
からなり、そしお該気䜓収集宀䞊郚宀を陀く
はその䞊にある䞊郚宀、䞭間宀ぞの気䜓䟛絊宀を
圢成し、各有孔板は気䜓䟛絊宀の䞊に配眮されお
おり、 䞋郚宀は気䜓を前蚘有孔板の孔を経お順次に各
䞊方の䞭間宀、䞊郚宀内の電極宀に䟛絊する気䜓
䟛絊宀ずその底郚に䜍眮する反応枈の電解液をプ
ヌルするための受噚郚ずより構成されおいる、 こずを特城ずする倚段電気化孊槜。
10 consisting of an upper chamber having an electrode chamber, a plurality of intermediate chambers, and a lower chamber stacked vertically, the upper chamber, the intermediate chamber, and the lower chamber being divided by horizontal perforated plates; A multi-stage electrochemical cell connected by a conduit that sequentially guides an electrolytic solution from the chamber to the intermediate chamber and from the intermediate chamber to the lower chamber, and the upper chamber and the intermediate chamber are provided with a perforated plate on the bottom wall. It consists of an electrode chamber with an open top, an electrolyte inlet/outlet provided on both sides of the electrode chamber, and a gas collection chamber above the electrode chamber, and the gas collection chamber (excluding the upper chamber)
forms a gas supply chamber to the upper chamber and the intermediate chamber above it, each perforated plate is placed above the gas supply chamber, and the lower chamber sequentially supplies gas through the holes in the perforated plate. A multi-stage electric device comprising a gas supply chamber for supplying gas to the upper intermediate chamber and the electrode chamber in the upper chamber, and a receiver section located at the bottom for pooling the reacted electrolyte. Chemical tank.

 䞊郚宀ず䞭間宀の電解液入口ず電解液出口
はせきによ぀お圢成されおいる特蚱請求の範囲第
項蚘茉の倚段電気化孊槜。
11. The multi-stage electrochemical cell according to claim 10, wherein the electrolyte inlet and outlet of the upper chamber and the intermediate chamber are formed by weirs.

 䞊郚宀ず䞭間宀の電解液入口せきの頂郚は
電解液出口の頂郚より高く、そしお電解液出口の
頂郚は電極の頂郚よりも高い特蚱請求の範囲第
項蚘茉の倚段電気化孊槜。
12 The top of the electrolyte inlet weir of the upper chamber and the intermediate chamber is higher than the top of the electrolyte outlet, and the top of the electrolyte outlet is higher than the top of the electrode.
The multi-stage electrochemical cell according to item 1.

 せきは有孔板から盎立する板によ぀お圢成
されおいる特蚱請求の範囲第項たたは第
項蚘茉の倚段電気化孊槜。
13. Claim 11 or 12, wherein the weir is formed by a plate standing upright from a perforated plate.
Multi-stage electrochemical cell as described in section.

 隔眮された平行な関係で配眮されお、䞊郚
宀ず䞭間宀の電解液入口ず電解液出口ずの間にチ
ダンネルを圢成する、垂盎の板様電極の耇極の配
列を含む特蚱請求の範囲第項蚘茉の倚段電気
化孊槜。
14. Claims comprising a bipolar array of vertical plate-like electrodes arranged in spaced parallel relationship to form a channel between an electrolyte inlet and an electrolyte outlet of an upper chamber and an intermediate chamber. A multi-stage electrochemical cell according to scope 10.

 電極は䞊郚宀ず䞭間宀の有孔板䞊に静眮さ
れ、有孔板は電気絶瞁材料から䜜られおおり、そ
しお有孔板䞭の孔はそれぞれの隣接電極の間にほ
が䞭倮に間隔をおいお䜍眮する列に配眮されおい
る特蚱請求の範囲第項蚘茉の倚段電気化孊
槜。
15 The electrodes are placed on perforated plates in the upper and middle chambers, the perforated plates are made of electrically insulating material, and the holes in the perforated plates are approximately centrally spaced between each adjacent electrode. 15. The multi-stage electrochemical cell according to claim 14, which is arranged in rows spaced apart from each other.

 䞊郚宀ず䞭間宀䞀番䞋の䞭間宀を陀く
の電解液出口せきから䞋の䞭間宀の電解液入口せ
きぞ電解液を攟出するための導管立䞋り管を
含む特蚱請求の範囲第項蚘茉の倚段電気化孊
槜。
16 Upper chamber and middle chamber (excluding the bottom middle chamber)
12. A multi-stage electrochemical cell according to claim 11, comprising a conduit (down pipe) for discharging the electrolyte from the electrolyte outlet weir of the cell to the electrolyte inlet weir of the intermediate chamber below.

 新らしい電解液を䞊郚宀の電解液入口せき
ぞ攟出するための、䞊郚宀を通しお䞋向きに䌞び
る立䞊り管を含む特蚱請求の範囲第項蚘茉の
倚段電気化孊槜。
17. The multi-stage electrochemical cell of claim 16 including a riser extending downwardly through the upper chamber for discharging fresh electrolyte into the electrolyte inlet weir of the upper chamber.

 䞊郚宀ず䞭間宀においお、隔眮された平行
な関係に配眮されお、電解液入口せきず電解液出
口せきの間にチダンネルを圢成する、垂盎の板様
電極の耇極の配列を含み、各電極の配列はそれぞ
れの䞊郚宀、䞭間宀の察面する偎壁䞭差蟌たれた
末端電極を含む特蚱請求の範囲第項蚘茉の倚
段電気化孊槜。
18 comprising a bipolar array of vertical plate-like electrodes arranged in spaced parallel relationship in the upper chamber and the intermediate chamber to form a channel between the electrolyte inlet weir and the electrolyte outlet weir; 11. The multi-stage electrochemical cell of claim 10, wherein each electrode arrangement includes terminal electrodes inserted into opposing side walls of the respective upper and middle chambers.

技術分野 本発明は電気化孊槜、ずくに気䜓反応成分を含
む電気化孊的反応、あるいは気䜓を他の目的、た
ずえば反応生成物をパヌゞたたはスりむヌプする
目的で、たたは緩衝剀ずしお、あるいは望たない
反応を抑制するために䜿甚する電気化孊的反応を
実斜するための電気化孊槜に関する。
TECHNICAL FIELD The present invention relates to electrochemical vessels, in particular electrochemical reactions involving gaseous reactants, or the use of gases for other purposes, such as purging or sweeping reaction products, or as a buffer or suppressing undesired reactions. This invention relates to an electrochemical cell for carrying out an electrochemical reaction.

本発明は、さらに詳しくは、電気有機合成、た
ずえば䞍飜和および倚䞍飜和の炭化氎玠の電気化
孊的酞化のための電気化孊槜に関するが、これに
限定されない。プロピレンオキシドの電気化孊的
補造はずくに興味があり、䟋ずしお詳述する。
The invention relates more particularly, but not exclusively, to an electrochemical cell for electroorganic synthesis, such as, but not limited to, the electrochemical oxidation of unsaturated and polyunsaturated hydrocarbons. The electrochemical production of propylene oxide is of particular interest and will be detailed as an example.

