JPS621698Y2 - - Google Patents
Info
- Publication number
- JPS621698Y2 JPS621698Y2 JP16191080U JP16191080U JPS621698Y2 JP S621698 Y2 JPS621698 Y2 JP S621698Y2 JP 16191080 U JP16191080 U JP 16191080U JP 16191080 U JP16191080 U JP 16191080U JP S621698 Y2 JPS621698 Y2 JP S621698Y2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- ethylene
- vinyl acetate
- carboxylic acid
- copolymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 claims description 11
- 239000005038 ethylene vinyl acetate Substances 0.000 claims description 9
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 7
- 239000005977 Ethylene Substances 0.000 claims description 7
- 239000004020 conductor Substances 0.000 claims description 5
- 239000012212 insulator Substances 0.000 claims description 5
- 150000001733 carboxylic acid esters Chemical class 0.000 claims description 4
- 229920001577 copolymer Polymers 0.000 claims description 4
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 229920000098 polyolefin Polymers 0.000 claims description 3
- 239000000203 mixture Substances 0.000 description 16
- 239000003381 stabilizer Substances 0.000 description 14
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- 239000003963 antioxidant agent Substances 0.000 description 8
- 239000010949 copper Substances 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 7
- 229920001903 high density polyethylene Polymers 0.000 description 7
- 239000004700 high-density polyethylene Substances 0.000 description 7
- 238000009413 insulation Methods 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 239000000945 filler Substances 0.000 description 6
- 230000002688 persistence Effects 0.000 description 5
- 230000003078 antioxidant effect Effects 0.000 description 4
- 239000006260 foam Substances 0.000 description 4
- 238000004078 waterproofing Methods 0.000 description 3
- 239000004156 Azodicarbonamide Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- XOZUGNYVDXMRKW-AATRIKPKSA-N azodicarbonamide Chemical compound NC(=O)\N=N\C(N)=O XOZUGNYVDXMRKW-AATRIKPKSA-N 0.000 description 2
- 235000019399 azodicarbonamide Nutrition 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920006242 ethylene acrylic acid copolymer Polymers 0.000 description 2
- 229920006244 ethylene-ethyl acrylate Polymers 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 229920001684 low density polyethylene Polymers 0.000 description 2
- 239000004702 low-density polyethylene Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- -1 polypropylene Polymers 0.000 description 2
- HXIQYSLFEXIOAV-UHFFFAOYSA-N 2-tert-butyl-4-(5-tert-butyl-4-hydroxy-2-methylphenyl)sulfanyl-5-methylphenol Chemical compound CC1=CC(O)=C(C(C)(C)C)C=C1SC1=CC(C(C)(C)C)=C(O)C=C1C HXIQYSLFEXIOAV-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000005042 ethylene-ethyl acrylate Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Insulated Conductors (AREA)
- Communication Cables (AREA)
Description
本考案は内層として発泡絶縁体からなる層を、
外層として非発泡の充実絶縁体からなる層を有す
る2層絶縁電線に係るものである。
2層絶縁電線は、内層を高発泡化することによ
り、絶縁厚を薄くすることができ、外層に充実層
を設けることにより、機械的強度も向上させるこ
とができるので、通信ケーブル用の電線として、
広く用いられるようになつた。これらの通信ケー
ブル用電線において、耐侯性を保持するために絶
縁用組成物には、必要量の酸化防止剤が必ず添加
されている。特に銅導体を用いる場合には、酸化
防止剤の他に、銅害安定剤の添加が非常に有効で
ある。しかしながら、これらの安定剤処方を施さ
れた電線を用いたケーブルでも40〜70℃の高温下
での長期間の劣化により、絶縁組成物中の酸化防
止剤、銅害安定剤は熱による拡散現象によりブリ
ード現象を起こし、絶縁組成物の耐侯性を低下さ
せる傾向にある。更に防水用充填材を絶縁心線間
に含有するケーブルでは、防水用充填材が電線の
絶縁組成物を膨潤させ、絶縁組成物から、安定剤
や他の成分を浸出させる可能性もあり、同じく絶
縁組成物の耐侯性を著しく低下させる危険性があ
つた。
本考案は、かかる欠点を克服するために考え出
されたものである。一般に、通信ケーブル用電線
の絶縁組成物として使用されるものは、低密度ポ
リエチレン、高密度ポリエチレンあるいはポリプ
ロピレンなどである。これらの絶縁組成物中の酸
化防止剤、銅害安定剤などの残留性は、結晶・非
晶領域の形態に基づく拡散速度に支配され、例え
ば、常温では非晶領域の少い高密度ポリエチレン
が低密度ポリエチレンより優れた残留性を示すこ
とがわかつている。又、防水用充填材を使用した
ケーブル中では、絶縁組成物中に膨潤により浸透
した防水用充填材に対する酸化防止剤・銅害安定
性の相溶性の差がその残留性に大きく影響する。
そこで絶縁組成物に対する酸化防止剤、銅害安定
剤等の安定剤の残留性を向上させるために、エチ
レンとカルボン酸又はエチレンとカルボン酸エス
テルの共重合体を適当量添加することにより、安
定剤の相容性(溶解度)を向上させることができ
ることを利用することを考えた。
第1表にはエチレン酢酸ビニル共重合体中の酢
酸ビニル含有量に対する酸化防止剤(この場合は
商品名サントノツクスRをもちいたもの)の残留
性を示すが酢酸ビニルがわずか2%で非常な残留
効果を示していることがわかる。又ポリエチレン
とエチレン酢酸ビニル共重合体のブレンド系でも
同様に良好な残留効果をもつことがわかつてい
る。
This invention uses a layer made of foam insulation as the inner layer.
