JPS62168762A - Four-wheel steering gear for vehicle - Google Patents

Four-wheel steering gear for vehicle

Info

Publication number
JPS62168762A
JPS62168762A JP1165686A JP1165686A JPS62168762A JP S62168762 A JPS62168762 A JP S62168762A JP 1165686 A JP1165686 A JP 1165686A JP 1165686 A JP1165686 A JP 1165686A JP S62168762 A JPS62168762 A JP S62168762A
Authority
JP
Japan
Prior art keywords
steering
steering ratio
ratio
predetermined value
failure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1165686A
Other languages
Japanese (ja)
Inventor
Shigeki Furuya
古谷 茂樹
Hirotaka Kanazawa
金澤 啓隆
Teruhiko Takatani
高谷 輝彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP1165686A priority Critical patent/JPS62168762A/en
Publication of JPS62168762A publication Critical patent/JPS62168762A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/148Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering provided with safety devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/1518Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels comprising a mechanical interconnecting system between the steering control means of the different axles
    • B62D7/1536Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels comprising a mechanical interconnecting system between the steering control means of the different axles provided with hydraulic assistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/1518Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels comprising a mechanical interconnecting system between the steering control means of the different axles
    • B62D7/1545Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels comprising a mechanical interconnecting system between the steering control means of the different axles provided with electrical assistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)

Abstract

PURPOSE:To reduce a change in steering ratio at any troubles for improving safety by providing a means for setting the steering ratio to an intermediate predetermined value in the same phase when the trouble in a system for controlling the ratio (steering ratio) of steering angle of rear wheels to that of front wheels is detected. CONSTITUTION:A rear wheel steering mechanism 12 comprises a power steering mechanism 16 in which a piston 17a is moved by controllably supplying and discharging pressurized oil to and from hydraulic chambers 17b, 17c in a power cylinder 17 through a control valve 20 to assist a drive force for a relay rod 15. This valve 20 is controllably interlocked with the operation of a front wheel steering mechanism 3 through a rotary shaft 28 and a steering ratio controlling mechanism 29 which in turn controls the steering ratio by controlling a stepping motor 50 through a controlling unit 100. In this case, when any troubles in a steering ratio controlling system are detected by a trouble detecting section 103, the steering ratio is adapted to be set to an intermediate predetermined value in the same position by a controller section 104 in failure time.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は車両の4輪操舵装置、すなわち前輪とともに後
輪をも転舵する装置に関し、特に車速等の車両の走行状
態に応じて前輪の転舵角に対する後輪の転舵角の比(転
舵比)を変化させて制御する4輪操舵装置の故障対策に
関ザるものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a four-wheel steering device for a vehicle, that is, a device that steers the rear wheels as well as the front wheels. This invention relates to troubleshooting for a four-wheel steering system that is controlled by changing the ratio of the steering angle of the rear wheels to the steering angle (steering ratio).

(従来の技術) 前輪の転舵とともに後輪も転舵し、両者の転舵比を車両
の走行状態に応じて変化させるよう制御する4輪操舵装
置が開発されている。これは、一般には低速時に転舵比
を逆位相とし、高速時に同位相とすることにより、低速
時の操舵応答性を高めるとともに高速時の安定性を向上
させるもので、通常は時速50篩程度を境界にして逆位
相を同位相に変化させ、その後走行速度の増加に伴って
同位相の転舵比を所定の最大(直まで大きくするように
している。
(Prior Art) A four-wheel steering device has been developed that controls the rear wheels as well as the front wheels, and changes the steering ratio of both wheels according to the driving state of the vehicle. This is generally done by setting the steering ratio in opposite phases at low speeds and in the same phase at high speeds, thereby increasing the steering response at low speeds and improving stability at high speeds. The opposite phase is changed to the same phase at the boundary, and thereafter, as the traveling speed increases, the steering ratio of the same phase is increased to a predetermined maximum (direction).

このような4輪操舵装置においては、車両の走行状態(
例えば車速)を検出するため車速センサ等が使用される
が、この車速センサが故障すると信号は車速ゼロを示す
こととなり、通常車速ゼロでは転舵比を大きな逆位相の
値にするので所定の転舵比で走行中の車両の転舵比が突
然大きな逆位相に変化することとなり、走行安定性上好
ましくない。また、車速センサに限らず、制御に使用す
るCPUの暴走等制御系の一部が故障すると上記と同様
の現金が起きることがある。
In such a four-wheel steering system, the running state of the vehicle (
For example, a vehicle speed sensor is used to detect vehicle speed (for example, vehicle speed), but if this vehicle speed sensor fails, the signal will indicate zero vehicle speed. Normally, at zero vehicle speed, the steering ratio is set to a value with a large opposite phase, so the specified steering ratio is The steering ratio of a vehicle running at the same steering ratio suddenly changes to a large opposite phase, which is unfavorable in terms of running stability. In addition, not only the vehicle speed sensor but also the same problem as described above may occur if a part of the control system breaks down, such as runaway of the CPU used for control.