背景技術 プロピレンオキシドの電気化孊的補造におい
お、氎溶液䞭のアルカリ金属のハロゲン化物塩の
陜極酞化によりその堎で発生したハロゲンずの反
応により、プロピレンをプロピレンハロヒドリン
に倉える。このプロピレンハロヒドリンを、氎玠
が遊離する陰極においお、ヒドロキシル基ずの反
応によりプロピレンオキシドに倉える。臭化ナト
リりムを電解質ずしお䜿甚するずき、反応の䞀般
的図解は次のずおりである 陜極 2Br-→Br22e C3H6Br2H2O→C3H6BrOHHBr 陰極 2H2O→H22OH-−2e C3H6BrOHOH→C3H6OH2OBr 党䜓 C3H6H2O→C3H6OH2 原理的には、氎、プロピレンおよび電気゚ネル
ギヌのみがプロピレンオキシドず氎玠の生成に消
費される。ハロゲン化物の電解質、臭化ナトリり
ムは連続的に酞化され、さらに䜿甚するために槜
内で再生されるが、臭玠の損倱も次亜臭玠酞塩ず
臭玠ガスの発生により起こるこずがある。
BACKGROUND OF THE INVENTION In the electrochemical production of propylene oxide, propylene is converted to propylene halohydrin by reaction with halogens generated in situ by anodization of halide salts of alkali metals in aqueous solution. This propylene halohydrin is converted into propylene oxide by reaction with hydroxyl groups at the cathode where hydrogen is liberated. When using sodium bromide as the electrolyte, the general diagram of the reaction is as follows: Anode 2Br - →Br 2 +2e C 3 H 6 +Br 2 +H 2 O→C 3 H 6 BrOH+HBr Cathode 2H 2 O→H 2 +2OH - -2e C 3 H 6 BrOH+OH→C 3 H 6 O+H 2 O+Br Total C 3 H 6 +H 2 O→C 3 H 6 O+H 2In principle, only water, propylene, and electrical energy can be combined with propylene oxide and hydrogen. consumed in the production of The halide electrolyte, sodium bromide, is continuously oxidized and regenerated in the bath for further use, but loss of bromine may also occur due to the generation of hypobromite and bromine gas.

ふ぀うの化孊的方法においお盎面する廃塩化カ
ルシりムの生成を排陀する、この電気化孊的道筋
の利点は、長い間認識されおきたが、それを満足
させる詊みはひじように有効でないこずが明らか
にされた。
Although the advantages of this electrochemical route, which eliminates the production of waste calcium chloride encountered in conventional chemical methods, have long been recognized, attempts to satisfy it have proven to be very ineffective. Ta.

フランス囜特蚱明现曞第1375973号および西ド
むツ囜公告明现曞第1258856号は、プロピレンハ
ロヒドリンを倚孔質の陜極で発生させ、そしお隔
膜を通しお倚孔質陰極䞭のアルカリ電解質䞭に通
し、ここでそれをプロピレンオキシドにケン化す
る隔膜槜の䜿甚を提案した。しかし、これらの槜
は耇雑であり、効率が䜎い。
French Patent Specification No. 1 375 973 and West German Publication No. 1 258 856 generate propylene halohydrin in a porous anode and pass it through a membrane into an alkaline electrolyte in a porous cathode, where it is We proposed the use of a diaphragm tank to saponify propylene oxide. However, these vessels are complex and have low efficiency.

米囜特蚱明现曞第3394059号は、ハロヒドリン
法を分割されおいない槜、奜たしくは流動氎銀陰
極槜䞭で実斜し、プロピレンを単に電解液䞭にあ
わ立おお通入するこずを提案した。再び、この性
胜は劣り、そしおF.BeckIUPAC XXIVth
International CongressHamburg1973
Vol.5“Applied Electrochemistry”111−136ペ
ヌゞは毛管ギダツプ槜を甚いる改良された性胜
を述べた。これにおいお、垌NaBr電解液䞭に分
散したプロピレンを電極円板のパむル䞭の䞭倮の
穎を通しお䟛絊し、そしお円板の間を半埄方向に
倖向きに流す。電極円板のギダツプは小さく
0.2〜0.5mmにしお、䜎い濃床の臭化物を䜎い
オヌム損倱で取り扱うこずができるようにした。
70たたはこれよりわずかに高い電流効率および
0.23〜0.30キロワツト時グラムモルのプロピレ
ンオキシドの゚ネルギヌ消費が小さな毛管ギダツ
プ槜に぀いお報告されおいるが、工業的生産に぀
いおのこの槜の芏暡の増倧は困難を含むであろ
う。
US Pat. No. 3,394,059 proposed carrying out the halohydrin process in an undivided cell, preferably a flowing mercury cathode cell, and simply whisking the propylene into the electrolyte. Again, this performance was poor, and F.Beck (IUPAC XXIVth
International Congress, Hamburg, 1973,
Vol. 5, “Applied Electrochemistry” pages 111-136) described improved performance using capillary gap baths. In this, propylene dispersed in a dilute NaBr electrolyte is fed through a central hole in the pile of electrode discs and flows radially outward between the discs. The electrode disk gap was kept small (0.2-0.5 mm) to allow handling of low concentrations of bromide with low ohmic losses.
70% or slightly higher current efficiency and
Although energy consumption of 0.23 to 0.30 kWh/gram mole of propylene oxide has been reported for small capillary gap vessels, scaling up this vessel for industrial production would be difficult.

Fleischmann らSymposium on
Electrochemical Engineering Newcastle
1971Editor J.D.Thorntonは耇極型充おんベ
ツド槜を甚いおプロピレンオキシドの合成を研究
した。この槜は導電性粒子ず非導電性粒子ずの混
合物から䜜぀た充おんベツドからな぀おいた。導
電性粒子は、槜䞭に垌電解液を䜿甚し、接觊電極
間に十分な電圧こう配を加えるこずによ぀お耇極
ずなり、電解液䞭の抵孔䜎䞋を克服する。導電性
粒子ずしおグラフアむトで被芆したガラスビヌズ
ず、非導電性粒子ずしおガラスビヌズを䜿甚し、
すべおの粒子の盎埄を玄0.05cmずするず、このよ
うな槜の゚ネルギヌ消費は高く、2.5〜キロワ
ツト時グラムモルのプロピレンオキシドである
こずがわか぀た。
Fleischmann et al. (Symposium on
Electrochemical Engineering I , Newcastle
(1971, Editor JDT Thornton) studied the synthesis of propylene oxide using a bipolar packed bed tank. The vessel consisted of a filled bed made from a mixture of conductive and non-conductive particles. The conductive particles become bipolar by using a dilute electrolyte in the bath and applying a sufficient voltage gradient between the contact electrodes, thereby overcoming the decrease in resistance in the electrolyte. Using glass beads coated with graphite as conductive particles and glass beads as non-conductive particles,
The energy consumption of such a bath was found to be high, 2.5 to 3 kilowatt hours/gram mole of propylene oxide, assuming a diameter of all particles of about 0.05 cm.

