JPS62168409A - Overtone oscillating piezo-resonator utilizing higher order mode vibration - Google Patents

Overtone oscillating piezo-resonator utilizing higher order mode vibration

Info

Publication number
JPS62168409A
JPS62168409A JP61009756A JP975686A JPS62168409A JP S62168409 A JPS62168409 A JP S62168409A JP 61009756 A JP61009756 A JP 61009756A JP 975686 A JP975686 A JP 975686A JP S62168409 A JPS62168409 A JP S62168409A
Authority
JP
Japan
Prior art keywords
vibration
order
overtone
frequency
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61009756A
Other languages
Japanese (ja)
Other versions
JP2640936B2 (en
Inventor
Koichi Hirama
宏一 平間
Yuichi Shoji
庄司 友一
Yoshiaki Tanaka
良明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP61009756A priority Critical patent/JP2640936B2/en
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to DE3650562T priority patent/DE3650562T2/en
Priority to EP95108355A priority patent/EP0680142A1/en
Priority to KR1019860700886A priority patent/KR920005610B1/en
Priority to PCT/JP1986/000181 priority patent/WO1986006228A1/en
Priority to SG1996009738A priority patent/SG48443A1/en
Priority to EP86902487A priority patent/EP0220320B1/en
Publication of JPS62168409A publication Critical patent/JPS62168409A/en
Priority to US07/191,628 priority patent/US4870313A/en
Application granted granted Critical
Publication of JP2640936B2 publication Critical patent/JP2640936B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To easily generate an nth-order overtone by providing a multi-division energy confinement part of cut-off frequency f1 on a piezoelectric substrate, providing a part of cut-off frequency f2(f2>f1), also selecting each parameter, and diffusing an overtone of (n-2)th-order or below, to the whole surface of the piezoelectric substrate. CONSTITUTION:Two-split electrodes 2, 2' and 3, 3' are made to adhere to both faces of the center part of a piezoelectric substrate 1, and an excitation is executed. A cut-off frequency of the center part is set lower than a cut- frequency of the peripheral part, and a vibration of an asymmetrical (a0) mode of the lowest order is excited strongly. In case a desired overtone order number is (n), a parameter is selected so that a position of a coefficient of confinement of (n-2)th-order is in a position where an energy confinement rate of a mode curve is zero, namely, a confinement mode does not exist, and also, so that a position of a coefficient of confinement of nth-order is in a position where the confinement rate is large.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は圧電共振子、殊に格別の発振回路を必要とせず
して所望のオーバートーン周波数にて発振を可能とする
オーバートーン発振用圧電共振子に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a piezoelectric resonator, particularly a piezoelectric resonator for overtone oscillation that enables oscillation at a desired overtone frequency without the need for a special oscillation circuit. Regarding resonators.

(従来技術) 近年4通信機をはじめとする各種電子機器に於いては高
周波化と超小型化の要求が一層厳しくなっているがこれ
に応える為には従来から一般に行なわれている水晶振動
子の如き圧電共振子のオーバートーン振動の利用の他9
弾性表面波(SAW)共振子が広範囲に使用されるよう
になってきた。
(Prior art) In recent years, demands for higher frequencies and ultra-miniaturization have become more severe in various electronic devices such as communication devices, but in order to meet these demands, crystal resonators, which have been commonly used In addition to the use of overtone vibration of piezoelectric resonators such as
Surface acoustic wave (SAW) resonators have become widely used.

しかしながら前者は一般に希望するオーバートーン周波
数に同調するLC同調回路金介して所望の出力を抽出す
るか或は発振回路の一部にLC同調回路を挿入して該回
路の負抵抗が所望のオーバートーン周波数領域に於いて
のみ充分大きくなるよう設計するものであっていずれも
コイル要し発振回路のIC化を進める上で極めて不都合
であるという欠陥があった。
However, the former method generally involves extracting the desired output through an LC tuning circuit that tunes to the desired overtone frequency, or inserting an LC tuning circuit into a part of the oscillation circuit so that the negative resistance of the circuit adjusts to the desired overtone frequency. They are designed to be sufficiently large only in the frequency domain, and both require a coil, which is extremely inconvenient in promoting the use of ICs for oscillation circuits.

一方、SAW共振子の発振周波数は周知の如く圧電基板
の材質とその表面に形成するインタディジタル・トラン
スジユーサ(IDT)電極のピッチによって一義的に決
定するので共振子自体の小型化が可能であると共に上述
し念如き回路上の問題もないが9周波数一温度特性の点
でATカット水晶振動子よりはるかに劣るという欠陥が
あっ九。
On the other hand, as is well known, the oscillation frequency of a SAW resonator is uniquely determined by the material of the piezoelectric substrate and the pitch of the interdigital transducer (IDT) electrodes formed on its surface, so the resonator itself can be made smaller. Although there are no circuit problems as mentioned above, there is a flaw in that it is far inferior to an AT cut crystal resonator in terms of frequency and temperature characteristics.

(発明の目的) 乏 本発明は上述した如(従来の高周波共振子の欠陥に鑑み
てなされたものであって、従来から使用されている通常
の圧電共振子と殆んど同様の形態で、従って製造工種等
を実質的に変えることなく、シかも発振回路にLC同調
回路等を付加することなくして所望のオーバートーン周
波数の発振を可能とする高次の対称或は非対称モードの
振動を利用したオーバートーン発振用圧電共振子を提供
することを目的とする。
(Objective of the Invention) The present invention has been made in view of the defects of conventional high-frequency resonators as described above, and has almost the same form as a conventional piezoelectric resonator, Therefore, it is possible to utilize high-order symmetrical or asymmetrical mode vibration to enable oscillation at a desired overtone frequency without substantially changing the manufacturing process or adding an LC tuning circuit or the like to the oscillation circuit. The object of the present invention is to provide a piezoelectric resonator for overtone oscillation.

(発明の概要) 上述の目的を達成する為2本発明に係るオーバートーン
発振用共振子は以下の如き構成をとる。
(Summary of the Invention) In order to achieve the above objects, a resonator for overtone oscillation according to the present invention has the following configuration.

即ち、圧電共振子を励振した際発生する高次周波数f1
なる多分割エネルギ閉じ込め部(−役には多分割電極を
付着することによる)に。
That is, the higher-order frequency f1 generated when the piezoelectric resonator is excited
A multi-divided energy confinement section (by attaching a multi-divided electrode to the negative part).

振動を強力に励起せしめ当該モードの振動の内n次オー
バー トーン以上の高次オーバートーン振動の振動エネ
ルギを前記多分割エネルギ閉じ込め部周辺近傍にほゞ閉
じ込めると共に基本波振動を含むn −2次以下のオー
バートーン振動の振動エネルギ全基板全面に拡散せしめ
るよう前記多分割部(電+li)サイズ、プレートバッ
ク量(f 2−ft )/f 2及び基板々厚を選択す
るものである。
It strongly excites the vibrations, substantially confines the vibration energy of higher-order overtone vibrations higher than the n-order overtone among the vibrations of the relevant mode near the periphery of the multi-divided energy confinement section, and also confines the vibration energy of the n-2nd order or lower including fundamental wave vibrations. The size of the multi-divided portion (electron+li), the amount of plateback (f 2 -ft)/f 2 and the thickness of each substrate are selected so that the vibration energy of the overtone vibration is diffused over the entire surface of the substrate.

伺9本願発明者は既に昭和60年4月1)日提出の特許
類(特願昭6O−77065)に於いて、最低次の対称
モード振動の振動エネルギ閉じ込めモードにのみ着目し
当該モードの振動の内所望のオーバートーン次数の振動
エネルギを中央電極周辺近傍に閉じ込めると共に基本波
振動を含むより低次のオーバートーン振動の振動エネル
ギ全圧電基板周縁に漏洩せしめるようにしたオーバート
ーン発振用圧電共振子の構想を開示しているが9本発明
はその構−想を高次の対称或は非対称モードの振動の利
用にまで拡張したものであることに注目されたい。
9. The inventor of the present application has already focused only on the vibration energy confinement mode of the lowest order symmetrical mode vibration in the patents (Patent Application No. 6O-77065) filed on April 1, 1985. A piezoelectric resonator for overtone oscillation, which confines the vibration energy of a desired overtone order in the vicinity of the center electrode, while leaking all the vibration energy of lower order overtone vibrations, including fundamental wave vibration, to the periphery of a piezoelectric substrate. However, it should be noted that the present invention extends this concept to the use of higher-order symmetrical or asymmetrical modes of vibration.

(発明の実施例) 以下2本発明を本発明をなすに至った理論と図面に示し
た実施例とに基づいて詳細に説明する。
(Embodiments of the Invention) The present invention will now be described in detail based on the theory that led to the invention and the embodiments shown in the drawings.

実施例の説明に先行して本発明の理解を助ける為その理
論について少しく詳述する。
Prior to explaining the embodiments, the theory of the present invention will be explained in some detail in order to facilitate understanding of the present invention.

先ず9本発明の発想の前提となる事実関係全整理列挙す
れば以下の如くなる。
First, if we enumerate all the facts that are the premise of the nine ideas of the present invention, they will be as follows.

