JPS62169074A - Multichannel radiation detector - Google Patents
Multichannel radiation detectorInfo
- Publication number
- JPS62169074A JPS62169074A JP1018886A JP1018886A JPS62169074A JP S62169074 A JPS62169074 A JP S62169074A JP 1018886 A JP1018886 A JP 1018886A JP 1018886 A JP1018886 A JP 1018886A JP S62169074 A JPS62169074 A JP S62169074A
- Authority
- JP
- Japan
- Prior art keywords
- scintillator
- liquid
- bag
- phototube
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005855 radiation Effects 0.000 title claims description 13
- 239000007788 liquid Substances 0.000 claims abstract description 14
- 230000003287 optical effect Effects 0.000 claims abstract description 5
- 230000005540 biological transmission Effects 0.000 description 7
- 101001123530 Nicotiana tabacum Putrescine N-methyltransferase 3 Proteins 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 230000005251 gamma ray Effects 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002591 computed tomography Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Landscapes
- Measurement Of Radiation (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明はγ線等の高エネルギーの放射線を線源とするC
T (C’、omputed Tomography
)装置、ポジトロンCT装置をはじめとするCT表装置
検出器に関するもので特に検出器を多チャンネル化する
ことで透過データの空間分解能を向上することのできる
多チャンネル放射線検出器に関するものである。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to C
T (C', computed tomography
) device, and a CT table device detector including a positron CT device, and in particular, it relates to a multi-channel radiation detector that can improve the spatial resolution of transmission data by making the detector multi-channel.
以下、多チャンネル放射線検出器の応用光としてCT表
装置例にとる。また高エネルギー放射線源の1例として
γ線を例にとる。Hereinafter, a CT scanner will be used as an example of applied light for a multi-channel radiation detector. In addition, gamma rays will be taken as an example of a high-energy radiation source.
従来、γ線等の高エネルギー放射線を検出する多チャン
ネル検出器は、シンチレータと光電7f増倍管(PMT
)を結合しこれを複数個並べ多チャンネル放射線検出器
を構成していた。ここでCT表装置おいて必要とされる
透過データの空間分解能は被検体の状態によっても異な
るが、医療用X線CT装置と同様に0.5〜Lmm程度
は必要で、そのためにシンチレータの大きさく幅)も1
mm以下にしなければならない。しかし、従来の方法で
の透過データの空間分解能はほぼPMTの受光面の径に
よって決まってしまう。すなわち、シンチレータは機械
的に1.mm程度の幅のものを製作するのは容易である
が、PMTの大きさは現状では8mm以下のものはない
。したがって1mm程度の空間分解能を必要とするγ線
CT装首に直接用いることができない問題点があった。Conventionally, multi-channel detectors for detecting high-energy radiation such as γ-rays have been constructed using scintillators and photomultiplier tubes (PMTs).
) were combined and arranged in multiple units to form a multichannel radiation detector. Here, the spatial resolution of transmission data required in a CT table device varies depending on the condition of the subject, but as with medical width) is also 1
Must be less than mm. However, the spatial resolution of transmission data in the conventional method is determined approximately by the diameter of the light-receiving surface of the PMT. That is, the scintillator is mechanically 1. Although it is easy to manufacture a PMT with a width of about 8 mm, there are currently no PMTs with a size of 8 mm or less. Therefore, there was a problem that it could not be used directly for gamma-ray CT neck mounting, which requires a spatial resolution of about 1 mm.
なお、この種の技術としては、例えば、プライス「放射
線計111Q Jコロナ社、第7章に記載がある。Note that this type of technology is described in, for example, Price "Radiometer 111Q J Corona Publishing, Chapter 7.
本発明の目的は、γ線透過データの空間分解能がP M
”T”受光面で決定される従来の多チャンネル放射線
検出器に対して、飛躍的にγ線透過データの空間分解能
を向−ヒさせることのできるγ線CT装置用の多チャン
ネル検出器を提供することにある。The purpose of the present invention is to achieve a spatial resolution of γ-ray transmission data of P M
Provides a multi-channel detector for gamma-ray CT equipment that can dramatically improve the spatial resolution of gamma-ray transmission data compared to conventional multi-channel radiation detectors determined by the "T" light receiving surface. It's about doing.
本発明は、シンチータとPMTを直接接合した従来法と
は別にシンチレータとP M Tの間に光学的なカップ
ライトを入れることにある。この方法の類似として光学
素子として例えば、プライス「放射線計測」コロナ社、
第7章に記載されている様にライトガイド・ファイバを
用いた方法もあるが、シンチレーション光の受光面感度
、伝達効率が悪く (直接接合に比べ1/2Q以下)、
スペク1〜ル計d1すには不向きであった。The present invention is different from the conventional method of directly joining a scintillator and a PMT by inserting an optical coupler between the scintillator and the PMT. As an optical element similar to this method, for example, Price "Radiation Measurement" Corona Co., Ltd.
As described in Chapter 7, there is a method using a light guide fiber, but the sensitivity of the scintillation light receiving surface and the transmission efficiency are poor (less than 1/2 Q compared to direct bonding).