耇極棒の流動槜は、KingらTrans.Inst.
Chem.Eng.Chemical.Eng.531975によりプ
ロピレンオキシドの補造に䜿甚された。この槜
は、小さなギダツプで互に分離された、導電性の
棒の垂盎な列からな぀おいた。電解液を䞊郚の棒
に䟛絊し、垂盎な棒䞊を䞋向きに流し、そしお䞋
郚の棒から集めお再埪環させた。気䜓の反応成
分、プロピレンを、垂盎棒の間の空間を䞊向き
に、電解液のフむルムず連続的に接觊させお通
す。この槜の電流効率は70皋床であ぀た。゚ネ
ルギヌ消費は0.35〜0.4キロワツト時グラムモ
ルのプロピレンオキシドず掚定される。
A bipolar rod fluidized bath was developed by King et al. (Trans.Inst.
Chem.Eng.Chemical.Eng., 53, 1975) in the production of propylene oxide. The tank consisted of vertical rows of conductive rods separated from each other by small gaps. Electrolyte was fed into the top bar, flowed downwards over the vertical bar, and collected from the bottom bar for recirculation. The gaseous reactant, propylene, is passed upwardly through the space between the vertical rods in continuous contact with the film of electrolyte. The current efficiency of this tank was about 70%. Energy consumption is estimated at 0.35-0.4 kWh/gram mole of propylene oxide.

R.E.W.Janssonらは、耇極型電気化孊ポンプ槜
を開発し、この槜の゚ネルギヌ収率は0.2キロワ
ツト時グラムモルのプロピレンオキシド以䞋で
あるず、電極ギダツプ0.25mmにおいお、3000rpm
で回転する陰極を甚いる実隓宀芏暡の実隓におい
お、述べおいるJournal of App.
Electrochemistry1977437−443。し
かし、その構造は工業的生産のために倧芏暡にす
るこずは容易ではない。
REW Jansson et al. developed a bipolar electrochemical pump cell with an energy yield of less than 0.2 kWh/gram mole of propylene oxide at 3000 rpm with an electrode gap of 0.25 mm.
(Journal of App.
Electrochemistry, 7, (1977), 437-443). However, its structure is not easy to scale up for industrial production.

電解液ぞ気䜓を䟛絊するように蚭蚈された皮々
の他の槜の構造も知られおいる。たずえば、銅の
ような金属の゚レクトロりむニングにおいお、電
極の䞋に䜍眮するあわ管を通しお気䜓を䟛絊し
お、電解液をかきたぜるこずはよく知られおいる
たずえば、米囜特蚱明现曞第3875041号および前
述の特蚱参照。米囜特蚱明现曞第3259049号䞭に
なされおいる他の提案は、電解液䞭の電極の䞋に
䜍眮し、そしお気䜓をあわ立おお電解液䞭に䞊昇
させる有孔䞊郚衚面を有する䞭空の平らなマニホ
ルドを䜿甚し、気䜓を気䜓流管からマニホルドに
䟛絊するこずによ぀お、電気メツキ槜䞭の電解液
をかきたぜるこずを提案した。固定したあわ管の
配眮ず察照しお、マニホルド構造党䜓を取りはず
しお、呚期的クリヌニングを促進しお、マニホル
ド䞭の孔をふさぐこずがある砎片を陀去できるよ
うにした。
Various other cell constructions designed to supply gas to the electrolyte are also known. For example, in the electrowinning of metals such as copper, it is well known to supply gas through froth tubes located below the electrodes to agitate the electrolyte (e.g., U.S. Pat. No. 3,875,041 and supra. (see patent). Another proposal, made in U.S. Pat. It was proposed to use a manifold to agitate the electrolyte in the electroplating bath by supplying gas to the manifold from a gas flow tube. In contrast to a fixed froth tube arrangement, the entire manifold structure was removed to facilitate periodic cleaning to remove debris that could block the holes in the manifold.

発明の開瀺 本発明の目的は、埓来提案された槜よりもい぀
そうよく次の芁件を満足するように蚭蚈できる、
ずくにプロピレンオキシドの補造のためのしか
し、これに限定されない電気化孊槜を提䟛する
こずである  機械的構造が簡単であるこず  すぐれた熱および質量の䌝達特性  運転および連続運転が簡単であるこず  すぐれた気䞀液の接觊および  すぐれた陜極液および陰極液の生成物の混
合。
DISCLOSURE OF THE INVENTION An object of the present invention is to provide a tank that can be designed to better satisfy the following requirements than previously proposed tanks;
In particular, but not exclusively, to provide an electrochemical cell for the production of propylene oxide: 1. Simple mechanical construction; 2. Good heat and mass transfer properties; 3. Operation and continuous operation. 4. Good gas-liquid contact; and 5. Good anolyte and catholyte product mixing.

本発明の電気化孊槜は、次の構成からなるもの
である。
The electrochemical cell of the present invention has the following configuration.

「氎平な有孔板によ぀お䞊郚宀ず䞋郚宀ずに分
割されか぀前蚘぀の宀は䞊郚宀から䞋郚宀に電
解液を導く導管によ぀お連通されおいる電気化孊
槜であ぀お、 䞊郚宀は該有孔板を底壁ずする䞊郚開攟の電極
宀およびその䞡偎端に蚭けられた電解液出入口お
よび電極宀の䞊郚の気䜓収集宀からなり、 䞋郚宀は気䜓を前蚘有孔板の孔を経お䞊郚宀内
の電極宀䞭に䟛絊する気䜓䟛絊宀ずその底郚に䜍
眮する反応枈の電解液をプヌルするための受噚郚
ずよりなる構成」である。
"An electrochemical cell which is divided into an upper chamber and a lower chamber by a horizontal perforated plate, and the two chambers are communicated by a conduit that leads an electrolyte from the upper chamber to the lower chamber, The chamber consists of an electrode chamber with an open top having the perforated plate as a bottom wall, an electrolyte inlet/outlet provided at both ends of the electrode chamber, and a gas collection chamber above the electrode chamber, and the lower chamber collects gas through the holes of the perforated plate. The structure consists of a gas supply chamber that supplies gas to the electrode chamber in the upper chamber through the gas supply chamber, and a receiver section located at the bottom of the chamber for pooling the reacted electrolyte.