(1)  ショックレイ等のエネルギ閉じ込め理論は純
弾性的な解析であって波動としてはSH波について解析
したものであるが振動媒体としては金属、水晶、リチウ
ムタンタレート、リチウムナイオベート或は圧電セラミ
クスの如き高結合材料を用い圧電共振子全般に対して、
振動モードとしては厚みすベリ、厚みねじれ厚み九で等
のあらゆるモードについて振動エネルギ伝播方向やオー
バートーン次数が異っても定性的なふるまいについては
この理論を適用し得ることが知られている。
(1) Shockley's energy confinement theory is a purely elastic analysis and analyzes SH waves as waves, but the vibration medium can be metal, crystal, lithium tantalate, lithium niobate, or piezoelectric ceramics. For general piezoelectric resonators using high-coupling materials such as
It is known that this theory can be applied to the qualitative behavior of all vibration modes such as thickness flat, thickness twist, thickness nine, etc., even if the vibration energy propagation direction and overtone order are different.

(2)  ショックレイのエネルギ閉じ込め理論によれ
ば第2図(alに示す如く遮断周波数f1なる部分の周
辺に遮断周波数f2なる部分が存在すると遮断周波数小
なる部分(flの部分)に振動エネルギが閉じ込もるが
、その閉じ込めの程度は第2図(blの如くなる。
(2) According to Shockley's energy confinement theory, as shown in Figure 2 (al), if there is a part with a cutoff frequency f2 around a part with a cutoff frequency f1, vibration energy is transferred to the part with a small cutoff frequency (part fl). However, the degree of confinement is as shown in Figure 2 (bl).

本図縦i筈豪=Cf−f・)/(f2−f・)なる式で
規準化共振周波数と称し1=1の場合とはf=f2の場
合を意味し第2図(atに於ける遮断周波数f1なる部
分の影響がない、換言すれば核部が存在しないことを意
味しこの場合には振動エネルギは基板全面に拡散し閉じ
込めは発生しない。
The normalized resonant frequency is called the normalized resonant frequency by the formula: (Cf-f・)/(f2-f・), and the case of 1=1 means the case of f=f2. In other words, there is no influence of the cutoff frequency f1, which means that there is no core. In this case, the vibration energy is diffused over the entire surface of the substrate and no confinement occurs.

一方、F=0の場合とは上記説明とは逆に遮断周波数f
1なる部分に全振動工゛ネルギが閉じ込もるこ゛とを意
味する。
On the other hand, in the case of F=0, contrary to the above explanation, the cutoff frequency f
This means that the entire vibration energy is confined in one part.

又、横軸のパラメータnaJm/Hは閉じ込め係数と称
するものでオーバートーン次数n1g!A断周波数f1
なる部分のサイズa及び厚さH並びに周波数低下量Δに
よって規定される。
Also, the parameter naJm/H on the horizontal axis is called a confinement coefficient and is the overtone order n1g! A cutoff frequency f1
It is defined by the size a and thickness H of the portion, and the amount of frequency reduction Δ.

ところで第2図(bl ?考察するに前記閉じ込め係数
n a 、/m/Hがある値以下の場合高次対称モード
(81,’82.・・・・・・)或は非対称モード(a
□。
By the way, considering Fig. 2 (bl?), if the confinement coefficient n a , /m/H is less than a certain value, the high-order symmetric mode (81,'82...) or the asymmetric mode (a
□.

al、・・・・・・)の振動には閉じ込めモードが全く
存在しないことが判る。この性質は最低次対称モード(
So)には存在しない性質であることに注目されたい。
It can be seen that there is no confined mode at all in the vibration of al,...). This property is the lowest symmetric mode (
Note that this property does not exist in So).

(3)前記閉じ込め係数の内a 、 Jts及びHが適
当な固定した値である場合にはオーバートーン次数nが
犬な程エネルギ閉じ込めの程度は大となるが、評し込め
係数が大きくなるに従いエネルギ閉じ込めの程度はオー
バートーン次数に殆んし得るパラメータは遮断周波数f
1なる(一般には電極付着)部分のサイズ及び何等かの
質重付加による周波数低下量Δである。
(3) If the confinement coefficients a, Jts, and H are appropriately fixed values, the degree of energy confinement increases as the overtone order n increases; The degree of energy confinement can be determined by the overtone order. The cutoff frequency f
1, which is the frequency reduction amount Δ due to the size of the part (generally the electrode attachment) and the addition of some mass.

しかしながら水晶の如き高結合材料を振動媒体として用
いる場合にはその圧電性に起因する周波数低下の効果が
顕著となり前記Δを充分操作し得ない場合には前記aQ
変化させれば効果的である。
However, when a highly coupled material such as quartz is used as a vibration medium, the effect of lowering the frequency due to its piezoelectricity becomes significant, and if the above-mentioned Δ cannot be sufficiently manipulated, the above-mentioned aQ
It is effective if you change it.

(5)  エネルギが閉じ込められた振動についてはオ
ーバートーン次数が犬なる程等価抵抗は大きい。
(5) Regarding vibrations in which energy is trapped, the equivalent resistance increases as the overtone order increases.

又、前記第2図(blからも明らかな如く振動エネルギ
は遮断周波数の小なる部分に完全に閉じ込もることはな
く多少なりとも遮断周波数の高い周辺部に漏洩するが、
前記遮断周波数小なる部分に過度に近接して前記漏洩エ
ネルギを吸収し熱く変換する部分が存在すれば当該振動
についての等価抵抗は大きくなる。
Furthermore, as is clear from the above-mentioned FIG.
If there is a portion that absorbs the leakage energy and converts it into heat excessively close to the portion where the cut-off frequency is low, the equivalent resistance to the vibration will increase.

因みに従来一般の水晶振動子は水晶基板中央に電極を充
分厚く付着することによって遮断周波数差を大きくと9
あらゆるオーバートーン次数の振動エネルギを核部に閉
じ込めるものであった為、CI値が最小となる基本波周
波数での発振が最も容易であって、これをオーバートー
ン発振せしめんとすれば発振回路側に工夫を要すること
前述のとうりである。
Incidentally, in conventional crystal resonators, the difference in cutoff frequency can be increased by attaching a sufficiently thick electrode to the center of the crystal substrate.
Since the vibration energy of all overtone orders is confined in the core, it is easiest to oscillate at the fundamental frequency where the CI value is the minimum, and if you want to make this overtone oscillation, the oscillation circuit side As mentioned above, it requires some ingenuity.

(6)  もっとも前記第2図(blに示した高次の対
称或は非対称モードについての性質は無限圧電基板に関
する理論解析の結果であるが、もしこの性質が有限基板
に於いても実質的に保存されるならば基板全面に拡散し
た振動のエネルギは基板端縁の保持部等から漏洩或は消
耗するからこれらの振動についての等価抵抗は極めて犬
なるものとなろう。
(6) However, the properties of the higher-order symmetrical or asymmetrical modes shown in Figure 2 (bl) are the results of theoretical analysis on an infinite piezoelectric substrate, but if this property also applies to a finite substrate, If this were to be preserved, the energy of the vibrations diffused over the entire surface of the substrate would leak or be consumed from the holding portions at the edge of the substrate, so the equivalent resistance to these vibrations would be extremely small.

以上説明した事実関係を勘案するに、先ず前記(2)及
び(3)に述べた無限基板上での高次の対称或は非対称
モードの振動についての性質が有限基板上でどの程度保
持されるか検討する。
Considering the facts explained above, first of all, to what extent are the properties of higher-order symmetrical or asymmetric mode vibrations on an infinite substrate described in (2) and (3) maintained on a finite substrate? I will consider it.

第3図(atはχ方向に無限長で2方向に2bなる有限
の幅員を有する。基板上の幅方向中央に23なる幅員を
有する電極を付したエネルギ閉じ込め型共振子を示す模
式断面図である。
Figure 3 (at has an infinite length in the χ direction and a finite width of 2b in two directions. This is a schematic cross-sectional view showing an energy confinement type resonator with an electrode having a width of 23 at the center of the substrate in the width direction. be.