It was unsuitable for specs 1 to d1.
本発明はこの問題点を解決するために光学的なカップラ
ットを用いるが、これだけではやはり空間分解能はPM
Tの受光面の径で決定されるため一ヒ記の方法とは別に
、第5図に示す様に多チャンネルに配備されたシンチレ
ータ2に沿ってPMT3を動かす方法を採用している。The present invention uses an optical couplet to solve this problem, but with this alone the spatial resolution is still limited to PM.
Since it is determined by the diameter of the light-receiving surface of T, in addition to the method described above, a method of moving the PMT 3 along the scintillators 2 arranged in multiple channels as shown in FIG. 5 is adopted.
このことにより。Due to this.
シンチレータ幅WをPMT3の受光口径とは独立に選択
することができ、高分解能の多チャンネル検出器が構成
できる。The scintillator width W can be selected independently of the light-receiving aperture of the PMT 3, and a high-resolution multi-channel detector can be configured.
以下、本発明を実施例を参照して詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.
第1図、第2図は本発明の第1の実施例の多チャンネル
放射線検出器の構造を示す図である。多チャンネルに洋
書に並べられたシンチレータ2とPMT3は外部に液が
もれにくい構造のバッグ1の内に収納されている。さら
にバッグ]−の内にはPMT3へのシンチレーション光
が効率良く伝達できる様にPMT受光面の屈折率(約1
.5)に近い液体6で満たしである。本発明においてこ
の液体は例えば液体シンチレータの]種であるNE21
6を使用しているにのバッグ1とシンチレータ2及びP
MT3の接合部は液体6が流出しない様にシール7しで
ある。第2図は第1図のAA’断面図である。放射線(
例えばγ線)がシンチレータ2に入射するとシンチレー
タ2が発光し、シンチレーション光が液体6を通過して
PMT3に達する。第3図はPMT受光面をシンチレー
タ2側から観たものである。しや光用の塗料10がPM
T受光面9に塗布しである。これは隣接するシンチレー
タ2からのシンチレーション光が入らない様にするため
のものである。次にPMT3の可動法を説明する。PM
T受>1C面9のじや光材が塗布されていない面1−0
は常に多チヤンネルシンチレータ2の1個に対向して設
置されている。すなわち、第3図のPMTの位置でシン
チレータNn 1のシンチレーション光を測定している
。測定が終わるとPMTが矢印の方向11に移動し、例
えば点線で示した位置まで移動して停止する。この時シ
ンチレータNα2のシンチレーション光がi(+1定さ
れる。以下同様にして全てのシンチレータ2のシンチレ
ーション光を順に?11り定していく。1 and 2 are diagrams showing the structure of a multi-channel radiation detector according to a first embodiment of the present invention. The scintillator 2 and PMT 3 arranged in a multi-channel manner are housed in a bag 1 having a structure that prevents liquid from leaking to the outside. In addition, inside the bag, the refractive index of the PMT light receiving surface (approx.
.. It is filled with liquid 6 similar to 5). In the present invention, this liquid is, for example, a species of liquid scintillator NE21.
Bag 1, scintillator 2 and P
The joint of the MT 3 is sealed 7 to prevent the liquid 6 from flowing out. FIG. 2 is a sectional view taken along line AA' in FIG. radiation(
For example, when γ rays) are incident on the scintillator 2, the scintillator 2 emits light, and the scintillation light passes through the liquid 6 and reaches the PMT 3. FIG. 3 shows the PMT light receiving surface viewed from the scintillator 2 side. Shiny light paint 10 is PM
It is applied to the T light receiving surface 9. This is to prevent scintillation light from the adjacent scintillator 2 from entering. Next, a method of moving the PMT 3 will be explained. PM
T receiver > 1C surface 9 Surface 1-0 on which no glue or light material is applied
is always placed opposite to one of the multichannel scintillators 2. That is, the scintillation light of scintillator Nn 1 is measured at the position of PMT in FIG. 3. When the measurement is finished, the PMT moves in the direction of the arrow 11, for example to the position indicated by the dotted line, and then stops. At this time, the scintillation light of the scintillator Nα2 is determined by i(+1). Thereafter, the scintillation light of all the scintillators 2 is determined by i(+1) in the same manner.
前述の様にバッグ1とシンチレータ2及びPMT3の接
合部はシール7されているが、バッグ1はその形状を自
由に変えられるため、シール部7に無理な力が作用せず
、シールを破壊することはない。As mentioned above, the joints between the bag 1, the scintillator 2, and the PMT 3 are sealed 7, but since the shape of the bag 1 can be changed freely, no unreasonable force is applied to the seal 7 and the seal is destroyed. Never.