本発明によれば、その最も簡単な圢においお、
電気化孊槜は有孔の䞀般に氎平の板の䞊に配眮さ
れた電極ず、有孔板を暪切぀お電極の䞡偎に間隔
をおいお配眮された電解液入口および電解液出口
ず、有孔板によ぀お䞊郚宀ず䞋郚宀ずに分割され
た槜の囲いずからなる。䞋郚宀には気䜓䟛絊宀が
あり、䜿甚のずき、ここから気䜓は䞊向きに板䞭
の孔を通り、あわずな぀お板䞊の電解液䞭を通り
䞊郚宀䞭に集められる。
According to the invention, in its simplest form:
An electrochemical cell includes an electrode disposed on a perforated generally horizontal plate, an electrolyte inlet and an electrolyte outlet spaced across the perforated plate on either side of the electrode, and a perforated plate. It consists of a tank enclosure divided into an upper chamber and a lower chamber by a. The lower chamber contains a gas supply chamber from which, in use, gas flows upwardly through holes in the plate, foams through the electrolyte on the plate, and is collected in the upper chamber.

この槜の電解液入口ず電解液出口はおのおのせ
きで圢成するず有利である。入口せきの頂郚は出
口せきの頂郚より高く、そしお出口せき頂郚の頂
郚は、電極の頂郚よりも高い。それ故、新らしい
電解液の入口せきぞの䟛絊を調節するこずによ぀
お、遞んだ速床で、電解液は入口せきを越えお電
極の間を流れ、䞀方䜿甚枈みたたは反応した電解
液は出口せきを越えお流れるようにする。これら
のせきは有孔板ず䞀䜓的にたたはそれに固定した
盎立する板によ぀お圢成できる。
Advantageously, the electrolyte inlet and the electrolyte outlet of this cell are each formed by a weir. The top of the inlet weir is higher than the top of the outlet weir, and the top of the outlet weir is higher than the top of the electrode. Therefore, by regulating the supply of fresh electrolyte to the inlet weir, at a chosen rate, electrolyte flows across the inlet weir and between the electrodes, while spent or reacted electrolyte flows out the outlet. Allow it to flow over the cough. These weirs can be formed by upright plates integral with or fixed to the perforated plate.

電解液の入口ず出口ずの間にチダンネルを圢成
するように間隔をおいお平行な関係に配眮された
電極、有利には耇極の配列の垂盎な板様電極は、
有孔板䞊に静眮するこずができ、有孔板は、この
堎合、電気絶瞁材料から䜜るこずができる。板の
孔は隣接電極間のほが䞭倮においおおのおのが間
隔をおいお䜍眮する列の圢に配眮できる。盎埄的
mmの䞀般に円圢の孔は満足すべきものであるこ
ずがわか぀たが、他の圢および倧きさの孔を䜿甚
できる。
Electrodes, preferably vertical plate-like electrodes in a bipolar array, arranged in spaced parallel relationship to form a channel between the inlet and outlet of the electrolyte,
It can be placed on a perforated plate, which in this case can be made of an electrically insulating material. The holes in the plate can be arranged in rows, each spaced approximately midway between adjacent electrodes. Although generally circular holes of 1 mm in diameter have been found to be satisfactory, other shapes and sizes of holes can be used.

槜の囲いの䞋郚宀の底は䜿甚枈みたたは反応し
た電解液のプヌルのための受噚ずしおはたらくこ
ずができる。この電解液は前述の出口せきからプ
ヌルぞ導びかれる立䞋り管を通぀お流れ、このプ
ヌルから出口を経お抜き出されお、再埪環されう
る。新らしい電解液は前述の入口せきぞ立䞊り管
を経お䟛絊される。この管は槜の囲いの䞊郚宀を
通぀お䞋向きに䌞びお、入口せきによ぀お保持さ
れた電解液䞭にはいる。
The bottom of the lower chamber of the cell enclosure can serve as a receptacle for the pool of spent or reacted electrolyte. This electrolyte flows through a down pipe leading from the aforementioned outlet weir to the pool, from which it can be withdrawn via the outlet and recycled. Fresh electrolyte is supplied to the aforementioned inlet weir via a riser. This tube extends downwardly through the upper chamber of the cell enclosure and into the electrolyte held by the inlet weir.

䞊郚宀ず䞋郚宀は箱様槜の囲いの䞊郚ず䞋郚に
よ぀お圢成でき、これらの郚分は電極の䞋の領域
のみが有孔である前述の板によ぀お分離されおい
る。電極のための長方圢の囲いはこのようにし
お、䞊郚囲い郚分の偎壁によ぀お圢成でき、そし
お偎壁は入口せきおよび出口せきを圢成する盎立
板に察しおはめ蟌たれおいる。これらの偎壁は電
極列の差蟌み末端電極を支持できる。
The upper and lower chambers can be formed by the upper and lower parts of the enclosure of the box-like tank, these parts being separated by the aforementioned plate, which is perforated only in the region below the electrodes. A rectangular enclosure for the electrodes can thus be formed by the side walls of the upper enclosure part, which are fitted against the upright plates forming the inlet and outlet weirs. These side walls can support plug-in terminal electrodes of the electrode array.

たた、本発明は前蚘電気化孊槜の倚段よりな
る、次の構成からなるものである。
Further, the present invention has the following configuration consisting of multiple stages of the electrochemical baths.

「垂盎方向に積み重ねられた、電極宀を有する
䞊郚宀ず耇数の䞭間宀、および䞋郚宀ずからな
り、該䞊郚宀、䞭間宀、䞋郚宀は氎平な有孔板に
よ぀お分割されか぀䞊郚宀から䞭間宀、䞭間宀か
ら䞋郚宀に向぀お順次に電解液を導く導管によ぀
お連通されおいる倚段電気化孊槜であ぀お、 該䞊郚宀および䞭間宀には、有孔板を底壁ずす
る䞊郚開攟の電極宀およびその䞡偎端に蚭けられ
た電解液出入口および電極宀の䞊郚の気䜓収集宀
からなり、そしお該電䜓収集宀䞊郚宀を陀く
はその䞊にある䞊郚宀、䞭間宀ぞの気䜓䟛絊宀を
圢成し、各有孔板は気䜓䟛絊宀の䞊に配眮されお
おり、䞋郚宀は気䜓を前蚘有孔板の孔を経お順次
に各䞊方の䞭間宀、䞊郚宀内の電極宀に䟛絊する
気䜓䟛絊宀ずその底郚に䜍眮する反応枈の電解液
をプヌルするための受噚郚ずよりなる構成」であ
る。
"It consists of an upper chamber with an electrode chamber, a plurality of intermediate chambers, and a lower chamber stacked vertically, and the upper chamber, intermediate chamber, and lower chamber are divided by horizontal perforated plates, and the upper chamber This is a multi-stage electrochemical cell which is connected by a conduit that sequentially guides an electrolytic solution from the to the intermediate chamber and from the intermediate chamber to the lower chamber, and the upper chamber and the intermediate chamber are provided with a perforated plate on the bottom wall. It consists of an electrode chamber with an open top, an electrolyte inlet/outlet provided at both ends of the electrode chamber, and a gas collection chamber above the electrode chamber, and the electricity collection chamber (excluding the upper chamber)
forms a gas supply chamber to the upper chamber and intermediate chamber above it, each perforated plate is placed above the gas supply chamber, and the lower chamber sequentially supplies gas through the holes in the perforated plate. It is composed of a gas supply chamber for supplying gas to the upper intermediate chamber and the electrode chamber in the upper chamber, and a receiver section located at the bottom for pooling the reacted electrolyte.