斯る共振子に励起される波動としてはχ軸に平行な変位
を有するSH波のみを考慮すればよいがその変位Uは馬
上及び十文字の“エネルギ閉じ込め型圧電共振子の解析
″(昭和40年9月信学誌48巻9号)によれば TJ = u @ωs(n”y;/H)1)exp(j
ωt ) ・−・−・−(1)で与えられる。但し上記
Uはu=f (Z ’)であって第3図(a)に示した
基板の各領域(I) 、 (03、及び(4)で伝搬定
数βが常に実数となるよう定義したk及びに’ Q用い
て以下の如く書き直すことができるものである。
As for the waves excited in such a resonator, it is only necessary to consider the SH wave having a displacement parallel to the χ axis, but the displacement U is as described in Umagami and Jumonji's "Analysis of Energy Confinement Type Piezoelectric Resonators" (1966). According to September IEICE Journal Vol. 48, No. 9), TJ = u @ωs(n”y;/H)1) exp(j
ωt ) ・−・−・−(1). However, the above U is u = f (Z'), and the propagation constant β is defined to always be a real number in each region (I), (03, and (4)) of the substrate shown in Figure 3 (a). It can be rewritten as follows using k and ni'Q.

u 1 =B 味k ’ z  C:k k ’ z 
 (b≦2≦−a ) −−−・(21u、 =A、□
IIkz        (−a≦2≦a ) −−・
(31u、 =B:lk’z+(、Jk’z  (a≦
2≦b )−・−(41ここでA、B及びCは定数、又
flt−電極部(ロ)が無限に広いと仮定した場合の厚
みすべり振動の固有共振周波数+fz’it無電極部(
Il及び(2)が無限に広いと仮定し九場合の固有共振
周波数としたとき前記各領域(ロ)及び(Il 、 C
I[lの伝搬定数夫々に、に’は ”’=n”&(f/ft)2−1/H−−−−−−−−
・(sl”=n”V’1−(f/f2)2/H−・−・
−・(61である。
u 1 = B Taste k' z C: k k ' z
(b≦2≦−a) ---・(21u, =A, □
IIkz (-a≦2≦a) ---
(31u, =B:lk'z+(, Jk'z (a≦
2≦b ) -・- (41 where A, B, and C are constants, and flt - natural resonance frequency of thickness shear vibration assuming that the electrode part (b) is infinitely wide + fz'it electrodeless part (
Assuming that Il and (2) are infinitely wide, and assuming that Il and (2) are the natural resonance frequencies of nine cases, each of the above regions (b) and (Il, C
For each propagation constant of I[l, ni' is "'=n"&(f/ft)2-1/H
・(sl"=n"V'1-(f/f2)2/H-・-・
-・(61.

又2式(2) 、 (3)及び(4)の二重記法に於け
る上部は変位Uが原点に対して偶関数となる対称振動を
、下部は奇関数となる非対称振動を与えるものである。
In addition, in the double notation of Equations (2), (3), and (4), the upper part gives a symmetric vibration where the displacement U is an even function with respect to the origin, and the lower part gives an asymmetric vibration where the displacement U is an odd function. be.

以上の(1)乃至(6)式に於いて2=士aで変位及び
応力が連続、z=±6で端面自由という境界条件から次
の周波数方程式を得る。
In the above equations (1) to (6), the following frequency equation is obtained from the boundary conditions that 2=a and the displacement and stress are continuous, and z=±6 and the end face is free.

、t;m tuhk’(b−a )=に/k   ka ・−・・
・・・・(71COS ここで前記f1がf2よりわずかに低い場合の(7)式
の近似弐全求める。
, t; m tuhk'(b-a)=ni/k ka ・-・
(71COS) Here, an approximation of equation (7) when f1 is slightly lower than f2 is calculated.

先ず、前記第3図(alに於いて領域0に基板々厚の変
化を与えるか或は電極の付着がなされた場合の観測可能
力周波数、即ち共振周波数f:fとする。
First, the observable force frequency when the substrate thickness is varied or electrodes are attached to region 0 in FIG. 3 (al) is defined as the resonant frequency f:f.

次に新たに次式を満足するδ及びΔなる二つの基準化周
波数を導入する。
Next, two new standardization frequencies, δ and Δ, that satisfy the following equation are introduced.

f=(1+δ)fl −・・・・・・・(8)fx=(
1−Δ)f2  ・・・・・・・・・(9)(5)及び
(8)より(kH)2==(nr)22δ 叩−(1)
(6)及び(9)より(k’H)2= (nr)2−2
(Δ−δ) ・(Jυan及びalより k ’H/ 
kH= J (,4?δ)/δ−・・・−・−a’aこ
こで  δ/Δ=W ・・・・・・・・・・・・・・・
・・・ αjとおくと。
f=(1+δ)fl −・・・・・・・(8) fx=(
1-Δ) f2 ・・・・・・・・・(9) From (5) and (8), (kH)2==(nr)22δ Hit-(1)
From (6) and (9), (k'H)2= (nr)2-2
(Δ−δ) ・(From Jυan and al k'H/
kH= J (,4?δ)/δ−・・・−・−a’a where δ/Δ=W ・・・・・・・・・・・・・・・
... Let's say αj.

k’/に= 、7 (1−F)/F  ・・・・・・・
・・・・・・・・ Il、 Ql及び(13)より ka = nwaJ2A/H= nraJ 2Fth 
/H−・・=−・(15)更に、(lυ及びu3より に’a =n7raV/2Δ(1−F) /H・−・−
−= (16)α4)、(1!19及び(lt1917
Hc代入fル、!=tanh n*aJ2Δ(1−F)
・(6/a−1)/H□− ”’v’(I F)/F  nyraV/2F、=h/
H−−−−−−・・−α乃cot これはb/a′jtパラメータとした規準化共振周波数
1と共振子寸法naJm/Hとの関係を示す式であって
有限板上の振動エネルギ閉じ込め状態を与える一般式で
ある。
k'/ni= , 7 (1-F)/F ・・・・・・・・・
・・・・・・・・・ From Il, Ql and (13), ka = nwaJ2A/H= nraJ 2Fth
/H-・・・・(15) Furthermore, (from lυ and u3, 'a = n7raV/2Δ(1-F) /H・−・−
-= (16) α4), (1!19 and (lt1917
Hc substitution f le,! =tanh n*aJ2Δ(1-F)
・(6/a-1)/H□- ”'v'(IF)/F nyraV/2F, =h/
H---------...-α乃cot This is a formula that shows the relationship between the normalized resonance frequency 1, which is the parameter b/a'jt, and the resonator dimension naJm/H, and it is expressed as the vibration energy on a finite plate. This is a general formula that gives a confinement state.

そこで上記面式を用いてb/a=4の場合の高次の対称
及び非対称モード振動の周波数スペクトラムを計算し無
限基板に於けるそれらと比較した結果$3図(blに示
す如くなりた。
Therefore, the frequency spectra of higher-order symmetric and asymmetric mode vibrations in the case of b/a=4 were calculated using the above-mentioned surface formula, and the results were compared with those in an infinite substrate, as shown in Figure $3 (bl).

本図から明らかな如く、最低次対称モードの振動につい
てのエネルギ閉じ込めの程度は基板寸法によって大幅に
変動するが高次の対称及び非対称モード振動についての
それは無限基板の場合も有限基板の場合も実質的に同等
とみて差しつかえないことが判明した。
As is clear from this figure, the degree of energy confinement for vibrations in the lowest-order symmetrical mode varies greatly depending on the substrate dimensions, but for vibrations in higher-order symmetrical and asymmetrical modes, it is virtually constant for both infinite and finite substrates. It turned out that it is safe to consider them to be equivalent.

即ち、前述した本発明の前提条件たる(2)及び(3)
は有限基板に於いてもそのまま適用可能であること及び
最低次対称(SO)モードの特性に比して他のモードは
その傾斜が急峻でありその程度は高次モード程顕著とな
るという性質も有限基板に於いて保持されていることに
特に注目されたい。
That is, (2) and (3) which are the prerequisites of the present invention described above
can be applied as is to finite substrates, and the slopes of other modes are steeper than the characteristics of the lowest-order symmetric (SO) mode, and the degree of this is more pronounced as the higher-order modes increase. Note in particular that it is held in a finite substrate.

以上の解析の結果全路まえて再び前述した本発明の発想
の前提となる事実(1)乃至(5)全考察するにこれら
の事実関係を綜合すれば以下の如きアイディアに到達す
ることが理解されよう。
As a result of the above analysis, once we consider all the facts (1) to (5) that are the premise of the idea of the present invention mentioned above, it is understood that by integrating these facts, we will arrive at the following idea. It will be.

即ち9例えば第1図(atに示す如く圧電基板1の中央
部両面に夫々2分割電極2,2′及び3゜3′全付着し
て励振すれば最低次の非対称(ao)モードの振動が強
力に励起することは明らかである。
That is, if the two-part electrodes 2, 2' and 3°3' are fully attached to both sides of the central part of the piezoelectric substrate 1, respectively, and are excited as shown in FIG. It is clear that it excites strongly.

ここで、上記振動子にて発振を所望するオーパート−7
次数f、nとした場合、前記第3図(b)の横軸上に於
いて(n−2)次の閉じ込め係数(n−2) a Jw
 /Hの位置がao−f−−ド曲線のエネルギ閉じ込め
率零、即ち閉じ込めモード不存在の位置にあるよう、又
naJΔ/Hの位置はa0モード曲線の閉じ込め率が極
力犬なる位置にあるよう各パラメータa及びΔを選択す
るならば第1図(blに示す如くn次以上のオーバート
ーン振動の振動エネルギは前記分割電極2,2′及び3
.3′の周辺近傍に閉じ込められると共に(n−2)次
以下のオーバートーン振動の振動エネルギは前記圧電基
板1全面に拡散し、該基板1周縁に必ず存在する基板保
持部を介してかなりの程度漏洩消費するであろう。
Here, Opert-7, which is desired to oscillate with the above-mentioned vibrator,
When the orders are f and n, the confinement coefficient (n-2) of the (n-2) order on the horizontal axis of FIG. 3(b) is a Jw
The position of /H should be at the position where the energy confinement rate of the ao-f-de curve is zero, that is, the confinement mode does not exist, and the position of naJΔ/H should be at the position where the confinement rate of the a0 mode curve is as small as possible. If each parameter a and Δ are selected, as shown in FIG.
.. The vibrational energy of the overtone vibration of the (n-2) order or lower is confined near the periphery of the piezoelectric substrate 1 and is diffused to a considerable extent through the substrate holder that always exists at the periphery of the substrate 1. It will leak and be consumed.