This invention relates to a two-layer insulated wire having a layer made of a non-foamed solid insulator as an outer layer. Double-layer insulated wires can be used as wires for communication cables because the insulation thickness can be reduced by making the inner layer highly foamed, and the mechanical strength can be improved by providing a solid layer on the outer layer. ,
It has become widely used. In these electric wires for communication cables, a required amount of antioxidant is always added to the insulating composition in order to maintain weather resistance. Particularly when using a copper conductor, addition of a copper damage stabilizer in addition to an antioxidant is very effective. However, even cables using electric wires treated with these stabilizer formulations will deteriorate over a long period of time at high temperatures of 40 to 70 degrees Celsius, and the antioxidants and copper damage stabilizers in the insulation composition will be subject to diffusion phenomena caused by heat. This tends to cause a bleed phenomenon and reduce the weather resistance of the insulating composition. Furthermore, in cables that contain waterproofing fillers between the insulated cores, the waterproofing filler can swell the insulation composition of the wire and leach stabilizers and other components from the insulation composition. There was a risk that the weather resistance of the insulating composition would be significantly reduced. The present invention has been devised to overcome these drawbacks. Generally, materials used as insulating compositions for electric wires for communication cables include low-density polyethylene, high-density polyethylene, and polypropylene. The persistence of antioxidants, copper damage stabilizers, etc. in these insulating compositions is controlled by the diffusion rate based on the morphology of crystalline/amorphous regions.For example, at room temperature, high-density polyethylene with few amorphous regions It has been found to exhibit better retention than low density polyethylene. Furthermore, in a cable using a waterproof filler, the difference in compatibility between the antioxidant and the copper damage stability with respect to the waterproof filler that has penetrated into the insulating composition by swelling greatly affects its persistence.
Therefore, in order to improve the persistence of stabilizers such as antioxidants and copper damage stabilizers in insulation compositions, by adding an appropriate amount of a copolymer of ethylene and carboxylic acid or ethylene and carboxylic acid ester, stabilizers such as antioxidants and copper damage stabilizers can be added. The idea was to take advantage of the fact that the compatibility (solubility) of Table 1 shows the residual effect of the antioxidant (in this case, using the product name Santonox R) in relation to the vinyl acetate content in the ethylene-vinyl acetate copolymer. It can be seen that it is effective. It has also been found that a blend system of polyethylene and ethylene vinyl acetate copolymer has similarly good residual effects.