この装眮を甚いるず、運転においお、気䜓は䞋
郚宀の底から䞭間宀を通過しお䞊郚宀ぞ行き、各
䞭間宀、䞊郚宀䞭の電解液をあわずな぀お通る。
奜たしくは、連続する槜の電解液の出口ず入口は
カスケヌド匏に接続されおいるので、電解液は䞊
郚宀から各䞭間宀を流れ䞋り、䞊蚘各宀の有孔板
を入口から出口に暪切り、次いで䞋぀お䞋の宀の
入口ぞ行く。このような䞊郚宀、䞭間宀は、せき
によ぀お電解液の入口ず出口が圢成されるよう
な、前述の単䞀電気化孊槜単䜍の奜たしい特城を
有するこずができる。
With this device, in operation, gas passes from the bottom of the lower chamber through the intermediate chamber to the upper chamber, and bubbles through the electrolyte in each intermediate chamber and the upper chamber.
Preferably, the electrolyte outlets and inlets of successive cells are connected in a cascade so that the electrolyte flows from the upper chamber down each intermediate chamber and across the perforated plate of each said chamber from the inlet to the outlet; Then go down and go to the entrance to the room below. Such an upper chamber, an intermediate chamber, may have the preferred characteristics of a single electrochemical cell unit as described above, such that an inlet and an outlet for the electrolyte are formed by a weir.

本発明の他の面は本発明に埓う電気化孊槜を甚
いる電気化孊的方法および反応を実斜する方法で
あり、この方法は気䜓を板の孔に䞊向きに通し、
これによ぀お気䜓を板䞊の電解液䞭に通すこずか
らなる。反応に䟝存しお、この方法は連続的に、
すなわち連続的に気䜓、電解液および電流を䟛絊
するこずによ぀お、あるいは䞍連続的に、すなわ
ち気䜓、電解液およびたたは電流を䞍連続的に
䟛絊するこずによ぀お、実斜できる。
Another aspect of the invention is an electrochemical method and method of carrying out a reaction using an electrochemical cell according to the invention, which method comprises passing a gas upwardly through holes in a plate;
This consists in passing gas into the electrolyte on the plate. Depending on the reaction, this method continuously
That is, it can be carried out by continuously supplying gas, electrolyte and/or electric current, or discontinuously, ie by discontinuously supplying gas, electrolyte and/or electric current.

さらに、本発明の他の面は前蚘の倚段電気化孊
槜を甚いお電気化孊的方法たたは反応を実斜する
方法であり、この方法は電解液を䞊郚宀から䞭間
宀ぞ䞋向きにか぀各宀の有孔板を暪切぀お流し、
そしお気䜓を連続する板䞭の孔を通しお䞊向きに
流しお、これによりこの気䜓を各板䞊の電解液䞭
にあわ立おるこずからなる。この方法はたた連続
的にたたは䞍連続的に実斜できる。
Still another aspect of the invention is a method of carrying out an electrochemical process or reaction using the multi-stage electrochemical cell described above, which method directs the electrolyte downwardly from an upper chamber to an intermediate chamber and between each chamber. flow across the perforated plate,
The method then consists of flowing the gas upward through holes in successive plates, thereby causing the gas to bubble into the electrolyte on each plate. The method can also be carried out continuously or discontinuously.

気䜓は反応成分たたは反応成分の混合物である
こずができ、あるいは他の目的を満足でき、たず
えば窒玠のような䞍掻性パヌゞガスを䜿甚しお反
応の生成物を抌し流すこずができ、あるいはCO2
たたはNH3のような緩衝剀を䜿甚しお電解液のPH
を調節しお望たない反応を抑制できる。
The gas may be a reactant or a mixture of reactants, or it may serve other purposes, for example an inert purge gas such as nitrogen may be used to sweep away the products of the reaction, or CO 2
or the PH of the electrolyte using a buffer like NH3
can be controlled to suppress undesired reactions.

プロピレンオキシドの補造に加えお、本発明に
埓う槜は他の生成物の電気合成、たずえば、ブテ
ンからのブチレンオキシドの生成に䜿甚できるで
あろう。
In addition to the production of propylene oxide, a vessel according to the invention could be used for the electrosynthesis of other products, for example the production of butylene oxide from butene.

他の重芁な応甚は、ある皮の流出気䜓の電気化
孊的凊理である。䞀般的に蚀えば、倚くの応甚は
皮たたは皮以䞊の反応成分が気䜓であり、そ
しお陜極液ず陰極液の混合が有利であるか、ある
いは問題にならない堎合である。
Another important application is the electrochemical treatment of certain effluent gases. Generally speaking, many applications are where one or more of the reactants are gases and mixing the anolyte and catholyte is advantageous or not a problem.

発明を実斜するための最良の圢態 第〜図の電気化孊槜は䞊郚宀ず䞋郚宀
から構成された䞀般に長方圢の箱様囲いからな
る。䞊郚宀および䞋郚宀のフランゞの間
に固定された板は、囲いを䞊郚宀ず䞋郚宀
に分割する。フランゞず板ずの間の結合郚
はガスケツトによ぀おシヌルされおいる。
BEST MODE FOR CARRYING OUT THE INVENTION The electrochemical cell shown in FIGS. 1 to 3 has an upper chamber 1 and a lower chamber 2.
It consists of a generally rectangular box-like enclosure made up of A plate 3 fixed between the flanges 34 of the upper chamber 1 and the lower chamber 2 separates the enclosure from the upper chamber 1 and the lower chamber 2.
Divide into. The joint between the flange 34 and the plate 3 is sealed by a gasket 6.

䞊郚宀は電解液入口、電極宀および電解
液出口を有する。入口は立䞊り管からな
り、この管は䞊郚宀の頂郚を通過し、
板の付近に、盎立板ず䞊郚宀の぀の偎
壁の間に䞋向きに䌞びる。板は、板ず
䞀䜓匏であり、䞊郚宀の幅を暪切぀お延び、入
口せきを圢成し、このせきは、䜿甚のずき、電解
液のプヌルを液面で保持し、この電解液は立
䞊り管を経お䟛絊される。
The upper chamber 1 has an electrolyte inlet 7, an electrode chamber 8 and an electrolyte outlet 9. The inlet 7 consists of a riser 10 which passes through the top 35 of the upper chamber 1;
In the vicinity of the plate 3, it extends downwardly between the upright plate 11 and the three side walls 36 of the upper chamber 1. The plate 11 is integral with the plate 3 and extends across the width of the upper chamber 1 and forms an inlet weir which, in use, holds a pool of electrolyte at the liquid level 12 and this weir. Electrolyte is supplied via riser 10.