一方、前記分割電極2,2′及び3,3′周辺近傍に閉
じ込められたn次以上のオーバートーン振動の振動エネ
ルギはオーバートーン次数の高いものほど等価抵抗の犬
なること前述の通りであるから結局このように構成した
共振子はその発振回路に格別の工夫を要せずして0次オ
ーバートーン周波数にて発振することになるはずである
On the other hand, as mentioned above, the higher the overtone order, the higher the equivalent resistance of the vibration energy of the overtone vibrations of the nth or higher order confined in the vicinity of the divided electrodes 2, 2' and 3, 3'. After all, the resonator configured in this manner should oscillate at the zero-order overtone frequency without requiring any special measures for its oscillation circuit.

第1図fc)はa。モードの振動を利用し3次オーバー
トーン発振用共振子を得んとする場合の基本的なパラメ
ータ選択手順を示す図であって、a0モードの振動の振
動エネルギ閉じ込め率Tが零となるのは概ね閉じ込め係
数naJ−区/Hが0.4以下の場合であるから基本波
(n=1)振動と3次(n=3)オーバートーン振動と
に対し夫々aJ、h /H= 0.4 、 3 av7
x lHHI32 トfx ルヨうパラメータa及びΔ
を決定すればよい。
Figure 1 fc) is a. This is a diagram showing the basic parameter selection procedure when trying to obtain a resonator for third-order overtone oscillation using vibration in the a0 mode. Since this is a case where the confinement coefficient naJ-ku/H is approximately 0.4 or less, aJ, h/H = 0.4 for fundamental wave (n = 1) vibration and third-order (n = 3) overtone vibration, respectively. , 3 av7
x lHHI32 fx Parameter a and Δ
All you have to do is decide.

尚、前記分割電極間隙は相隣接する電極間で短絡が生じ
ない限り適当な値に設定すればよい。
Incidentally, the gap between the divided electrodes may be set to an appropriate value as long as a short circuit does not occur between adjacent electrodes.

もっともこの電極間隙が極めて小なる場合には非対称モ
ードの振動がこれと同時に励起せられる対称モードの振
動と音響的に結合する結果2種の異った共振周波数を発
生することは周知であるが本発明に係る共振子に於いて
はその片方、即ち上述の例では非対称モードの振動によ
る共振周波数のみを取り出せばよいので格別の問題は生
じない。
However, it is well known that when this electrode gap is extremely small, the asymmetric mode vibration acoustically couples with the simultaneously excited symmetric mode vibration, resulting in two different resonance frequencies. In the resonator according to the present invention, it is only necessary to extract one of the resonance frequencies, that is, the resonant frequency due to the asymmetric mode vibration in the above example, so no particular problem occurs.

又、更に高次モードの振動全利用せんとする場合には9
例えばS1モード或はa□モードを利用せんとするなら
ば夫々1!極全3分割或は4分割すればよくその際には
前記第3図(blに示す如く各モードの周波数スペクト
ラムはその曲線の勾配が高次となる程急峻であるので所
望の0次オーバートーン振動の振動エネルギ閉じ込め率
と(n−2)次以下のそれとの落差音大きく設定し得る
m極めて好都合である。
In addition, if you want to make full use of vibrations in higher-order modes, 9
For example, if you want to use S1 mode or a□ mode, 1! In that case, the frequency spectrum of each mode becomes steeper as the slope of the curve becomes higher order, as shown in Figure 3 (bl), so the desired zero-order overtone can be obtained. It is extremely advantageous to be able to set a large difference between the vibration energy confinement rate of vibration and that of the (n-2)th order or lower.

以上2本発明の基本原理を説明したが現実にはこの原理
全多少逸脱した場合であっても同様の効果を奏する共振
子全得ることが可能である。
Although the two basic principles of the present invention have been described above, in reality, it is possible to obtain a resonator that exhibits the same effects even if these principles are slightly deviated.

即ち2発振回路は一般に周波数が高くなるとその増幅器
の利得が低下する為回路の負性抵抗もはy周波数の自乗
に逆比例する性質があるので発掘回路側から見た共振子
のインピーダンス最小なるオーパート−7周波数での発
振が最も容易であるとは必ずしも断言し得ないからであ
る。
In other words, in a two-oscillator circuit, the gain of the amplifier generally decreases as the frequency increases, and the negative resistance of the circuit also has the property of being inversely proportional to the square of the y frequency. This is because it cannot necessarily be asserted that oscillation at the −7 frequency is the easiest.

例えば前記軍1図(cl K於いて最低次非対称(ao
)モードの振動を利用して5次オーバートーン発振用共
振子を製造せんとして1次(基本波振動)及び3次オー
バートーン振動の振動エネルギ閉じ込め率が共に零とな
る如く各パラメータ全設定したとすると第4図に示す如
く5次オーバートーン振動の振動エネルギ閉じ込め率が
充分大きくならず、従って5次オーバートーン振動につ
いての等価抵抗が7次のそれより高くなる場合があり得
る。
For example, the lowest order asymmetry (ao
) mode of vibration to manufacture a resonator for fifth-order overtone oscillation, all parameters were set so that the vibration energy confinement rates of the first-order (fundamental wave vibration) and third-order overtone vibration were both zero. Then, as shown in FIG. 4, the vibration energy confinement rate of the fifth-order overtone vibration may not be sufficiently large, and therefore, the equivalent resistance for the fifth-order overtone vibration may be higher than that for the seventh-order vibration.

斯る場合であっても5次と7次とのオーバートーン振動
についての等価抵抗の差が小さければ前述した発根回路
の特性との関係で5次オーバートーン周波数の発振が可
能であることは充分考えられるが前記5次と7次とのオ
ーバートーン振動についての等価抵抗の差が大きい場合
には7次オーバートーン周波数で発振するかもしれない
Even in such a case, if the difference in equivalent resistance for 5th and 7th overtone oscillations is small, oscillation at the 5th overtone frequency is possible in relation to the characteristics of the rooting circuit described above. It is quite conceivable that if the difference in equivalent resistance for the fifth-order and seventh-order overtone vibrations is large, oscillation may occur at the seventh-order overtone frequency.

上述の如き不安定さを回避する為には3次オーバートー
ン振動の振動エネルギ閉じ込め率を零より少しく増大せ
しめ所望する5次オーバートーン振動についての等価抵
抗が3次のそれより極力小なるよう、又1次のそれより
若干高い程度となるよう5次オーバートーン振動の振動
エネルギ閉じ込め率を選択すればよい。
In order to avoid the above-mentioned instability, the vibration energy confinement rate of the third-order overtone vibration is increased slightly above zero, and the equivalent resistance for the desired fifth-order overtone vibration is made as small as possible than that of the third-order overtone vibration. Further, the vibration energy confinement rate of the fifth-order overtone vibration may be selected so as to be slightly higher than that of the first-order vibration.

従って本発明は必ずしも発振を所望するオーバートーン
次数より低次のオーバートーン振動(基本波振動全音む
)の振動エネルギを完全に非閉じ込めモードとする必要
はないという点に注目されたい。
Therefore, it should be noted that the present invention does not necessarily require that the vibration energy of overtone vibrations (including fundamental wave vibration whole tones) of orders lower than the overtone order for which oscillation is desired be made into a completely unconfined mode.

以上、最低次非対称(ao)モードの振動を利用する場
合を例に挙げて説明したがより高次の非対称モード(a
1ea2+・・・・・・)或は高次対称モード(81,
82、・・・・・・)振動を利用する場合も全7・°、
− く同様の考え方を各ハフメータa及びΔを選択すればよ
い。
The above explanation was based on an example of using the vibration of the lowest order asymmetric (ao) mode, but the higher order asymmetric mode (a
1ea2+...) or higher-order symmetric mode (81,
82,...) When using vibration, the total 7°,
- A similar concept can be used to select each Huff meter a and Δ.

以上9本発明の基本的構想全説明したが次に本発明に係
る共振子を製造する場合の具体的な電極構成並びに結線
等について少しく詳述する。
The nine basic concepts of the present invention have been fully explained above.Next, specific electrode configurations, wiring connections, etc. when manufacturing a resonator according to the present invention will be described in detail.