【表】
ン中に放置。)
ここで、安定剤の絶縁組成物中への残留性のみ
を考えるならば、2層発泡絶縁層の内層の発泡層
及び外層の充実層ともに、エチレン酢酸ビニル共
重合体などの極性を持つたポリオレフインを添加
することが一番効き目があるのであるが、通信ケ
ーブル用の電線であるという点を考えるならば、
その絶縁組成物の誘電率、誘電損失、体積固有抵
抗、耐電圧などの電気特性及び製造面での高速押
出性を考慮して、外側の充実絶縁層のみに極性基
をもつたポリオレフインを添加することが望まし
い。この場合外層の充実層中の安定剤の残留性が
十分に高いので、それ自身の耐侯性も十分維持さ
れるとともに、内層の発泡層中の安定剤の外層へ
の移行も抑制されるので、全体として非常に耐侯
性の良い絶縁体を形成することになる。又、電気
特性的にも殆んど影響を受けないことが確認され
た。
以下本考案の実施例を詳細に説明する。
第1図の如く導体上1に発泡絶縁層2および非
発泡の充実絶縁層3を設けるが、実際に導体とし
て0.5mmの軟銅線を用い発泡絶縁材料として密度
0.950g/cm3メルトインデツクス0.45の高密度ポ
リエチレンに発泡剤としてADCA(アゾジカーボ
ンアミド)系のものを0.5%含有したものを用
い、充実絶縁材料として、前記高密度ポリエチレ
ン単独のもの(A)と前記ポリエチレンにエチレン酢
酸ビニル共重合体を10%ブレンドしたもの(B)の2
種を用意して2種類の発泡度40%の2層絶縁電線
を製造した。なおエチレン酢酸ビニル共重合体中
の安定剤の量は、高密度ポリエチレン(A)とのOIT
値の比較より、かなり少いものであり、ブレンド
高密度ポリエチレン(B)のOIT値も高密度ポリエチ
レン(A)単独よりも少なくなつている。
以上のようにして製造した2層絶縁電線につい
て自己径の棒に巻付け110℃のエアオーブン中で
絶縁体の亀裂裂化をテストし、更に70℃の防水用
充填材(ウイトコ社製WITCO−5B)中で放置
し、その後示差走査熱量計(Differential
Scanning Calorimeter)を用いて酸化誘導期
(Oxidation Induction Time)を調べた。
その結果を第2表に示す。[Table] Left in the tank. )
If we consider only the persistence of the stabilizer in the insulating composition, then both the inner foam layer and the outer solid layer of the two-layer foam insulating layer should be made of polar polyolefin such as ethylene-vinyl acetate copolymer. The most effective way is to add
Considering the electrical properties of the insulating composition such as dielectric constant, dielectric loss, volume resistivity, and withstand voltage, as well as high-speed extrudability in manufacturing, polyolefin with a polar group is added only to the outer solid insulating layer. This is desirable. In this case, the persistence of the stabilizer in the outer solid layer is sufficiently high, so that its own weather resistance is sufficiently maintained, and migration of the stabilizer in the inner foam layer to the outer layer is also suppressed. As a whole, an insulator with very good weather resistance is formed. Furthermore, it was confirmed that the electrical characteristics were hardly affected. Embodiments of the present invention will be described in detail below. As shown in Figure 1, a foamed insulating layer 2 and a non-foamed solid insulating layer 3 are provided on the conductor 1, but in reality, 0.5 mm annealed copper wire is used as the conductor, and the foamed insulating material has a high density.
High-density polyethylene with a melt index of 0.45 containing 0.5% of ADCA (azodicarbonamide) as a foaming agent was used as a solid insulating material, and the high-density polyethylene alone (A ) and 10% ethylene-vinyl acetate copolymer blended with the polyethylene (B) 2
Seeds were prepared and two types of double-layer insulated wires with a foaming degree of 40% were manufactured. The amount of stabilizer in the ethylene vinyl acetate copolymer is determined by the OIT with high density polyethylene (A).
The OIT value of the blended high-density polyethylene (B) is also lower than that of the high-density polyethylene (A) alone. The double-layer insulated wire produced as described above was wrapped around a rod of its own diameter and tested for cracking of the insulator in an air oven at 110°C. ) and then a differential scanning calorimeter (Differential
The oxidation induction time was examined using a scanning calorimeter. The results are shown in Table 2.
【表】
この結果から明らかにエチレン酢酸ビニル共重
合体を10%ブレンドした方(B)が、自己径巻付け劣
化においても70℃防水用充填材中放置後の酸化誘
導期においても良好で絶縁組成物中の安定剤の残
留性の良いことがわかる。
又、エチレン酢酸ビニル共重合体のブレンド量
はエチレン酢酸ビニル共重合体中に含まれる酢酸
ビニル含有量によつて左右される。なおエチレン
酢酸ビニル共重合体以外に、同様極性基をもつた
エチレン−アクリル酸エチル共重合体(EEA)、
エチレン−アクリル酸共重合体(EAA)など
エチレンとカルボン酸又はエチレンとカルボン酸
エステルの共重合体が同様なものとして使用しう
る。
以上述べたように本考案の2層絶縁電線は耐侯
性に優れ、特に防水用充填材を含有するケーブル
に適している。[Table] From these results, it is clear that the blend of 10% ethylene-vinyl acetate copolymer (B) has better insulation both in self-diameter winding deterioration and in the oxidation induction period after being left in a waterproofing filler at 70°C. It can be seen that the stabilizer remains in the composition well. Further, the blending amount of the ethylene vinyl acetate copolymer depends on the vinyl acetate content contained in the ethylene vinyl acetate copolymer. In addition to ethylene-vinyl acetate copolymers, ethylene and carboxylic acid or ethylene and carboxylic acid esters, such as ethylene-ethyl acrylate copolymer (EEA) and ethylene-acrylic acid copolymer (EAA), which also have polar groups, can be used. Copolymers can be used as well. As described above, the double-layer insulated wire of the present invention has excellent weather resistance and is particularly suitable for cables containing waterproof fillers.
第1図は本考案の2層絶縁電線の実施例で、1
は導体、2は発泡絶縁層、3は非発泡絶縁層を示
す。
Figure 1 shows an embodiment of the double-layer insulated wire of the present invention.
2 indicates a conductor, 2 indicates a foamed insulating layer, and 3 indicates a non-foamed insulating layer.
Claims (1)
を、外層として非発泡の絶縁体からなる層を設
けた2層絶縁電線において、外層材料が非極性
のポリオレフインをベースとし、エチレンとカ
ルボン酸又はエチレンとカルボン酸エステルの
共重合体がブレンドされた材料からなることを
特徴とする2層絶縁電線。 (2) エチレンとカルボン酸エステルの共重合体が
エチレン酢酸ビニル共重合体であることを特徴
とする実用新案登録請求の範囲第(1)項記載の2
層絶縁電線。[Claims for Utility Model Registration] (1) A double-layer insulated wire in which a conductor is provided with a layer made of a foamed insulator as an inner layer and a layer made of a non-foamed insulator as an outer layer, the outer layer material being non-polar polyolefin. A double-layer insulated wire characterized by being made of a blended material of ethylene and carboxylic acid or a copolymer of ethylene and carboxylic acid ester. (2) Utility model registration claim 2 described in paragraph (1), characterized in that the copolymer of ethylene and carboxylic acid ester is an ethylene-vinyl acetate copolymer.
Layer insulated wire.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16191080U JPS621698Y2 (en) | 1980-11-11 | 1980-11-11 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16191080U JPS621698Y2 (en) | 1980-11-11 | 1980-11-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5783615U JPS5783615U (en) | 1982-05-24 |
JPS621698Y2 true JPS621698Y2 (en) | 1987-01-16 |
Family
ID=29520800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16191080U Expired JPS621698Y2 (en) | 1980-11-11 | 1980-11-11 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS621698Y2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0614325Y2 (en) * | 1987-07-03 | 1994-04-13 | 東京電線工業株式会社 | Coated wire |
JP7443766B2 (en) * | 2019-12-26 | 2024-03-06 | 住友電気工業株式会社 | electrical insulated cable |
-
1980
- 1980-11-11 JP JP16191080U patent/JPS621698Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5783615U (en) | 1982-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0179845B1 (en) | Insulation composition for cables | |
US5420185A (en) | Wire on cable coated with a bow-tie tree resistant electrical insulating composition | |
US4693937A (en) | Flame retardant wire with high insulation resistance | |
JPS621698Y2 (en) | ||
US4366075A (en) | Composition for filling cables | |
US2914430A (en) | Method of using low viscosity-low volatility mineral oil and wax in an insulated electric cable | |
JPS64767B2 (en) | ||
US4110137A (en) | Composition for filling cables | |
EP0166781A1 (en) | Crosslinked polyethylene cable | |
EP0152911B1 (en) | Insulated electric cable | |
JPS63210150A (en) | Coating polymer composition | |
JPS629137B2 (en) | ||
AU568802B2 (en) | Flame retardant wire with high insulation resistance | |
JP3341593B2 (en) | Electrical insulating composition and electric wires and cables | |
JP2573487B2 (en) | Crosslinked rubber / plastic insulation cable | |
JPS63190206A (en) | Insulating material composition for wire and cable | |
JPH07107806B2 (en) | Power cable | |
JPS6344247B2 (en) | ||
JPH035004B2 (en) | ||
JPH0234734Y2 (en) | ||
JPH02121209A (en) | Insulated cable | |
JPH011746A (en) | resin composition | |
JPH0452563B2 (en) | ||
JPS61109206A (en) | Electric insulator and electric cable using the same | |
JPS60206855A (en) | Electrically semiconductive composition |