電解液出口は出口せき板からなり、この
板も䞊郚宀の幅を暪切぀お延びるが、立䞋
り管の拡倧された四角の端の぀の壁に
よ぀お圢成され、そしお立䞋り管は板の孔
を通過する。四角の端は、䞊郚宀の偎
壁ず板ず䞀䜓である盎立板ずによ぀お
定められた察応する四角のくがみにかん合されお
いる。出口せき板の頂郚は入口せき板の
頂郚より䜎く、そしお䜿甚のずき、それは電極宀
䞭の電解液を液面に維持する。
The electrolyte outlet 9 consists of an outlet weir plate 13 which also extends across the width of the upper chamber 1 but is formed by one wall of the enlarged square end 14 of the down pipe 15; The downpipe 15 then passes through the hole 16 in the plate 3. The square ends 14 are fitted into corresponding square recesses defined by the side walls 36 of the upper chamber 1 and the upright plate 17 which is integral with the plate 3. The top of the outlet dam 13 is lower than the top of the inlet dam 11 and, in use, it maintains the electrolyte in the electrode chamber 8 at the liquid level 18.

電極宀䞭には板の圢の個の電極が配眮され
おおり、そしおこれらの電極は板および
䞭の垂盎みぞ䞭に間隔をおいお平行な関係で
保持されおいる。電極は個の末端電極
の間に配眮されおおり、末端電極は偎壁
䞭に差蟌たれおおり、そしおその偎壁を電流
リヌド線が通過する。電極宀の䞀端の板
ず他端の板およびは、䞊郚宀の偎壁
ずずもに、電解液受噚を圢成し、その底は板
の有孔䞭倮郚分で圢成されおいる。板䞭の孔
は盎埄玄mmの円圢の孔の圢であり、隣接する
電極たたはおよびの間の䞭倮に各
個の等間隔の孔からなる぀の列に配眮されおい
る。
Seven electrodes in the form of plates are arranged in the electrode chamber 8, and these electrodes are connected to the plates 11 and 17.
are held in spaced apart parallel relationship in vertical grooves 20 therein. The electrode 19 has two terminal electrodes 21
The terminal electrode 21 is disposed between the side wall 36
The current lead wire 22 passes through the side wall 36 of the cap. Plate 11 at one end of the electrode chamber
and the plates 17 and 13 at the other end are the side walls 3 of the upper chamber 1.
6 together form an electrolyte receiver, the bottom of which is plate 3
It is formed by a perforated central part. hole 2 in plate 3
3 is in the form of a circular hole with a diameter of about 1 mm, and each 7 is in the center between adjacent electrodes 19 or 19 and 21.
They are arranged in eight rows of equally spaced holes.

たた、囲いの䞊郚宀はその頂郚䞭に、気
䜓収集宀から気䜓を抜き出すための、気䜓出口
パむプを含む。
The upper chamber 1 of the enclosure also includes in its top 35 a gas outlet pipe 24 for extracting gas from the gas collection chamber 4 .

䞋郚宀においお、立䞋り管は底付近に、
液面の出お行く電解液のプヌルを保持するト
ラツプたたはせきを圢成する盎立壁のレベル
の䞋に䌞びる。䞋郚宀の底に出口パむプが
存圚し、これはせき壁を越えお流れる電解液
を抜き出す。たた、䞋郚宀は、気䜓䟛絊宀䞭
ぞ気䜓を䟛絊する気䜓入口管を有する。気䜓
䟛絊宀の底の電解液は、この気䜓が出口パむプ
たたは立䞋り管を経お逃げるのを防ぐの
で、気䜓は板䞭の孔を通぀お䞊に行き、電
極宀䞭の電極、およびおよびの間
の電解液䞭にあわずな぀おはいる。
In the lower chamber 2, the down pipe 15 is located near the bottom.
The liquid level 31 extends below the level of an upright wall 30 forming a trap or weir that retains the pool of exiting electrolyte. At the bottom of the lower chamber 2 there is an outlet pipe 32 which draws off the electrolyte flowing over the weir wall 30. The lower chamber 2 also has a gas inlet pipe 33 that supplies gas into the gas supply chamber 5 . The electrolyte at the bottom of the gas supply chamber 5 prevents this gas from escaping via the outlet pipe 32 or downpipe 15, so that the gas goes up through the holes 23 in the plate 3 and into the electrode chamber 8. It foams up in the electrolyte between the electrodes 19 and 19 and 21.

この電気化孊槜を運転するためには、電解液出
口パむプを立䞋り管ぞ電解液埪環系によ
り接続し、そしお気䜓出口パむプを入口パむ
プぞ気䜓埪環系により接続する。電解液は遞
定速床で埪環されるので、立䞋り管からの新
らしい電解液は入口せき、すなわち板を越
え、電極宀を暪切぀お、すなわち電極、お
よびおよびの間の定められた平行なチダ
ンネルを通぀お流れ、そしお出口せき板を越
えお出る。たた、気䜓は遞定速床で埪環され、そ
の速床は電解液の流速に察しお独立に調節でき
る。気䜓は気䜓䟛絊宀から孔を䞊向きに通
り、電極、およびおよびの間の電解
液䞭をあわずな぀お通り、䞊郚すなわち気䜓収集
宀ぞはいる。すべおの流れが圢成されるず、電
流を電極およびに䟛絊する。ある堎合に
おいお、すなわち、気䜓が反応成分であるずき、
電流は気䜓を䟛絊するずき電極ぞ䟛絊し、そしお
運転は有利には連続的に、すなわち䞀定の電解液
および気䜓の流速で行う。しかし、他の堎合にお
いお、䞍連続的に、すなわち、電解液たたは気䜓
たたは䞡者を䞍連続に流し、電流を適圓な盞の間
に流しお、運転するこずが有利であるこずがあ
る。電気化孊反応の生成物は、気䜓ずしお取り去
り、そしお気䜓流から再埪環前に抜き出すこずが
でき、あるいは電解液䞭に溶かしお取り去るこず
ができ、この堎合においお、反応生成物は再埪環
前に電解液から取り出す。プロピレンオキシドの
補造に察しお、生成物は電解液ず気盞ずの間にそ
れ自䜓を分配し、それ故気䜓出口パむプから
取り出し、凝瞮により分離するこずが有利であろ
う。
To operate this electrochemical cell, the electrolyte outlet pipe 32 is connected to the downpipe 10 by an electrolyte circulation system, and the gas outlet pipe 24 is connected to the inlet pipe 33 by a gas circulation system. The electrolyte is circulated at a selected rate so that fresh electrolyte from the downcomer 10 passes over the inlet weir, i.e. plate 11, across the electrode chamber 8, i.e. between electrode 19 and between 19 and 21. It flows through defined parallel channels and exits over the outlet dam 13. Also, the gas is circulated at a selected rate, which rate can be adjusted independently of the electrolyte flow rate. The gas passes upwardly from the gas supply chamber 5 through the hole 23, bubbles through the electrode 19 and the electrolyte between 19 and 21, and enters the upper or gas collection chamber 4. Once all current is established, current is applied to electrodes 19 and 21. In some cases, i.e. when gas is the reactant,
Electric current is supplied to the electrodes when supplying gas, and operation is advantageously carried out continuously, ie with constant electrolyte and gas flow rates. However, in other cases it may be advantageous to operate discontinuously, ie with the electrolyte or gas or both flowing discontinuously and the current flowing between the appropriate phases. The products of the electrochemical reaction can be removed as a gas and extracted from the gas stream before being recycled, or they can be dissolved in an electrolyte, in which case the reaction products are electrolyzed before being recycled. Remove from liquid. For the production of propylene oxide, it may be advantageous for the product to partition itself between the electrolyte and the gas phase, and therefore to be removed from the gas outlet pipe 24 and separated by condensation.