先ず、一般に振動子の電極は圧電基板の変位によって発
生した電荷を有効に引き出し得るよう配置する必要があ
るから本発明に係る共振子も又利用する振動モードによ
る発生電荷の山又は谷の数及び位置を分割電極のそれら
と一致せしめると共に各電極に発生した電荷を互に打ち
消し合わないよう結線する必要があることはいうまでも
ない。
First, since the electrodes of a vibrator generally need to be arranged so that they can effectively draw out the charges generated by the displacement of the piezoelectric substrate, the resonator according to the present invention also depends on the number of peaks or troughs of charges generated by the vibration mode used. Needless to say, it is necessary to make the positions coincide with those of the divided electrodes and to connect the electrodes so that the charges generated in each electrode do not cancel each other out.

そこで9例えば最低次非対称(ao)モードの振動を利
用する場合にはl@5図(a)に示す如く圧電基板1表
裏に2分割電極2,2′及び3,3′を付着し曲線4に
示す如きレベルの電荷を発生せしめ、この電荷を同図(
blに示す如き直列接続するか或は同図(clに示す如
く並列接続する。この場合には並列接続時のインピーダ
ンスは直列接続時のそれに比して1/4となるので等価
抵抗を低減したい場合には並列接続が好都合であろう。
Therefore, for example, when using vibration in the lowest order asymmetric (AO) mode, two divided electrodes 2, 2' and 3, 3' are attached to the front and back of the piezoelectric substrate 1 as shown in Figure (a), and the curve 4 A charge of the level shown in the figure is generated, and this charge is expressed as shown in the figure (
Either connect them in series as shown in bl, or connect them in parallel as shown in cl. In this case, the impedance when connected in parallel is 1/4 of that when connected in series, so you want to reduce the equivalent resistance. In some cases a parallel connection may be advantageous.

更に、斯る分割電極を用いた共振子のスプリアスについ
て考察するに、利用する振動モードが高次対称(81、
S2 、・・・・・・)モードの場合には電気的には非
対称(ao、a□、a2・・・・・・)モードは励振さ
れず又高次非対称モードの振動を利用する場合には逆に
対称モードは励振されないはずであるが現実には共振子
製造上の誤差から若干の他のモードの励振がある。
Furthermore, when considering the spurious of a resonator using such split electrodes, it is necessary to consider that the vibration mode to be used is higher-order symmetric (81,
S2,...) mode, electrically asymmetric (ao, a□, a2...) modes are not excited, and when using higher-order asymmetric mode vibrations, On the contrary, the symmetric mode should not be excited, but in reality some other modes are excited due to errors in the manufacturing of the resonator.

又、利用する振動モードの内次数の異なるモード、例え
ばalに対するa2モード、は本質的に励振される。
Further, among the vibration modes used, modes having different orders, for example, the a2 mode for al, are essentially excited.

しかしながら前者の場合はレスポンスが本来極めて小さ
いので、又後者の場合も発生電荷パターンの山又は谷の
数と電極の分割パターンとが一致しない為レスポンスは
小さいからいずれにしてもこれらに起因するスプリアス
は問題となる程のレベルには達しない。
However, in the former case, the response is inherently extremely small, and in the latter case, the number of peaks or valleys in the generated charge pattern does not match the electrode division pattern, so the response is small. It doesn't reach the level where it becomes a problem.

伺、参考の為S1モードを利用した3分割電極の結線法
を第6図(a)及び(blに示す。
For reference, the method of connecting three divided electrodes using the S1 mode is shown in FIGS. 6(a) and 6(bl).

又、2分割電極及び3分割電極の共振子について圧電基
板上に形成すべき配線パターンの実施例を第7図(a)
乃至(diに示す。同図(a) 、 (blは夫々2分
割電極の直列及び並列接続例、同(9)(C)。
Further, FIG. 7(a) shows an example of the wiring pattern to be formed on the piezoelectric substrate for the resonator of the two-divided electrode and the three-divided electrode.
(a) and (bl) are examples of series and parallel connection of two divided electrodes, respectively (9) and (C).

(dlは夫々3分割電極の直列及び並列接続例を示す斜
視図であって、配線パターン5,5.・・・・・・が圧
電基板1の端縁を廻る場合には端縁にも導体パターン全
蒸着するか或は導電性ペイント又は接着剤を塗布して表
裏パターンを接続すればよい。
(dl is a perspective view showing an example of series and parallel connection of three divided electrodes, respectively, and when the wiring patterns 5, 5, etc. go around the edges of the piezoelectric substrate 1, the edges are also conductive. The front and back patterns may be connected by fully depositing the pattern or by applying conductive paint or adhesive.

ところで本発明に係る共振子は基本波振動を含む所望の
オーバートーン次数より低次のオーバートーン振動の振
動エネルギを圧電基板全面に漏洩拡散せしめるものであ
るが、この漏洩エネルギははソ無損失で遮断周波数の犬
なる部分全伝搬し圧電基板端部に必ず存在する共振子支
持部から漏洩すること前述の通りである。
By the way, the resonator according to the present invention leaks and diffuses the vibration energy of overtone vibrations of orders lower than the desired overtone order, including fundamental wave vibrations, over the entire surface of the piezoelectric substrate, but this leakage energy is transmitted without any loss. As described above, the dog portion of the cut-off frequency is entirely propagated and leaks from the resonator support portion that is always present at the end of the piezoelectric substrate.

しかしながらこの漏洩エネルギをより有効に消耗させる
ことは当該振動についての等価抵抗全高める上で重要で
あるからこの為第8図(a)に示す如く圧電基板1の周
縁部の一部又は全部に遮断周波数f3が著しく小さい振
動エネルギ吸収部6,6.・・・・・・を設ける。斯く
することによって核部で前記漏洩した振動エネルギの振
幅を増太し熱に変換消耗させることができる。このよう
な効果を得る為には前記圧電基板1周縁部のエネルギ吸
収部6,6.・・・・・・は圧電基板1自体の厚さを他
の部分より大としてもよいし導体膜或は樹脂膜の如き適
当な質量を付着してもよい。
However, it is important to consume this leakage energy more effectively in order to increase the total equivalent resistance to the vibration, so as shown in FIG. Vibration energy absorbing parts 6, 6 whose frequency f3 is extremely low. ...... will be established. By doing so, the amplitude of the leaked vibration energy can be increased in the core portion and converted into heat and consumed. In order to obtain such an effect, the energy absorbing portions 6, 6 . . . . The thickness of the piezoelectric substrate 1 itself may be made larger than other parts, or an appropriate mass such as a conductive film or a resin film may be attached.

或は同図tblに示す如く接着剤7,7.・・・・・・
の如き質量を核部に盛ってもよい。
Alternatively, as shown in tbl of the same figure, adhesives 7, 7.・・・・・・
A mass such as the following may be placed in the core.

伺、前記エネルギ吸収部6の遮断周波数の値f3もfl
と同等或はそれ以下であればよいが必要に応じて増減し
核部に於ける不要な振動エネルギの消耗を極力大ならし
めるようにすることが望ましい。
Also, the value f3 of the cutoff frequency of the energy absorbing section 6 is also fl.
It may be equal to or less than , but it is desirable to increase or decrease it as necessary to minimize unnecessary vibration energy consumption in the core.

更に積極的に漏洩エネルギを消耗させる為には同図(c
)に示す如く圧電基板1周縁部両面適所に導体膜8,8
を付着し両者の間を適当な抵抗9.9を介して接続して
もよい。
In order to further actively consume leakage energy, the same figure (c
) As shown in FIG.
may be attached and connected between the two through a suitable resistor 9.9.

この際接続すべき抵抗の値は基本的にはエネルギを熱に
変換すべき振動の周波数をf n 、抵抗を接続する圧
電基板表裏に付着した導体膜間の静電容量fcoとすれ
ば(2πfnCo)  とすればよい。伺、エネルギを
吸収すべき振動周波数が複数存在する場合には本発明に
係る共振子の周縁に(2πf aC”)−1+ (2π
fbCo)−”、−・・・・といった如く多数の異った
抵抗を付してもよいし或はf a + f b r・・
・・・・ の平均値’tfmとしく2πfmCo)−”
なる抵抗を付してもよい。
The value of the resistor to be connected at this time is basically (2πfnCo ) And it is sufficient. However, if there are multiple vibration frequencies that should absorb energy, (2πf aC”)−1+ (2π
A number of different resistors may be attached, such as fbCo)-", -..., or f a + f b r...
The average value of ``tfm and 2πfmCo)−''
A resistance may be added.

伺、前記抵抗は必ずしも電子回路の構成に用いるもので
ある必要はなく例えば一般水晶振動子の保持部固定用導
電性接着剤の塗布等によってもよく、斯くすれば共振子
の生産性への格別な影響なしに実施し得て便利であろう
However, the above-mentioned resistor does not necessarily have to be used in the construction of an electronic circuit, and may be made by applying a conductive adhesive for fixing the holding part of a general crystal resonator, for example. It would be convenient to implement it without any negative impact.

さて1以上説明した如き原理に基づいて製造した最低次
非対称(ao)モード振動を利用したオーバートーン発
振用共振子の異った二つの実施例についてその具体的構
造と得られた特性とを以下に示す。
Now, the specific structures and obtained characteristics of two different embodiments of overtone oscillation resonators using the lowest order asymmetric (AO) mode vibration manufactured based on the principle explained above are as follows. Shown below.