第4図は第2図の実施例を示す図で、第2図に対応して
いる。第1の実施例では、PMT受光而1面を第3図の
様に処理し、隣接シンチレータからのシンチレーション
光を遮光しているが、十分ではない。本実施例はこの遮
光効果をさらに増大したものである。すなわち、シンチ
レータ2とシンチレータ2の間にじゃ先板13を設ける
。この様にしたことで、液体のカップラット材7の中で
散乱して入ってくる隣接チャンネルのシンチレータ2か
らの光を第1の実施例に比べ効果的に減少させろことが
できる。FIG. 4 is a diagram showing the embodiment of FIG. 2, and corresponds to FIG. In the first embodiment, one surface of the PMT light receiving surface is processed as shown in FIG. 3 to block scintillation light from adjacent scintillators, but this is not sufficient. This embodiment further increases this light shielding effect. That is, the tip plate 13 is provided between the scintillators 2. By doing this, it is possible to effectively reduce the light from the scintillator 2 in the adjacent channel that is scattered in the liquid cuplat material 7 and enters the same, compared to the first embodiment.
以上、説明したごとく本発明によれば、従来PMTの径
によって決まっていた透過データの空間分解能(10m
m以上)をシンチレータの幅のみを狭くするだけで向上
させることができる。すなわち、本発明で達成できる空
間分解能はシンチレータの幅となり、1 m+nFa度
の空間分解能は容易に達成することが可能である。As explained above, according to the present invention, the spatial resolution of transmission data (10 m
m or more) can be improved by simply narrowing the width of the scintillator. That is, the spatial resolution that can be achieved with the present invention is the width of the scintillator, and a spatial resolution of 1 m+nFa degrees can be easily achieved.
第1図は本発明の一実施例を示す斜視図、第2図は第1
図のAA’の断面図、第3図は実施例を示す正面図、第
4図は他の実施例を示す第1図のAA’断面図、第5図
は多チャネルに配備されたシンチレータに沿ってPMT
を動かす方法を示した図である。
心 1 の
や2 ロ
$、3 1ZI
冶l、、(2]FIG. 1 is a perspective view showing one embodiment of the present invention, and FIG. 2 is a perspective view showing one embodiment of the present invention.
3 is a front view showing an embodiment, FIG. 4 is a sectional view taken along line AA' in FIG. 1 showing another embodiment, and FIG. Along PMT
FIG. Heart 1 Noya 2 Ro$, 3 1ZI Jiro,, (2)
Claims (1)
したシンチレータを並らべ多チャンネルにした放射線検
出器と光電子増倍管の間に液体が外部にもれない構造の
バッグを設け、当該バッグ内に光学的なカップラット液
を封入し、かつ光電子増倍管をシンチレータに沿って動
かすことを特徴とする多チャンネル放射線検出器。1. In a detector that detects radiation such as gamma rays, a bag is installed between the radiation detector, which has multiple channels of miniaturized scintillators, and the photomultiplier tube, so that liquid does not leak to the outside. A multi-channel radiation detector characterized in that an optical cuprate liquid is sealed in the bag and a photomultiplier tube is moved along a scintillator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1018886A JPS62169074A (en) | 1986-01-22 | 1986-01-22 | Multichannel radiation detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1018886A JPS62169074A (en) | 1986-01-22 | 1986-01-22 | Multichannel radiation detector |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62169074A true JPS62169074A (en) | 1987-07-25 |
Family
ID=11743306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1018886A Pending JPS62169074A (en) | 1986-01-22 | 1986-01-22 | Multichannel radiation detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62169074A (en) |
-
1986
- 1986-01-22 JP JP1018886A patent/JPS62169074A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4195505B2 (en) | 3D image detector using wavelength-shifted optical fiber | |
US5773829A (en) | Radiation imaging detector | |
US5091650A (en) | Radiation detector using scintillator array | |
EP0608101B1 (en) | Scintillation counter | |
EP0838038B1 (en) | Surgical probe for laparoscopy or intracavitary tumour localization | |
CA2252993C (en) | Detector assembly for multi-modality scanners | |
US8859973B2 (en) | Strip device and method for determining the location and time of reaction of the gamma quanta and the use of the device to determine the location and time of reaction of the gamma quanta in positron emission tomography | |
US5391878A (en) | Multiplexed fiber readout of scintillator arrays | |
US10203419B2 (en) | Detector component for an X-ray or gamma ray detector | |
US5134293A (en) | Scintillator material | |
JPS6375587A (en) | Positron ct device | |
CA2451376A1 (en) | A pet scanner | |
US6710349B2 (en) | Edge resolved dual scintillator gamma ray detection system and method | |
US5015860A (en) | Scintillator materials containing lanthanum fluorides | |
US5227633A (en) | Joined scintillator block body for radiation detector | |
JPS61262675A (en) | Detector for high-energy radiation and detection method | |
US20080073542A1 (en) | Light guide having a tapered geometrical configuration for improving light collection in a radiation detector | |
US5719400A (en) | High resolution detector array for gamma-ray imaging | |
US5015861A (en) | Lead carbonate scintillator materials | |
US20080061243A1 (en) | Radiation detector having a fiber optic wedge with a plurality of parallel fibers | |
KR20160115565A (en) | Sensing probe, apparatus and method for detecting fiber-optic beta/gamma image using the same | |
JPS62169074A (en) | Multichannel radiation detector | |
Shao et al. | A study of depth of interaction measurement using bent optical fibers [in PET scanner] | |
JP2004233240A (en) | Radiation detector | |
JP2004354343A (en) | Radiation detector |