産業䞊の利甚可胜性 第〜図に瀺すような電気化孊槜をプロピレ
ンオキシドの補造に䜿甚した。電極はおのおの高
さ6.3cm、長さ8.3cm、厚さ0.3cmのグラフアむトの
板であり、玄mmの距離で離しお配眮した。0.1
モルたたは0.2モルのNaBr溶液のの電解液
を、玄20〜45cm3秒の範囲の䞀定速床で流した。
たた、プロピレンを、新らしいプロピレンの䟛絊
により、玄〜40cm3秒の範囲の䞀定速床で埪環
した。䞀定電流玄〜2Aおよび䞀定電圧25〜
40Vを䟛絊する前に、プロピレンを数分間埪環
させお電気化孊槜の囲いから空気を陀去し、そし
お電解質溶液を飜和した。運転は宀枩および倧気
圧で実斜し、そしお電解液のPHをHBr溶液の添加
により玄11〜12の間に維持した。気䜓ず液䜓の詊
料を0.5時間の間隔で怜査した。ある堎合におい
お、発泡剀〓Decon″商暙を加えお、反応成
分の電極ぞの急速な質量移動を促進し、そしおプ
ロピレンの溶解を増加させお芋た。䜎い枩床、䜎
い電流および䜎い気䜓流速においお垌NaBrを甚
いるずき、結果は高い電流効率、玄80、および
䜎い゚ネルギヌ消費、0.2〜0.3キロワツト時グ
ラムモルのプロピレンオキシドを瀺した。同じ槜
を甚いる−ブテンの゚ポキシ化に察しお、プロ
ピレンオキシドを甚いお埗られた倀に近ずく電流
効率で、0.26キロワツト時グラムモルのブチレ
ンオキシドの゚ネルギヌ消費が達成された。これ
らの性胜は、槜の寞法ず方法の条件を最適にする
こずにより、そしお可胜ならば、高圧で運転する
こずにより、改良できる。
Industrial Applicability An electrochemical cell as shown in Figures 1-3 was used for the production of propylene oxide. The electrodes were graphite plates, each 6.3 cm high, 8.3 cm long, and 0.3 cm thick, and were spaced approximately 4 mm apart. 0.1
An electrolyte of 5 molar or 0.2 molar NaBr solution was flowed at a constant rate ranging from about 20 to 45 cm 3 /sec.
The propylene was also circulated at a constant rate ranging from about 5 to 40 cm 3 /sec with a fresh supply of propylene. Constant current (approximately 1~2A and constant voltage 25~
Propylene was circulated for several minutes to remove air from the electrochemical cell enclosure and saturate the electrolyte solution before supplying 40 V). The operation was carried out at room temperature and atmospheric pressure, and the pH of the electrolyte was maintained between about 11 and 12 by addition of HBr solution. Gas and liquid samples were tested at 0.5 hour intervals. In some cases, a blowing agent (〓Decon'' trademark) was added to promote rapid mass transfer of the reactants to the electrodes and was seen to increase dissolution of propylene.lower temperatures, lower currents and lower gas flow rates The results showed high current efficiency, about 80%, and low energy consumption, 0.2-0.3 kWh/gram mole of propylene oxide when using dilute NaBr in the epoxidation of 1-butene using the same bath. An energy consumption of 0.26 kWh/gram mole of butylene oxide was achieved with current efficiencies approaching the values obtained with propylene oxide. These performances were achieved by optimizing the bath dimensions and process conditions. , and can be improved by operating at higher pressures if possible.

第図に瀺すように、第〜図に類䌌する䞊
郚宀、䞭間宀および䞋郚宀を積み重ねお、カスケ
ヌド匏に接続された電解液流系をも぀倚段電気化
孊槜が圢成できる。第図においお、同じ郚分は
前ず同じ参照数字で衚瀺されおおり、䞭間宀のい
く぀かの郚分は二重の参照数字で衚瀺されおい
る。䞊郚宀のず䞋郚宀のは、第および図
の䞊郚宀ず䞋郚宀に正確に同じである。しか
し、倚段電気化孊槜においお、䞊郚宀、䞭間宀の
底を圢成する有孔板はたた䞋の䞭間宀䞀番䞋
の䞭間宀を陀くの気䜓収集宀の頂郚を圢成
し、そしおその孔はその䞭間宀の気䜓出口ず
しお䜜甚する䞊郚宀、䞭間宀䞀番䞋の䞭間宀
を陀くからの電解液の排出のための立䞋り管
は䞋の䞭間宀の立䞋り管を圢成する䞭間
宀の気䜓収集宀は䞊の䞭間宀、䞊郚宀の気䜓䟛
絊宀を圢成するそしお以䞋同様である。
As shown in FIG. 4, upper, middle and lower chambers similar to FIGS. 1-3 can be stacked to form a multi-stage electrochemical cell with a cascaded electrolyte flow system. In FIG. 4, the same parts are designated with the same reference numerals as before, and some parts of the intermediate chamber are designated with double reference numerals. The upper chamber 1 and the lower chamber 2 are exactly the same as the upper chamber 1 and the lower chamber 2 of FIGS. 1 and 2. However, in a multi-stage electrochemical cell, the perforated plate 3 forming the bottom of the upper chamber, the middle chamber also forms the top of the gas collection chamber 4 of the lower middle chamber (except the bottom middle chamber), and The hole 23 acts as a gas outlet of the intermediate chamber; the downcomer 1 for the discharge of the electrolyte from the upper chamber, the intermediate chamber (except the lowest intermediate chamber)
5 forms the down pipe 10 of the lower intermediate chamber; the intermediate chamber gas collection chamber 4 forms the upper intermediate chamber, the gas supply chamber 5 of the upper chamber; and so on.