築9図(atは本発明に係る振動エネルギ吸収部を有し
ない基本的な3次オーバートーン発振用共振子の平面図
であって1円型水晶基板1中夫に2分割主電極2,2′
より引き出したリード5.5によって表裏同一の裏面主
電纜(図示せず)と並列接読したものである。
Figure 9 (at is a plan view of a basic third-order overtone oscillation resonator without a vibration energy absorption part according to the present invention, in which a circular crystal substrate 1 is divided into two main electrodes 2 and 2 ′
The leads 5.5 drawn out from the front and back are used for parallel reading with the back main wire (not shown), which is the same on both sides.

又、同図(b)は振動エネルギ吸収部6.6を水晶基板
外周に設けたものである。而してこれら2種の共振子の
特性を測定した結果、前者については3次及び1次(基
本波)オーバートーン周波数に於けるCI値は夫々70
Ω及び175Ωであり水晶基板保持部に導電性接着剤を
少量付着するとこれらの値は夫々72Ω及び380Ωと
なり本発明の理論の正当性は基本的に立証せられた。
In addition, FIG. 6B shows a structure in which a vibration energy absorbing portion 6.6 is provided on the outer periphery of the crystal substrate. As a result of measuring the characteristics of these two types of resonators, the CI values at the 3rd and 1st (fundamental wave) overtone frequencies for the former were 70, respectively.
Ω and 175Ω, and when a small amount of conductive adhesive was attached to the crystal substrate holder, these values became 72Ω and 380Ω, respectively, and the validity of the theory of the present invention was basically verified.

又、振動エネルギ吸収部重布する3次及び1次(基本波
)オーバートーン周波数に於けるCI値は夫々65Ω及
び250Ω、水晶基板保持部に導電性接着剤を付した場
合にはこれらの値は夫々65Ω及び1330Ω となり
振動エネルギ吸収部の有効性も確認された。
In addition, the CI values at the 3rd and 1st (fundamental wave) overtone frequencies where the vibration energy absorption part is heavily distributed are 65Ω and 250Ω, respectively, and these values are 65Ω and 250Ω, respectively, when a conductive adhesive is attached to the crystal substrate holding part. were 65Ω and 1330Ω, respectively, confirming the effectiveness of the vibration energy absorption section.

更に前記第9図fa)の共振子について水晶基板保持部
を導電性接着剤で固定した上で電極膜厚ftf化させる
と3次及び1次のオーパート−7周波数に於けるCI値
の差は第10図(atに示す如く減少した。
Furthermore, for the resonator shown in Fig. 9 fa), if the crystal substrate holding part is fixed with a conductive adhesive and the electrode film thickness is increased to ftf, the difference in CI value at the third-order and first-order Opart-7 frequencies is It decreased as shown in Figure 10 (at).

このことは第7図(atに於いて前述した如く1j膜厚
によって△が変化し1次、3次の両オーバートーン振動
に共に閉じ込めが生ずるとCI値の差が減少することを
意味する。従って両者のCI値の差を充分大きく保つよ
う電極膜厚を含む諸パラメータを設定する必要のあるこ
とが理解されよう。
This means that, as described above in FIG. 7 (at), Δ changes depending on the 1j film thickness, and when confinement occurs in both the first-order and third-order overtone vibrations, the difference in CI values decreases. Therefore, it will be understood that it is necessary to set various parameters including the electrode film thickness so as to keep the difference between the CI values sufficiently large.

又、第10図(blは′ij!、9図(blに示す振動
エネルギ吸収部を有する共振子に於いて励振電極とエネ
ルギ吸収部との間隙を変化し九場合の1次及び3次オー
バートーン周波数に於けるCI値の変化を調べたもので
上記間隙が増大すると漏洩せしめた1次(基本波)周波
数の振動エネルギがエネルギ吸収部で充分消費されず核
部を設けた効果が減少することを意味する。従りてエネ
ルギ吸収部全役ける場合にはこれと励振電極との間隙を
適切な値に設定することが肝要であることも理解されよ
う。
In addition, in a resonator having a vibration energy absorbing part shown in Figure 10 (bl is 'ij!) and Figure 9 (bl), the gap between the excitation electrode and the energy absorbing part is changed. This is a study of the change in CI value at tone frequency, and it was found that as the gap increases, the leaked vibration energy of the primary (fundamental wave) frequency is not sufficiently consumed in the energy absorption part, and the effect of providing the core part decreases. Therefore, it will be understood that when the entire energy absorption section is used, it is important to set the gap between this and the excitation electrode to an appropriate value.

以上9本発明に係るオーバートーン発振用共振子につい
てその原理、基本的構成並びにその実験結果について説
明したが9本共振子の構成は特性上、製造上或は周波数
調整上等々の各種の要求に応じる為第1)図(a)乃至
(dlに示す如く変形してもよい。
The principles, basic configuration, and experimental results of the nine overtone oscillation resonators according to the present invention have been explained above. In order to meet this requirement, modifications may be made as shown in Figures 1) (a) to (dl).

即ち、第1)図(alは圧電基板周縁の振動エネルギ吸
収部6,6に樹脂膜7,7を付して核部の遮断周波数を
低下させて実施例を示す断面図、同図(blは遮断周波
数差を充分に得る為エツチングの手法を用いて基板中央
の主電極2,3部と周縁の振動エネルギ吸収部6.6と
の間の基板々厚を低下させ核部の遮断周波数を上昇せし
めたもの、同図(C)は前記(b)に於いて振動エネル
ギ吸収部6.6に更に電極8,8を付着し前述した如き
振動エネルギの電気−熱変換を可能としたものであり、
更に同図(dlは高い共振周波数を得んとする場合に於
いて主電極2,2′及び3.3′の膜厚が減少し電気抵
抗が増大するのを防止する為基板の主電極付着部のみを
エツチング等によって薄層化したものである。
That is, Fig. 1) (al) is a sectional view showing an embodiment in which resin films 7, 7 are attached to the vibration energy absorbing parts 6, 6 on the periphery of the piezoelectric substrate to lower the cutoff frequency of the core part, and Fig. In order to obtain a sufficient difference in cutoff frequency, the thickness of the substrate between the main electrodes 2 and 3 at the center of the substrate and the vibration energy absorbing portions 6 and 6 at the periphery is reduced using an etching method to increase the cutoff frequency at the core. The elevated version (C) in the same figure is the one in which electrodes 8, 8 are further attached to the vibration energy absorbing portion 6.6 in (b) above to enable electro-thermal conversion of the vibration energy as described above. can be,
Furthermore, in the same figure (dl is the thickness of the main electrode attached to the substrate in order to prevent the film thickness of the main electrodes 2, 2' and 3.3' from decreasing and increasing the electrical resistance when trying to obtain a high resonant frequency). Only that part is made thinner by etching or the like.

上述の実施例は本発明に係る共振子が採用しうる構成の
一部を示したものにすぎず、これらを適宜組み合わせて
もよいことはいうまでもない。
The above-described embodiments merely show some of the configurations that can be adopted by the resonator according to the present invention, and it goes without saying that these may be combined as appropriate.

以上1本発明に係るオーバートーン発援用共。Above 1. Overtone support according to the present invention.

振子について主として最も構成の簡単な最低次非対称(
ao)モードの振動を利用する場合全例示して説明した
が本発明はこれに限定されるものではなく、更に高次の
非対称(a工、a2・・・・・・)モード及び高次の対
称(Sl 、82 、・・・・・・)モードの振動も同
様に利用可能であることはこれらについて更に詳細な説
明を要せずして容易に理解されよう。
For pendulums, the lowest-order asymmetry (
Although all examples have been explained in which the ao) mode vibration is used, the present invention is not limited to this, and can also be applied to higher-order asymmetric (a-work, a2...) modes and higher-order asymmetric vibrations. It will be easily understood that symmetrical (Sl, 82, . . . ) modes of vibration can also be utilized in the same manner without requiring further detailed explanation.

又、実験例として示した共振子の振動モードは水晶基板
2軸方向励振最低次非対称モードであるがこれはX軸方
向励振でもよく更にZ、X両軸方向に1!極を分割しこ
れら双方向に振動を励起するものであってもよい。
Furthermore, the vibration mode of the resonator shown as an experimental example is the lowest-order asymmetric mode with biaxial excitation of the crystal substrate, but it may also be excitation in the X-axis direction, and 1! in both the Z and X-axis directions. It may also be possible to divide the poles and excite vibration in both directions.

更に前記第91g(blに於いては振動エネルギ吸収部
−iZ軸方向に設けたがこれはX軸方向に設けても又は
基板周縁のはソ全周に亘ってもよく、或はこれを複数個
に分割してもよい。振動エネルギ吸収部は基板周縁金環
う領域が犬である程効果も大きいからである。
Furthermore, although the vibration energy absorbing portion-i is provided in the Z-axis direction in the 91g (bl), it may be provided in the X-axis direction, or may be provided over the entire circumference of the substrate, or a plurality of vibration energy absorbing portions may be provided. The vibration energy absorbing section may be divided into individual parts, because the effect of the vibration energy absorbing part is greater as the area surrounding the substrate periphery becomes more circular.