そこで、故障時には転舵比を同位相の最高値にするよう
にしたものが提案されている。(特開昭60.850γ
7号)これは異体的には、4輪操舵に使用される油圧系
の失陥時に転舵比を同位相の最大値に設定して安全対策
としたものであるが、同位相の最大値は、現実には車速
が130/la /時程度で転舵比が殆ど飽和になると
きの値であり、通常に走行している車速に対する転舵比
より相当か番り離れているため、故障時の転舵比の切換
り時の変化が比較的大きく実際上は必ずしも最良とは言
えない場合も多いと考えられる。また、故障後はしばら
くその設定により固定された転舵比で運転を続ける必要
があることからしても必ずしも最も走行しゃすい転舵比
とは考えられず、この点はさらに研、程を要するところ
である。
Therefore, a system has been proposed in which the steering ratio is set to the highest value of the same phase in the event of a failure. (Unexamined Japanese Patent Publication No. 60, 850γ
No. 7) This is a safety measure in which the steering ratio is set to the maximum value of the same phase when the hydraulic system used for four-wheel steering fails, but the maximum value of the same phase In reality, this is the value when the steering ratio is almost saturated at a vehicle speed of about 130/la/hour, and is quite far from the steering ratio at normal vehicle speeds, so it is unlikely that a malfunction will occur. It is considered that there are many cases in which the change in the steering ratio at the time of switching is relatively large and is not necessarily the best in practice. In addition, since it is necessary to continue driving at the fixed steering ratio for a while after a failure, it is not necessarily the steering ratio that is the easiest to drive, and this point requires further refinement and improvement. By the way.

(発明の目的) 本発明は上記のような考察に基づき、故障時に転舵比が
変化するときにその変化量が少なく、また固定されても
運転のしゃすい転舵比になるように故障時の転舵比を設
定した4輪操舵装置を提供することを目的とするもので
ある。
(Object of the Invention) Based on the above considerations, the present invention is designed to change the steering ratio at the time of a failure so that the amount of change is small, and even if it is fixed, the steering ratio is easy to drive. The object of the present invention is to provide a four-wheel steering device with a steering ratio of .

(発明の構成) 本発明による4輪操舵装置は、転舵比を走行状態に応じ
て制御する制御系に故障が生じたとき、転舵比を同位相
の中間の所定値に設定するようにしたことを特徴とする
ものである。
(Structure of the Invention) The four-wheel steering device according to the present invention sets the steering ratio to a predetermined value between the same phases when a failure occurs in the control system that controls the steering ratio according to the driving state. It is characterized by the fact that

ここで制御系の故障とは、当然のことながら側副系の中
でも転舵比を上記同位相の中間の所定値に設定する機能
を有するもの以外の部分における故障(例えば車速セン
サ、該センサの出力を受けて作動する電気系、制御部等
における故障)であって、その故障により上記所定値に
設定することが不可能になる種類の故障は含まない。
Here, failure in the control system naturally refers to failure in parts of the auxiliary system other than those that have the function of setting the steering ratio to a predetermined value between the same phases (for example, the vehicle speed sensor, (failures in electrical systems, control units, etc. that operate in response to output) and do not include failures that make it impossible to set the above-mentioned predetermined value due to the failure.

また、上記同位相の中間の所定値とは、走行状態に応じ
て変化される転舵比の同位相の値の中で最大値と最小値
の中部程度の大きさの値を意味し、通常の自動車の場合
には50階/時程麿で転舵比が逆位相から同位相に変化
するものとして、80−90融/時程度の車速に対して
設定される転舵比が好ましい。
In addition, the predetermined value in the middle of the same phase mentioned above means a value that is about the middle of the maximum value and the minimum value among the same phase values of the steering ratio that change depending on the driving condition, and is usually In the case of an automobile, the steering ratio is preferably set for a vehicle speed of about 80-90 degrees/hour, assuming that the steering ratio changes from opposite phase to same phase at 50 degrees/hour.

また、故障時に転舵比がそれまで設定されていた値から
上記所定値に変化するときの変化速度は、通・常の走行
状態に応じて転舵比が変化されるときの速度に比して遅
い方が好ましい。これは、故障時の転舵比の変化が急激
であると走行中の車両の運転操作上好ましくないからで
ある。さらに、その変化速度は、転舵比を逆位相もしく
は同位相の上記所定値より小さい値から所定値に変化さ
せるときよりも、上記所定値よりも大きい同位相の値か
ら所定性に変化させるときの方が遅いように設定するの
が好ましい。これは、同位相の大きい値から逆位相の方
へ向かって転舵比が変化するときは車両の回顧性が大き
くなるので操舵に対する応答性が大きくなり、運転に対
する影響が大きいからである。
In addition, the speed at which the steering ratio changes from the previously set value to the predetermined value at the time of a failure is compared to the speed at which the steering ratio changes in response to normal driving conditions. The later the better. This is because a sudden change in the steering ratio at the time of a failure is undesirable for the driving operation of a running vehicle. Furthermore, the rate of change is faster when changing the steering ratio from a value in the same phase that is larger than the predetermined value to the predetermined value than when changing the steering ratio from a value smaller than the predetermined value in the opposite phase or in the same phase to the predetermined value. It is preferable to set it so that it is slower. This is because when the steering ratio changes from a large value of the same phase to a value of the opposite phase, the retrospective performance of the vehicle increases, so the responsiveness to steering increases, and this has a large effect on driving.

(発明の効果) 本発明によれば、4輪操舵装置における転舵比の制御系
が故障したとき、転舵比は同位相の中間値に設定固定さ
れるから、いかなる速度で走行していてもその転舵比の
変化が小さく、その変化による操舵に対する影響が少な
く、運転のしやすい4輪操舵を実現することができる。
(Effects of the Invention) According to the present invention, when the steering ratio control system in the four-wheel steering device fails, the steering ratio is set and fixed at an intermediate value of the same phase, so no matter what speed the vehicle is traveling. However, the change in the steering ratio is small, and the effect of the change on the steering is small, making it possible to realize four-wheel steering that is easy to drive.

特に高速時には転舵比の変化が運転に及ぼす影響が大き
いので同位相の中間値に設定された場合安定感は大きい
Particularly at high speeds, changes in the steering ratio have a large effect on driving, so setting the same phase to an intermediate value provides a greater sense of stability.