この倚段電気化孊槜の運転においお、気䜓は䞋
郚宀の底に、入口パむプから䟛絊され、連続
する䞭間宀、䞊郚宀を䞊向きに通過し、各電極宀
䞭の電解液䞭をあわずな぀お䞊昇し、そしお䞊
郚宀の頂郚から出口パむプを経お抜き出
される。電解液は䞊郚宀の頂郚の立䞋り管
から䟛絊され、矢印で瀺すように、䞊郚宀から
䞭間宀そしお䞋郚宀ぞ降䞋し、䞊郚宀、䞭間宀の
電極宀を暪切぀お流れ、そしお䞋郚宀の底から出
口パむプを経お抜き出される。前のように、
電流を䞊郚宀、䞭間宀の電極ぞ䟛絊し、そしお運
転は連続たたは䞍連続であるこずができる。
In operation of this multi-stage electrochemical cell, gas is supplied to the bottom of the lower chamber from the inlet pipe 33, passes upward through the continuous middle chamber and upper chamber, and bubbles in the electrolyte in each electrode chamber 8. and is extracted from the top 35 of the upper chamber via the outlet pipe 24. The electrolyte is supplied to the down pipe 1 at the top 35 of the upper chamber.
0, descends from the upper chamber to the middle chamber and the lower chamber as indicated by the arrow, flows across the electrode chambers of the upper chamber, the middle chamber, and is extracted from the bottom of the lower chamber via an outlet pipe 32. It can be done. As before,
Current is supplied to the electrodes of the upper chamber, the middle chamber, and operation can be continuous or discontinuous.

倚くの倉曎を前述の態様に加えるこずができ
る。皮皮の電極材料を、反応条件に䟝存しお䜿甚
できるずくに、寞法安定性金属電極はいく぀か
の反応に奜たしいであろう。たた、電極はかなら
ずしも耇極性である必芁はない。ある堎合におい
お、平行に隔眮された電極を䞀般に電解液が有孔
板を暪切぀お流れる方向に察しお暪方向に配眮で
きる。皮々の圢および倧きさの孔をこの板䞭に圢
成でき、そしお隣接する電極の間に配眮する代わ
りに、ある皮の反応に察しお、これらの孔は有孔
板に配眮された倚孔質たたは有孔電極䞭に導びく
こずができる。奜たしい電解液の入口および出口
のせきの代わりに、他の手段を蚭けお有孔板を䞀
般に暪切る電解液の流れを圢成でき、同時に䞀定
の電解液の液面を維持できるであろう。
Many modifications can be made to the embodiments described above. A variety of electrode materials can be used depending on the reaction conditions; in particular, dimensionally stable metal electrodes may be preferred for some reactions. Further, the electrodes do not necessarily have to be bipolar. In some cases, parallel spaced electrodes can be arranged generally transverse to the direction in which the electrolyte flows across the perforated plate. Holes of various shapes and sizes can be formed in this plate, and for certain reactions, instead of being placed between adjacent electrodes, these holes can be placed in a porous or It can be introduced into a perforated electrode. In place of the preferred electrolyte inlet and outlet weirs, other means could be provided to create a flow of electrolyte generally across the perforated plate while maintaining a constant electrolyte level.

【図面の簡単な説明】[Brief explanation of the drawing]

本発明の態様を、䞀䟋ずしお、添付図面に瀺
す。第図は第図の線−に沿぀た電気化孊
槜の断面図である第図は第図の線−に
沿぀た断面図である第図は第図の線−
に沿぀た第および図の槜の断面図である第
図はカスケヌド匏に接続した䞊郚宀ずいく぀か
の䞭間宀ず䞋郚宀から圢成した倚段電気化孊槜の
䞀郚分の、第図に類䌌する断面図である。
Embodiments of the invention are illustrated, by way of example, in the accompanying drawings. 1 is a cross-sectional view of the electrochemical cell along the line - of FIG. 2; FIG. 2 is a cross-sectional view of the electrochemical cell along the line - of FIG. 1; FIG.
FIG. 4 is a cross-sectional view of the cell of FIGS. 1 and 2 along the lines; FIG. 4 is a cross-sectional view of the cell of FIG. FIG.

JP54500004A 1977-11-28 1978-10-13 Expired JPS6217038B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB4941177 1977-11-28
PCT/GB1978/000025 WO1979000323A1 (en) 1977-11-28 1978-10-13 Electrochemical cell and process

Publications (2)

Publication Number Publication Date
JPS54500071A JPS54500071A (en) 1979-11-29
JPS6217038B2 true JPS6217038B2 (en) 1987-04-15

Family

ID=10452254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54500004A Expired JPS6217038B2 (en) 1977-11-28 1978-10-13

Country Status (5)

Country Link
EP (1) EP0007951B1 (en)
JP (1) JPS6217038B2 (en)
CA (1) CA1103201A (en)
DE (1) DE2862342D1 (en)
WO (1) WO1979000323A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563689A (en) * 1979-06-26 1981-01-14 Chlorine Eng Corp Ltd Electrolytic apparatus for electrolysis of aqueous solution

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE637692A (en) * 1962-09-20

Also Published As

Publication number Publication date
WO1979000323A1 (en) 1979-06-14
CA1103201A (en) 1981-06-16
DE2862342D1 (en) 1983-12-01
EP0007951B1 (en) 1983-10-26
EP0007951A1 (en) 1980-02-20
JPS54500071A (en) 1979-11-29

Similar Documents

Publication Publication Date Title
JPH08225975A (en) Compensated-pressure electrochemical cell
US5527436A (en) Akylene oxide production
US3291708A (en) Electrolytic process for producing a halogen from its respective acid and the apparatus therefor
US4048047A (en) Electrochemical cell with bipolar electrodes
JPS5850556B2 (en) Electrochemical purification device for contaminated liquids
US20160312370A1 (en) Electrochemical cell without an electrolyte-impermeable barrier
US20240084462A1 (en) Method and electrolysis device for the production of chlorine, carbon monoxide and optionally hydrogen
US2837408A (en) Process and apparatus for the catalytic decomposition of alkali metal amalgams
EP0565330A1 (en) A process and an electrolytic cell for the production of fluorine
JPH02247391A (en) Improved electrolytic apparatus and anode
US2232128A (en) Electrolysis of alkaline metal chlorides and apparatus therefor
EP3921458A1 (en) Electrolyzer for hydrogen and oxygen production
JPH0211673B2 (en)
US3409533A (en) Mercury-method cell for alkali chloride electrolysis
US4270995A (en) Electrochemical cell and process
US4046653A (en) Novel electrolysis method and apparatus
JPS6217038B2 (en)
US2732284A (en) sakowski
US6620305B2 (en) Method and apparatus for electrochemical cells with improved anti-fouling characteristics
US4048046A (en) Electrolytic cell design
US2537304A (en) Electrolytic process and apparatus
JPS59193290A (en) Electrolytic cell
US4107020A (en) Vertical elecrolytic cells
US636234A (en) Process of and apparatus for electrolytic decomposition of saline solutions.
WO2020009572A1 (en) Electrolysis system comprising an electrode array