尚1本発明の明細書の最初にも述べた通り本発明は第9
図(at又は(blに示した如き厚みねじれ振動のみな
らず、厚み縦、厚みすべり等いずれの振動姿態をとるも
のにも適用可能であり、圧電材料も各種のものを使用す
ることができる。
1. As stated at the beginning of the specification of the present invention, the present invention
It is applicable not only to thickness torsional vibration as shown in Figure (at) or (bl), but also to any type of vibration such as thickness longitudinal or thickness shear, and various piezoelectric materials can be used.

尚更に本発明に係る共振子は図示は省略するが3端子電
他構造として2ボート共振子としてもよく、斯くすれば
高周波帯での発振を容易とすることが可能となろうし9
又モノリシツク・クリスタル・フィルタに応用すれば啄
めて広い周波数範囲に亘ってスプリアスの少ないフィル
タ特性を得ることが期待される。
Furthermore, although not shown in the drawings, the resonator according to the present invention may be a two-boat resonator with a three-terminal electronic structure, and in this way it will be possible to easily oscillate in a high frequency band.
Furthermore, if applied to a monolithic crystal filter, it is expected that filter characteristics with less spurious will be obtained over a wide frequency range.

(発明の効果) 本発明は以上説明した如く構成するものであるから従来
の共振子に比して製造工程上格別の変更を要せず、しか
も発振回路にLC同調回路等の格別な回路を付加するこ
となく容易にオーバー)−7周波数を発振し得るので高
周波化及び回路の集積化に対する要求の厳しい各種電子
機器の周波数源として使用する上で著しい効果を発揮す
る。
(Effects of the Invention) Since the present invention is configured as explained above, it does not require any special changes in the manufacturing process compared to conventional resonators, and moreover, it does not require special changes in the manufacturing process, and moreover, it does not require special circuits such as an LC tuning circuit in the oscillation circuit. Since it can easily oscillate at over -7 frequencies without adding any additional components, it is extremely effective when used as a frequency source for various electronic devices that have strict requirements for higher frequencies and higher circuit integration.

更に2通常の圧電共振子、殊に温度特性の良好なATカ
ット水晶共振子の如き厚み振動系の共振子にあっては高
い周波数を基本波振動にて得んとすれば圧電基板々厚が
極めて薄いものとなり製造困難であったが2本発明によ
れば共振子自体がオーバートーン周波数にて最も励振し
易くなるものであるから圧電基板の板厚を製造の容易な
範囲に設定し得ることになり製造コスト全低減するとい
う効果をも併せもつものである。
Furthermore, in the case of a normal piezoelectric resonator, especially a thickness vibration type resonator such as an AT-cut crystal resonator with good temperature characteristics, if a high frequency is to be obtained through fundamental wave vibration, the thickness of the piezoelectric substrate must be increased. However, according to the present invention, since the resonator itself is most easily excited at the overtone frequency, the thickness of the piezoelectric substrate can be set within a range that is easy to manufacture. This also has the effect of reducing the total manufacturing cost.

問9本発明は閉じ込め係数に対する振動エネルギ閉じ込
め率の曲線が急峻である高次の対称或は非対称モードの
振動を利用するものである故、従来本願発明者が出願し
た発明に係る最低次対称モードの振動を利用するものに
比して所望するオーバートーン次数より低次の振動エネ
ルギ全抑圧し所望の発振周波数を得る上で一層効果的で
あることに注目されたい。
Question 9: Since the present invention utilizes higher-order symmetrical or asymmetrical mode vibrations in which the curve of the vibration energy confinement ratio against the confinement coefficient is steep, what is the lowest-order symmetrical mode according to the invention filed by the present inventor? It should be noted that this method is more effective in completely suppressing the vibration energy of orders lower than the desired overtone order and obtaining the desired oscillation frequency, compared to those that utilize the vibrations of the overtone order.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(alは本発明に係るオーバートーン発振用共振
子の基本的構成を示す断面図、同図(blけその共振子
に励起する各種振動モードの振動エネルギ分布を示す図
、同図(clはこの共振子の諸パラメータを選択する為
の基本的手法金示す説明図、第2図(at及び(blは
夫々本発明の詳細な説明する為の圧電基板模式断面図及
び対称及び非対称モードの振動スペクトラムを示す図、
第3図(at及び(blは夫々前記振動スペクトラムが
有限板上でも成立することを証明する為の基板模式図及
び理論解析の結果を示す図、第4図は本発明に係るオー
バートーン発振用共振子全構成する為の他のパラメータ
設定手法金示す説明図。 第5図(a)乃至(diは夫々最低次非対称モードの振
動を利用する共振子の発生電荷分布、電極の直列接続例
及び並列接続例を示す模式図、第6図(a)及び(bl
は夫々Ssモード振動を利用する共振子の電極直列接続
及び並列接続列を示す模式図、第7図(al乃至(d)
は夫々2分割電極直列及び並列接続並びに3分割電極直
列及び並列接続を行う場合の一実施例を示す斜視図、第
8図(al乃至(clは夫・々異った振動エネルギ吸収
部の構成金示す断面図、第9図(al及び(blは夫々
本発明の確認実験に使用した共振子の構成を示す平面図
であって、(a)は振動エネルギ吸収部のない形、(b
)は振動エネルギ吸収部を付したもの、第10図(a)
及び(blは夫々前記第9図(at及び(blに示した
共振子の特性を示す実験結果の図、第1)図4al乃至
(dlは夫々本発明に係る共振子の異った構成を示す断
面図である。 1・・・・・・・・・圧電基板、   2.2’及び3
.3′・・・・・・・・・多分割振動エネルギ閉じ込め
部(電極)。 6・・・・・・・・・振動エネルギ吸収部。 9・・・・・・・・・抵抗。 特許出願人  東洋通信機株式会社 第 乙 図 鰐 7 E 第 8 図 箋 // 図 手続補正書 昭和61年 4月 2日 昭和 61年  特 許  願第  9756 号2、
発明の名称 高次モード振動を利用し九オーバートーン発撮用圧電共
振子 3、補正をする者 事件との関係   出願人 郵便番号253−01    電話0467−74−1
)31(代表)神奈川県高座郡寒用町小谷753番地 4 手続補正指令書の日付 昭和61年3月25日5゜
 補正により増加する発明の数 なし6、補正の対象 
「図面の簡単な説明」の欄7 補正の内容 原明細書第
32頁第13行「・・・(a)乃至(d)・・・」を 「・・・(a)乃至(C)・・・」と補正する。
Figure 1 (al is a cross-sectional view showing the basic configuration of the overtone oscillation resonator according to the present invention, bl is a diagram showing the vibration energy distribution of various vibration modes excited in the resonator, the same figure ( cl is an explanatory diagram showing the basic method for selecting various parameters of this resonator, and FIG. A diagram showing the vibration spectrum of
Figure 3 (at and (bl) are diagrams showing a schematic diagram of the board and the results of theoretical analysis, respectively, to prove that the vibration spectrum is valid even on a finite plate; Figure 4 is for overtone oscillation according to the present invention. An explanatory diagram showing another parameter setting method for configuring the entire resonator. Schematic diagram showing an example of parallel connection, Fig. 6 (a) and (bl
7 (al to (d)) are schematic diagrams showing series connection and parallel connection rows of electrodes of resonators that utilize Ss mode vibration, respectively.
8 is a perspective view showing an embodiment in which 2 divided electrodes are connected in series and in parallel, and 3 divided electrodes are connected in series and parallel, respectively. FIG. 9 is a cross-sectional view showing the structure of the resonator used in the confirmation experiment of the present invention, and FIG.
) is the one with a vibration energy absorption part, Fig. 10(a)
and (bl are diagrams of the experimental results showing the characteristics of the resonator shown in FIGS. 9 and 1, respectively). FIGS. 1...Piezoelectric substrate, 2.2' and 3.
.. 3'・・・・・・Multi-divided vibration energy confinement part (electrode). 6...... Vibration energy absorption section. 9・・・・・・・・・Resistance. Patent Applicant Toyo Tsushinki Co., Ltd. No. 2 Zuwani 7 E No. 8 Illustrated Notes // Drawing Procedure Amendment April 2, 1988 Patent Application No. 9756 No. 2, 1988
Title of the invention Piezoelectric resonator 3 for nine-overtone imaging using higher-order mode vibrations and correction Relationship to the case Applicant Postal code 253-01 Telephone 0467-74-1
) 31 (Representative) 753-4 Otari, Kanyo-cho, Koza-gun, Kanagawa Prefecture Date of procedural amendment order: March 25, 1985 5゜ Number of inventions to be increased by amendment: None 6, Subject of amendment
"Brief explanation of the drawings" column 7 Contents of amendment Original specification page 32, line 13 "...(a) to (d)..." was replaced with "...(a) to (C)...""..." is corrected.