なお、故障時に2輪操舵に切り換えることも考えられる
が、4輪操舵に慣れたドライバにとっては多少の同位相
の転舵比で4輪操舵が維持された方が好ましいと考えら
れる。
Although it is conceivable to switch to two-wheel steering in the event of a failure, it is considered preferable for drivers who are accustomed to four-wheel steering to maintain four-wheel steering with a somewhat in-phase steering ratio.

(実 施 例) 以下図面により本発明の実施例を詳細に説明する。(Example) Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明により故障時に設定される転舵比の所定
値の例を示す車速−転舵比の関係グラフである。第1図
に示すように、4輪操舵装置では、一般に車速く横軸)
の変化に応じて転舵比(縦軸)が50−/時程度を境界
にして逆位相から同位相に変化せしめられる。図示の例
では、制御系の故障時に転舵比が車速80KJn/時の
ときに設定される同位相の転舵比a1と90鵡/時のと
きに設定される同位相の転舵比a2の間の領域(斜線で
示す)の値に設定される。この領域は、極端な同位相で
も逆位相でもなく、同位相の中間の値を示すもので、実
際、上ちょうど運転しゃすい転舵比を与えるものである
FIG. 1 is a relationship graph between vehicle speed and steering ratio showing an example of a predetermined value of the steering ratio that is set in the event of a failure according to the present invention. As shown in Figure 1, with a four-wheel steering system, the vehicle generally speeds up (horizontal axis).
The steering ratio (vertical axis) is changed from the opposite phase to the same phase with a boundary of approximately 50-/hour in accordance with the change in the steering ratio. In the illustrated example, when the control system fails, the same-phase steering ratio a1 is set when the vehicle speed is 80KJn/hour, and the same-phase steering ratio a2 is set when the vehicle speed is 90KJn/hour. It is set to the value in the area in between (shown with diagonal lines). This region is neither extremely in-phase nor out-of-phase, but shows an intermediate value of in-phase, and in fact provides a steering ratio that is just above easy to drive.

次に本発明の4輪操舵装置の基本となる機構の例を第2
図、第3図および第4図により説明する。
Next, a second example of the basic mechanism of the four-wheel steering system of the present invention will be described.
This will be explained with reference to FIGS. 3 and 4.

第2図および第3図において、IL、1R,2L、2R
は車両の4つの車輪であって、左右の前輪1L、1Rは
前輪転舵機構3により、また左右の後輪2L、2+1は
後輪転舵機構12によりそれぞれ連係されている。
In Figures 2 and 3, IL, 1R, 2L, 2R
are four wheels of the vehicle, and the left and right front wheels 1L and 1R are linked by a front wheel steering mechanism 3, and the left and right rear wheels 2L and 2+1 are linked by a rear wheel steering mechanism 12, respectively.

上記前輪転舵機構3は、左右一対のナックルアーム4L
、4gおよびタイロッド5L、5Rと、該左右のタイロ
ッド5L、5+1同士を連結するリレーロッド6とから
なる。また、この前輪転舵機構3にはラックピニオン式
のステアリング機構7を介してステアリングホイール1
0が連係されている。すなわち、上記リレーロッド6に
はラック8が形成されている一方、上端にステアリング
ホイール10を連結せしめたステアリングシャフト11
の下端には上記ラック8と噛み合うビニオン9が取り付
けられており、ステアリングホイール10の操作に応じ
て左右の前輪IL、1Rを転舵するようになされている
The front wheel steering mechanism 3 includes a pair of left and right knuckle arms 4L.
, 4g, tie rods 5L, 5R, and a relay rod 6 that connects the left and right tie rods 5L, 5+1. In addition, a steering wheel 1 is connected to the front wheel steering mechanism 3 via a rack and pinion type steering mechanism 7.
0 is linked. That is, the relay rod 6 has a rack 8 formed thereon, and a steering shaft 11 with a steering wheel 10 connected to its upper end.
A binion 9 that engages with the rack 8 is attached to the lower end of the vehicle, and the left and right front wheels IL and 1R are steered in accordance with the operation of the steering wheel 10.

一方、上記後輪転舵機構12は上記前輪転舵機構3と同
様に、左右のナックルアーム13L 、 13Rおよび
タイロッド14L 、 14Rと、該タイロッド14L
On the other hand, the rear wheel steering mechanism 12, like the front wheel steering mechanism 3, includes left and right knuckle arms 13L, 13R, tie rods 14L, 14R, and the tie rod 14L.
.

14R同士を連結するリレーロッド15とを有し、さら
に油圧式のパワーステアリング機構16を備えている。
It has a relay rod 15 that connects the 14Rs, and is further provided with a hydraulic power steering mechanism 16.

該パワーステアリング機構16は、車体に固定されかつ
上記リレーロッド15をピストンロッドとづるパワーシ
リンダ17を備え、該パワーシリンダ17内は上記リレ
ーロッド15に一体的に取り付けたピストン17aによ
って2つの油圧室17b 、 17cに区画形成され、
このシリンダ17内の油圧室17b。
The power steering mechanism 16 includes a power cylinder 17 that is fixed to the vehicle body and connects the relay rod 15 as a piston rod. Inside the power cylinder 17, two hydraulic chambers are formed by a piston 17a that is integrally attached to the relay rod 15. Sections 17b and 17c are formed,
A hydraulic chamber 17b within this cylinder 17.

17cはそれぞれ配管18.19を介してコントロール
バルブ20に接続されている。また、該コントロールバ
ルブ20にはリザーブタンク21に至る油供給管22お
よび油排出管23の2本の配管が接続され、上記油供給
管22には図示しない車載エンジンにより駆動される油
圧ポンプ24が配設されている。上記コントロールバル
ブ20は、公知のスプールバルブ式・のちので構成され
ていて、上記リレーロッド15に連結85材25を介し
て一体的に取り付【ノられた筒状のバルブケーシング2
0aと、該バルブケーシング20a内に嵌装された図示
しないスプールバルブとを備えてなり、スプールバルブ
の移動に応じてパワーシリンダ17の一方の油圧’11
7b  (17c )に油圧ポンプ24力日ろの圧油を
供給してリレーロッド15に対する駆動力をアシストす
るものである。また、上記パワーシリンダ17内には後
輪2L、2Rをその舵角θkが零となる中立位置に付勢
するすターンスプリング17d 、 17dが縮装され
ている。
17c are each connected to a control valve 20 via a pipe 18, 19. Furthermore, two pipes, an oil supply pipe 22 and an oil discharge pipe 23, leading to a reserve tank 21 are connected to the control valve 20, and a hydraulic pump 24 driven by an on-vehicle engine (not shown) is connected to the oil supply pipe 22. It is arranged. The control valve 20 is constructed of a known spool valve type, and is integrally attached to the relay rod 15 via a connecting member 25.
0a, and a spool valve (not shown) fitted in the valve casing 20a, and one hydraulic pressure '11 of the power cylinder 17 is adjusted according to the movement of the spool valve.
7b (17c) is supplied with pressurized oil equivalent to the pressure of a hydraulic pump 24 to assist the driving force for the relay rod 15. Furthermore, turn springs 17d and 17d are installed in the power cylinder 17 to urge the rear wheels 2L and 2R to a neutral position where the steering angle θk is zero.

上記前輪転舵機構3のリレーロッド6には上記ステアリ
ング機構7を構成するラック8以外に今一つのラック2
6が形成され、該ラック26には車体前後方向に延びる
回転軸28の前端に取り付けたビニオン27が噛み合わ
され、該回転軸28の後端は転舵比制御II機構29を
介して上記後輪転舵機@12に連係されている。
The relay rod 6 of the front wheel steering mechanism 3 is equipped with a rack 2 other than the rack 8 constituting the steering mechanism 7.
6 is formed, and a binion 27 attached to the front end of a rotating shaft 28 extending in the longitudinal direction of the vehicle body is engaged with the rack 26, and the rear end of the rotating shaft 28 is connected to the rear wheel rotation through a steering ratio control II mechanism 29. It is linked to the rudder @12.

上記転舵比制御1m構29は、第4図にも詳示するよう
に、車体に対し車幅方向に移動軸線Q、x上を摺動自在
に保持されたコントロールロッド30を有し、該コント
ロールロッド30の一端は上記コントロールバルブ20
のスプールバルブに連結されている。また、転舵比制御
機構29は、11端部がU字状ホルダ31に支持ピン3
2を介して揺動自在に支承された揺動アーム33を備え
、上記ホルダ31は車体に固定したケーシング34に上
記コントロールロッド30の移動軸線免1と直交する回
動軸線9J2を持つ支持1jll135を介して回動自
在に支持されている。上記揺動アーム33の支持ビン3
2は上記両軸線9J!。
As shown in detail in FIG. 4, the steering ratio control 1m mechanism 29 has a control rod 30 that is slidably held on movement axes Q and x in the vehicle width direction with respect to the vehicle body. One end of the control rod 30 is connected to the control valve 20.
is connected to the spool valve. In addition, the steering ratio control mechanism 29 has an end portion 11 attached to a support pin 3 in a U-shaped holder 31.
The holder 31 has a support 1jll135 having a rotation axis 9J2 orthogonal to the movement axis 1 of the control rod 30 on a casing 34 fixed to the vehicle body. It is rotatably supported through. Support bin 3 of the swing arm 33
2 is the above both axes 9J! .

9J2の交差部に位置して回動軸線見2と直交する方向
に延びており、ホルダ31を支持lN135(回動軸線
9J2)回りに回動させることにより、その先端の支持
ピン32とコントロールバルブ30の移動軸線9、r 
とのなす傾斜角、つまり支持ビン32を中心とする揺動
アーム33の揺動軌跡面が移動軸線9.s と直交する
面(以下、基準面という)に対してなす傾斜角を変化さ
せるようになされている。
9J2 and extends in a direction perpendicular to the rotation axis 2, and by rotating the holder 31 around the support lN135 (rotation axis 9J2), the support pin 32 at the tip and the control valve are 30 movement axis 9, r
The inclination angle formed by the movement axis 9., that is, the swing locus plane of the swing arm 33 with the support bin 32 as the center is the movement axis 9. The angle of inclination made with respect to a plane perpendicular to s (hereinafter referred to as a reference plane) is changed.

また、上記揺動アーム33の先端部にはボールジヨイン
ト36を介してコネクティングロッド37の一端・部が
連結され、該コネクティングロッド31の他端部はボー
ルジヨイント38を介して上記コントロールロッド30
の他端部に連結されており、揺動アーム33先端の第4
図左右方向の変位に応じてコントロールロッド30を左
右方向に変位させるようになされている。
Further, one end/portion of a connecting rod 37 is connected to the tip of the swing arm 33 via a ball joint 36, and the other end of the connecting rod 31 is connected to the control rod 30 via a ball joint 38.
The fourth end at the tip of the swing arm 33 is connected to the other end.
The control rod 30 is displaced in the left-right direction in response to displacement in the left-right direction in the figure.

上記コネクティングロッド37は、そのボールジヨイン
ト36に近い部位において回転付与アーム40にボール
ジヨイント41を介して摺動可能に支持されている。こ
の回転付与アーム40は、上記移動軸線9.r上に支持
軸42を介して回動自在に支持した大径の傘歯車43と
一体に設けられ、該傘歯車43には第3図に示すように
上記回転軸28の後端に取り付けた傘歯車44が噛合さ
れており、ステアリングホイール10の回動を回転付与
アーム40に伝達するようになされている。このため、
ステアリングホイール10の回動角に応じた量だけ回転
付与アーム40おJ:びコネクティングロッド37が移
動軸線Lt回りに回動じ、それに伴って揺動アーム33
が支持ピン32を中心にして揺動された場合、ピン32
の軸線がコントロールロッド30の移動軸線9,1 と
一致しているときには、揺動アーム33先喘のボールジ
ヨイント36は上記基準面上を揺動するのみで、コント
ロールロッド30は静止保持されるが、ピン32の軸線
が移動軸線免1に対し傾斜して揺動アーム33の揺fl
IvI跡面が基準面からずれていると、このピン32を
中心にした揺動アーム33の揺動に伴ってボールジヨイ
ント3Gが第4図の左右方向に変位して、この変位はコ
ネクティングロッド37を介してコントロールロッド3
0に伝達され、該コントロールロッド30が移動軸線9
J1に沿って移動して、二1ントロールバルブ20のス
プールバルブを作動させるように構成されている。すな
わち、ピン32の軸線を中心とした揺動アーム33の揺
動角が同じであっても、コントロールロッド30の左右
方向の変位はピン32の傾斜角つまりホルダ31の回動
角の変化に伴って変化する。
The connecting rod 37 is slidably supported by a rotation imparting arm 40 via a ball joint 41 at a portion thereof close to the ball joint 36 . This rotation imparting arm 40 is connected to the movement axis 9. The bevel gear 43 is provided integrally with a large-diameter bevel gear 43 rotatably supported on the support shaft 42, and the bevel gear 43 is attached to the rear end of the rotating shaft 28 as shown in FIG. A bevel gear 44 is meshed with each other to transmit the rotation of the steering wheel 10 to the rotation imparting arm 40. For this reason,
The rotation imparting arm 40 and the connecting rod 37 rotate around the movement axis Lt by an amount corresponding to the rotation angle of the steering wheel 10, and the swing arm 33 rotates accordingly.
is swung around the support pin 32, the pin 32
When the axis of the control rod 30 coincides with the movement axis 9,1 of the control rod 30, the ball joint 36 at the tip of the swing arm 33 only swings on the reference plane, and the control rod 30 is held stationary. However, the axis of the pin 32 is inclined with respect to the movement axis 1, and the swing fl of the swing arm 33 is
If the IvI trace surface deviates from the reference plane, the ball joint 3G will be displaced in the left-right direction in FIG. 4 as the swing arm 33 swings about this pin 32, and this displacement will cause Control rod 3 through 37
0, and the control rod 30 moves along the axis of movement 9.
It is configured to move along J1 and operate the spool valve of the 21st control valve 20. That is, even if the swinging angle of the swinging arm 33 about the axis of the pin 32 is the same, the displacement of the control rod 30 in the left-right direction changes with the change in the inclination angle of the pin 32, that is, the rotational angle of the holder 31. and change.

そして、上記支持ピン32の移動軸線処置に対する傾斜
角すなわちホルダ31の基準面に対する傾斜角を変化さ
せるために、ホルダ31の支持軸35には、第、5図に
示すようにウオームホイールとしてのセクタギヤ45が
取り付けられ、このセクタギA745には回転軸46上
のウオームギヤ47が噛合されている。
In order to change the inclination angle of the support pin 32 with respect to the movement axis, that is, the inclination angle of the holder 31 with respect to the reference plane, the support shaft 35 of the holder 31 is equipped with a sector gear as a worm wheel, as shown in FIG. 45 is attached, and a worm gear 47 on a rotating shaft 46 is meshed with this sector gear A745.

また、上記回転軸46には傘歯車48が取付けられ、こ
の重両!1248には、アクチュエータとしてのステッ
ピングモータ50の出力軸50a上に取りイ・」けた傘
・歯車49が噛合されており、ステッピングモータ50
を作動させてセクタギヤ45を回動させることにより、
ホルダ31の基準面に対する傾斜角を変更して後輪2L
、2Rの舵角θRを制御し、セクタギャ45を、その中
心線がウオームギヤ47の回転軸46の中心線と直角に
なる中立位置(このとき、上記揺動アーム33先端のボ
ールジヨイント36は基準面上を回動し、後輪2L、2
Rの舵角θRはθR=0になる)から第5図時計回り方
向に回動させたときには、前後輪IL、2L  (1R
,2R)間の転舵比(後輪転舵角θR/前輪転舵角θF
)を後輪2L、2Rが前輪1L、1Rと逆方向に向く逆
位相にuJ illする一方、反対に反時計回り方向に
回動させたときには、転舵比を後輪2L、2Rが前輪I
L、IRと同じ方向に向く同位相に制御するように構成
されている。
Further, a bevel gear 48 is attached to the rotating shaft 46, and this heavy vehicle! 1248 is meshed with an umbrella/gear 49 disposed on the output shaft 50a of the stepping motor 50 as an actuator.
By operating and rotating the sector gear 45,
By changing the inclination angle of the holder 31 with respect to the reference plane, the rear wheel 2L
, 2R, and move the sector gear 45 to a neutral position where its center line is perpendicular to the center line of the rotating shaft 46 of the worm gear 47 (at this time, the ball joint 36 at the tip of the swing arm 33 is at the reference rotates on the surface, rear wheels 2L, 2
When the steering angle θR of R becomes θR = 0), the front and rear wheels IL, 2L (1R
, 2R) (rear wheel steering angle θR/front wheel steering angle θF
) to the opposite phase in which the rear wheels 2L and 2R face in the opposite direction to the front wheels 1L and 1R, and on the other hand, when the rear wheels 2L and 2R rotate counterclockwise, the steering ratio is changed so that the rear wheels 2L and 2R face the front wheels I
It is configured to be controlled to have the same phase and direction in the same direction as L and IR.

また、上記ホルダ31を支持するケーシング34には、
上記セクタギヤ45の左右両側方に該セクタギヤ45の
回動範囲を規制するピンよりなる逆位相側および同位相
側のストッパ部材51.52がをり付けられており、第
5図の下側部に示すように、セクタギヤ45が逆位相側
に回動したときには、その中立位置からの回動角が例え
ば−17,5″′となると、セクタギヤ45が逆位相側
ストッパ部材51に当接してそれ以上の回動が規制され
る一方、セクタギヤ45の同位相側への回動時には、中
立位置からの回動角が例えば20°になると、セクタギ
ヤ45が同位相側のストッパ部材52に当接して動きが
規制されるようになされている。そして、上記セクタギ
ヤ45が上記逆位相側のストッパ部材51に当接したと
きのステッピングモータ50の制御位置をその初期位置
とするように構成されている。尚、第3図中、39は後
輪転舵機構12におけるリレーロッド15の最大移動範
囲を規制するロッドストッパである。
Furthermore, the casing 34 that supports the holder 31 includes:
Stopper members 51 and 52 on the opposite phase side and the same phase side, which are made of pins that restrict the rotation range of the sector gear 45, are attached to the left and right sides of the sector gear 45, and are shown on the lower side of FIG. As shown, when the sector gear 45 rotates toward the opposite phase side, when the rotation angle from the neutral position reaches, for example, -17.5'', the sector gear 45 comes into contact with the opposite phase side stopper member 51 and rotates no further than that. On the other hand, when the sector gear 45 rotates toward the same phase side, when the rotation angle from the neutral position reaches, for example, 20 degrees, the sector gear 45 comes into contact with the stopper member 52 on the same phase side and moves. The control position of the stepping motor 50 when the sector gear 45 comes into contact with the stopper member 51 on the opposite phase side is set as its initial position. In FIG. 3, 39 is a rod stopper that restricts the maximum movement range of the relay rod 15 in the rear wheel steering mechanism 12.

・上記ステッピングモータ50は第2図に示すようにマ
イクロコンピュータ内蔵の制御手段としてのコントロー
ルユニット 100からの出力によって作動制御される
ように構成され、このコントロールユニット 100に
は車両の走行速度SPDを検出する2個の車速センサA
 101a、車速センサB 101bか°らの検出信号
が入力されている。
- As shown in FIG. 2, the stepping motor 50 is configured to be operated and controlled by the output from a control unit 100 as a control means with a built-in microcomputer, and this control unit 100 has a device that detects the running speed SPD of the vehicle. Two vehicle speed sensors A
101a, a detection signal from vehicle speed sensor B 101b is input.

“これら2個の車速センサ101a、 101bのうち
一方の車速センサ101aはミッションに直付けされ、
他方の車速センサ101bはスピードメータ内に設けら
れ、両センサの出力が等しいときはセンサがともに正常
であり、大きく異なるときは少くとも一方が故障してい
ると判断して、車速センサの故障を検出するようになっ
ている。なお両方のセンサともミッションあるいはメー
タに設け、同一の対象からの出力を検出するようにして
もよいが、別に設ければ対象側の故障も検出することが
できるという利点がある。
“Of these two vehicle speed sensors 101a and 101b, one vehicle speed sensor 101a is directly attached to the transmission,
The other vehicle speed sensor 101b is installed in the speedometer, and when the outputs of both sensors are equal, both sensors are normal, and when they are significantly different, it is determined that at least one is malfunctioning, and the malfunction of the vehicle speed sensor is detected. It is designed to be detected. Note that both sensors may be provided in the transmission or meter to detect the output from the same object, but if they are provided separately, there is an advantage that failures on the object side can also be detected.

両廿ンサ101a、 101bからの出力は通常の制御
を行なう制御部102に入力され、この制御部50にお
いて車速に応じた転舵比がnnされ、その演算された転
舵比により後輪を転舵するようにステッピングモータ5
0に駆動信号が出力される。
The outputs from both sensors 101a and 101b are input to a control unit 102 that performs normal control, and this control unit 50 calculates a steering ratio according to the vehicle speed, and uses the calculated steering ratio to steer the rear wheels. Stepping motor 5 to steer
A drive signal is output at 0.

両車速センサ101a、 101bの出力はさらに故障
検出部103に入力され、両者の出力の差が所定値以1
−のとき故障信号が出力され、前記通常の制御を行なう
制御部102に制御中止信号が出力され、同時にフェイ
ル時(前述の制御系の故障時)の制御を行なう制御部1
04に制御開始信号が出力される。
The outputs of both vehicle speed sensors 101a and 101b are further input to a failure detection unit 103, and the difference between the two outputs is 1 or more than a predetermined value.
-, a failure signal is output, a control stop signal is output to the control unit 102 that performs the normal control, and at the same time, the control unit 1 that performs control in the case of fail (at the time of failure of the control system)
A control start signal is output at 04.

フェイル時の制御を行なう制御部104は、転舵比セン
サ105からの出力を受け、これを前述の同位相の中間
の所定値(第1図の転舵比a1.a2の間の領域の値)
にするようステッピングモータ50をIII御する駆動
信゛号を出力する。
A control unit 104 that performs control in the event of a failure receives the output from the steering ratio sensor 105, and converts it to the above-mentioned intermediate predetermined value of the same phase (the value in the region between the steering ratios a1 and a2 in FIG. 1). )
A drive signal is outputted to control the stepping motor 50 so that the stepping motor 50 is controlled.

なお、このフェイル時の制御を行なう制御部104が作
動するときは、運転者に故障を知らせる警告音、警告ラ
ンプの点灯等の警告信号を発生するようにするとよい。
Note that when the control unit 104 that performs control in the event of a failure is activated, it is preferable to generate a warning signal such as a warning sound or lighting of a warning lamp to notify the driver of the failure.

上記コントロールユニット 100の作動のフローを第
5図のフローチャートに示す。第5図のフロー、では、
両車速センサA、Bの出力差は10Km,/時を故障判
断の基準にしているが、これは両センサの出力誤差を考
慮して適宜法められる。
The flow of the operation of the control unit 100 is shown in the flowchart of FIG. In the flow of Figure 5,
The difference in output between the vehicle speed sensors A and B is 10 km/hour, which is used as a criterion for failure determination, but this can be determined as appropriate in consideration of the output error of both sensors.

上記実施例では車速センサの故障を制御系の故障の例と
したが、これは例えばコントロールユニット中のCPU
の暴走に置き換えることもできる。
In the above embodiment, the failure of the vehicle speed sensor was taken as an example of a failure of the control system, but this is an example of a failure of the CPU in the control unit.
It can also be replaced with a runaway.

・すなわち、上記正常時用の制御部102の中に使用さ
れるCPIJ (図示せず)に暴走検81回路を接続し
、この回路の出力を上記例における故障検出部703の
ようにして使用すれば、全く同様にCPU暴走時に転舵
比を同位相の中間の値に固定することができる。すなわ
ち、@5図のフローチャートにおいて、車速センサA、
Bの読み取りと車速差の大ぎさ判断の部分をCPUの暴
走検出に置き換え、CPU正常のときYESに、暴走の
ときN。
・In other words, a runaway detection circuit 81 is connected to the CPIJ (not shown) used in the normal control unit 102, and the output of this circuit is used like the failure detection unit 703 in the above example. For example, in exactly the same way, when the CPU runs out of control, the steering ratio can be fixed to an intermediate value of the same phase. That is, in the flowchart of Figure @5, vehicle speed sensor A,
The part of reading B and determining the magnitude of the vehicle speed difference is replaced with CPU runaway detection, and YES when the CPU is normal and N when runaway.

にすればCPU暴走を制御系故障の1つとして本発明の
所期の目的を達成することができる。
By doing so, the intended purpose of the present invention can be achieved by treating CPU runaway as one of the control system failures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による4輪操舵装置における
車速と転舵比の関係を示す特性図、第2図は本発明の一
実施例による4輪操舵装置の全体の構成を示す概略図、 第3図は同じくその機械的構成を示すp式斜視図、 第4図は同じくその転舵比制御機構を示す縦断面図、 第5図は同じくその制御フローを示すフローチャートで
ある。 1L、IR・・・前輪  2L、211・・・後輪3・
・・前輪転舵機構  7・・・ステアリング機構10・
・・ステアリングホイール 12・・・後輪転舵機構 16・・・パワーステアリング機構 17・・・パワーシリンダ 17b 、 17c・・・
油圧室20・・・コントロールバルブ 22・・・油供給管    24・・・油圧ポンプ29
・・・転舵比制御機@  30・・・コントロールロッ
ド33・・・揺動アーム 37・・・コネクティングロッド 40・・・回転付与アーム 50・・・ステッピングモータ 53・・・パイロット配管 54・・・油圧切換弁10
0、 110・・・コントロールユニット101a、 
101b、  111・・・車速センサ102・・・通
常の制御時の制御部 103・・・故障検出部 ・104・・・フェイル時の制御部 105・・・転舵比センサ 第1図 第3図 第5図
FIG. 1 is a characteristic diagram showing the relationship between vehicle speed and steering ratio in a four-wheel steering system according to an embodiment of the present invention, and FIG. 2 is a schematic diagram showing the overall configuration of a four-wheel steering system according to an embodiment of the present invention. FIG. 3 is a perspective view of the P type, similarly showing its mechanical configuration, FIG. 4 is a vertical sectional view similarly showing its steering ratio control mechanism, and FIG. 5 is a flowchart similarly showing its control flow. 1L, IR...Front wheel 2L, 211...Rear wheel 3.
...Front wheel steering mechanism 7...Steering mechanism 10.
...Steering wheel 12...Rear wheel steering mechanism 16...Power steering mechanism 17...Power cylinders 17b, 17c...
Hydraulic chamber 20...Control valve 22...Oil supply pipe 24...Hydraulic pump 29
... Steering ratio controller @ 30 ... Control rod 33 ... Swinging arm 37 ... Connecting rod 40 ... Rotation imparting arm 50 ... Stepping motor 53 ... Pilot piping 54 ...・Hydraulic switching valve 10
0, 110...control unit 101a,
101b, 111... Vehicle speed sensor 102... Control section 103 during normal control... Failure detection section 104... Control section 105 during failure... Steering ratio sensor Fig. 1 Fig. 3 Figure 5

Claims (1)

【特許請求の範囲】 1)前輪の転舵に応じて後輪を車両の走行状態に応じた
転舵比で少なくとも同位相を含む範囲で転舵する4輪操
舵装置において、転舵比の制御系の故障を検出する故障
検出手段と、前記制御系の故障時、前記故障検出手段の
出力を受け、前記転舵比を同位相の中間の所定値に設定
する手段とを備えたことを特徴とする車両の4輪操舵装
置。 2)制御系の故障時に転舵比を故障直前の値から前記所
定値に変化させる速度を、走行状態の変化に応じて転舵
比を変化させる通常の制御時の速度よりも遅くしたこと
を特徴とする特許請求の範囲第1項記載の車両の4輪操
舵装置。 3)制御系の故障時に転舵比を前記所定値に変化させる
際、前記所定値より大きい同位相の転舵比から変化させ
るときの転舵比変化の速度を、逆位相あるいは前記所定
値より小さい同位相の転舵比から変化させるときの転舵
比変化の速度よりも遅くしたことを特徴とする特許請求
の範囲第2項記載の車両の4輪操舵装置。 4)前記転舵比の所定値が、通常の制御において車速が
時速80Kmから90Kmの範囲にあるときに設定され
る転舵比であることを特徴とする特許請求の範囲第1項
記載の車両の4輪操舵装置。
[Scope of Claims] 1) In a four-wheel steering system that steers the rear wheels in response to the steering of the front wheels at a steering ratio according to the running state of the vehicle and in a range including at least the same phase, the steering ratio is controlled. It is characterized by comprising a failure detection means for detecting a failure in the system, and means for receiving the output of the failure detection means and setting the steering ratio to a predetermined value between the same phases when the control system fails. A four-wheel steering system for vehicles. 2) In the event of a failure in the control system, the speed at which the steering ratio is changed from the value immediately before the failure to the predetermined value is made slower than the speed during normal control in which the steering ratio is changed in accordance with changes in driving conditions. A four-wheel steering system for a vehicle according to claim 1. 3) When changing the steering ratio to the predetermined value in the event of a failure of the control system, the speed of change of the steering ratio when changing from a steering ratio of the same phase that is larger than the predetermined value is set to be in an opposite phase or from the predetermined value. 3. The four-wheel steering system for a vehicle according to claim 2, wherein the speed of change in the steering ratio is slower than the speed at which the steering ratio changes from a small in-phase steering ratio. 4) The vehicle according to claim 1, wherein the predetermined value of the steering ratio is a steering ratio that is set when the vehicle speed is in the range of 80 km per hour to 90 km per hour in normal control. 4-wheel steering device.
JP1165686A 1986-01-22 1986-01-22 Four-wheel steering gear for vehicle Pending JPS62168762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1165686A JPS62168762A (en) 1986-01-22 1986-01-22 Four-wheel steering gear for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1165686A JPS62168762A (en) 1986-01-22 1986-01-22 Four-wheel steering gear for vehicle

Publications (1)

Publication Number Publication Date
JPS62168762A true JPS62168762A (en) 1987-07-25

Family

ID=11784009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1165686A Pending JPS62168762A (en) 1986-01-22 1986-01-22 Four-wheel steering gear for vehicle

Country Status (1)

Country Link
JP (1) JPS62168762A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4926955A (en) * 1987-11-20 1990-05-22 Mazda Motor Corporation Rear wheel steering apparatus for automobile
JPH02185866A (en) * 1989-01-12 1990-07-20 Nippondenso Co Ltd Four-wheel steering system for vehicle
JPH02303974A (en) * 1989-05-18 1990-12-17 Nissan Motor Co Ltd Auxiliary steering control system
US5048627A (en) * 1988-07-05 1991-09-17 Nissan Motor Co., Ltd. Fail-safe rear wheel steering system for vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4926955A (en) * 1987-11-20 1990-05-22 Mazda Motor Corporation Rear wheel steering apparatus for automobile
US5048627A (en) * 1988-07-05 1991-09-17 Nissan Motor Co., Ltd. Fail-safe rear wheel steering system for vehicle
JPH02185866A (en) * 1989-01-12 1990-07-20 Nippondenso Co Ltd Four-wheel steering system for vehicle
JPH02303974A (en) * 1989-05-18 1990-12-17 Nissan Motor Co Ltd Auxiliary steering control system

Similar Documents

Publication Publication Date Title
JPH05274B2 (en)
US4840243A (en) Four-wheel steering vehicle
JPH0679900B2 (en) 4-wheel steering system for vehicles
JPH01115778A (en) Rear wheel steering device for four-wheel steering car
JPS62168762A (en) Four-wheel steering gear for vehicle
JP2003170849A (en) Steering device for vehicle
JPH0567472B2 (en)
JP2506702B2 (en) 4-wheel steering system for vehicles
JPS63151578A (en) Four-wheel steering apparatus for vehicle
JP2961736B2 (en) Four-wheel steering system
JPH0344033B2 (en)
JP2539815B2 (en) 4-wheel steering system for vehicles
JPH0679901B2 (en) 4-wheel steering system for vehicles
JPH01262263A (en) Rear wheel steering device of vehicle
JPH0829710B2 (en) 4-wheel steering system for vehicles
JPH0239425B2 (en)
JP2539816B2 (en) 4-wheel steering system for vehicles
JPH0679897B2 (en) 4-wheel steering system for vehicles
JPS63255180A (en) Four-wheel-steering device for vehicle
JPS6280172A (en) Fail safe device in four wheel steering vehicle
JPS63184573A (en) Steering device for automobile
JPS6185274A (en) Four wheel steering device for vehicle
JPH0557949B2 (en)
JPH03157269A (en) Four-wheel steering device
JPS62227868A (en) Four wheel steering device for vehicle