Claims (3)

【特許請求の範囲】[Claims] (1)圧電基板上に遮断周波数f_1なる多分割エネル
ギ閉じ込め部を、その周辺 に遮断周波数f_2(但しf_1<f_2)なる部分を
設けることによって高次の対称或は非対称モード振動を
励起し、当該モードの振動の内n次オーバートーン振動
以上の次数のオーバートーン振動の振動エネルギを前記
多分割エネルギ閉じ込め部周辺近傍にほゞ閉じ込めると
共に当該モードの振動の基本波振動を含むn−2次以下
のオーバートーン振動の振動エネルギを前記圧電基板全
面に概ね拡散せしめるよう前記多分割エネルギ閉じ込め
部のサイズ、周波数低下率((f_2−f_1)/f_
2)及び前記圧電基板々厚の各パラメータを選択するこ
とによって少なくとも所望するn次オーバートーン振動
による発振を基本波振動を含むより低次のオーバートー
ン振動によるそれよりも容易ならしめたことを特徴とす
る高次モード振動を利用したオーバートーン発振用圧電
共振子。
(1) By providing a multi-divided energy confinement section with a cutoff frequency f_1 on the piezoelectric substrate and a section with a cutoff frequency f_2 (however, f_1<f_2) around it, high-order symmetrical or asymmetrical mode vibration is excited. Of the mode vibrations, the vibration energy of overtone vibrations of orders higher than or equal to the nth overtone vibration is almost confined near the periphery of the multi-divided energy confinement section, and the vibration energy of the n-2nd order or lower including the fundamental wave vibration of the vibration of the mode is approximately confined. The size of the multi-divided energy confinement section and the frequency reduction rate ((f_2-f_1)/f_
2) By selecting each parameter of the thickness of the piezoelectric substrate, at least the desired n-order overtone vibration is made easier to oscillate than the lower-order overtone vibration including fundamental wave vibration. A piezoelectric resonator for overtone oscillation that utilizes higher-order mode vibration.
(2)前記圧電基板外周縁近傍適所に前記遮断周波数f
_2より遮断周波数の小なる振動エネルギ吸収部を付加
することによって前記基板全面に拡散せしめる基本波振
動を含むn−2次オーバートーン振動より低次のオーバ
ートーン振動の振動エネルギを効果的に消耗せしめるよ
うにしたことを特徴とする特許請求の範囲(1)記載の
高次モード振動を利用したオーバートーン発振用圧電共
振子。
(2) The cutoff frequency f is placed at a suitable location near the outer periphery of the piezoelectric substrate.
By adding a vibration energy absorbing part with a smaller cut-off frequency than _2, the vibration energy of overtone vibrations lower than the n-2 order overtone vibration, including the fundamental wave vibration that is diffused over the entire surface of the substrate, can be effectively consumed. A piezoelectric resonator for overtone oscillation using higher-order mode vibration according to claim (1).
(3)前記圧電基板外周縁近傍適所の基板両面に付着し
た電極間に適当な値の抵抗を接続することによって前記
基板全面に拡散した振動エネルギの消耗を大ならしめた
ことを特徴とする特許請求の範囲(1)又は(2)記載
の高次モード振動を利用したオーバートーン発振用圧電
共振子。
(3) A patent characterized in that by connecting a resistor of an appropriate value between electrodes attached to both surfaces of the piezoelectric substrate at appropriate positions near the outer periphery of the substrate, consumption of vibration energy diffused over the entire surface of the substrate is increased. A piezoelectric resonator for overtone oscillation using higher-order mode vibration according to claim (1) or (2).
JP61009756A 1985-04-11 1986-01-20 Piezoelectric resonator for overtone oscillation using higher-order mode vibration Expired - Fee Related JP2640936B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP61009756A JP2640936B2 (en) 1986-01-20 1986-01-20 Piezoelectric resonator for overtone oscillation using higher-order mode vibration
EP95108355A EP0680142A1 (en) 1985-04-11 1986-04-11 Piezoelectric resonators for overtone oscillations
KR1019860700886A KR920005610B1 (en) 1985-04-11 1986-04-11 Piezo-electric resonator for generating overtones
PCT/JP1986/000181 WO1986006228A1 (en) 1985-04-11 1986-04-11 Piezo-electric resonator for generating overtones
DE3650562T DE3650562T2 (en) 1985-04-11 1986-04-11 PIEZOELECTRIC RESONATOR FOR GENERATING HARMONICS
SG1996009738A SG48443A1 (en) 1985-04-11 1986-04-11 Piezoelectric resonators for overtone oscillations
EP86902487A EP0220320B1 (en) 1985-04-11 1986-04-11 Piezo-electric resonator for generating overtones
US07/191,628 US4870313A (en) 1985-04-11 1988-05-09 Piezoelectric resonators for overtone oscillations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61009756A JP2640936B2 (en) 1986-01-20 1986-01-20 Piezoelectric resonator for overtone oscillation using higher-order mode vibration

Publications (2)

Publication Number Publication Date
JPS62168409A true JPS62168409A (en) 1987-07-24
JP2640936B2 JP2640936B2 (en) 1997-08-13

Family

ID=11729128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61009756A Expired - Fee Related JP2640936B2 (en) 1985-04-11 1986-01-20 Piezoelectric resonator for overtone oscillation using higher-order mode vibration

Country Status (1)

Country Link
JP (1) JP2640936B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114209A (en) * 1987-10-28 1989-05-02 Toyo Commun Equip Co Ltd Characteristic adjusting method for piezoelectric resonator for overtone oscillation
JPH01208004A (en) * 1988-02-15 1989-08-22 Nippon Dempa Kogyo Co Ltd Piezoelectric oscillator
WO1998038736A1 (en) * 1997-02-26 1998-09-03 Toyo Communication Equipment Co., Ltd. Piezoelectric vibrator and method for manufacturing the same
JP2006250926A (en) * 2005-02-14 2006-09-21 Ngk Insulators Ltd Mass measurement device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5062787A (en) * 1973-10-05 1975-05-28
JPS5338284A (en) * 1976-09-20 1978-04-08 Seiko Instr & Electronics Ltd Crystal vibrator
JPS5824970A (en) * 1981-08-06 1983-02-15 Ricoh Co Ltd Processing method for digital picture
JPS5829890A (en) * 1981-05-15 1983-02-22 ソシエテ・アノニム・エルフ・フランス Improved fuel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5062787A (en) * 1973-10-05 1975-05-28
JPS5338284A (en) * 1976-09-20 1978-04-08 Seiko Instr & Electronics Ltd Crystal vibrator
JPS5829890A (en) * 1981-05-15 1983-02-22 ソシエテ・アノニム・エルフ・フランス Improved fuel
JPS5824970A (en) * 1981-08-06 1983-02-15 Ricoh Co Ltd Processing method for digital picture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114209A (en) * 1987-10-28 1989-05-02 Toyo Commun Equip Co Ltd Characteristic adjusting method for piezoelectric resonator for overtone oscillation
JPH01208004A (en) * 1988-02-15 1989-08-22 Nippon Dempa Kogyo Co Ltd Piezoelectric oscillator
WO1998038736A1 (en) * 1997-02-26 1998-09-03 Toyo Communication Equipment Co., Ltd. Piezoelectric vibrator and method for manufacturing the same
US6111341A (en) * 1997-02-26 2000-08-29 Toyo Communication Equipment Co., Ltd. Piezoelectric vibrator and method for manufacturing the same
JP2006250926A (en) * 2005-02-14 2006-09-21 Ngk Insulators Ltd Mass measurement device

Also Published As

Publication number Publication date
JP2640936B2 (en) 1997-08-13

Similar Documents

Publication Publication Date Title
KR920005610B1 (en) Piezo-electric resonator for generating overtones
JP5392258B2 (en) Sheet wave element and electronic device using the same
US8176784B2 (en) Elastic wave device and electronic component
US7576471B1 (en) SAW filter operable in a piston mode
US7423363B2 (en) Piezoelectric vibrating element and piezoelectric vibrator
JP4316632B2 (en) Surface acoustic wave device and duplexer
US7453334B1 (en) Leaky SAW resonator and method
EP1675260A2 (en) Surface acoustic wave device
KR20060132991A (en) Surface acoustic wave device
JP2000252786A (en) Piezoelectric vibrating element
WO2019082901A1 (en) Composite substrate and acoustic wave device using same
US4076987A (en) Multiple resonator or filter vibrating in a coupled mode
JP2020182130A (en) Filter and multiplexer
JP2024001367A (en) Converter structure for generation source suppression in saw filter device
JPS62168409A (en) Overtone oscillating piezo-resonator utilizing higher order mode vibration
JP2000031781A (en) Piezoelectric vibrator
JPS61236208A (en) Piezoelectric resonator for over-tone oscillation
WO2021090861A1 (en) Elastic wave device
Hashimoto et al. Characterization of surface acoustic wave propagation in multi-layered structures using extended FEM/SDA software
JP2000236231A (en) Surface acoustic wave element
JP2007221840A (en) Surface acoustic device and module device or oscillation circuit using the same
JP4148216B2 (en) Surface acoustic wave device and module device or oscillation circuit using the same
JPS5828770B2 (en) surface acoustic wave device
JP2003218665A (en) Surface acoustic wave filter
JP2746278B2 (en) Piezoelectric vibrator for overtone oscillation

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees