JPS6216800Y2 - - Google Patents

Info

Publication number
JPS6216800Y2
JPS6216800Y2 JP1978019533U JP1953378U JPS6216800Y2 JP S6216800 Y2 JPS6216800 Y2 JP S6216800Y2 JP 1978019533 U JP1978019533 U JP 1978019533U JP 1953378 U JP1953378 U JP 1953378U JP S6216800 Y2 JPS6216800 Y2 JP S6216800Y2
Authority
JP
Japan
Prior art keywords
voltage
windings
winding
areas
commutator motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1978019533U
Other languages
Japanese (ja)
Other versions
JPS554601U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1978019533U priority Critical patent/JPS6216800Y2/ja
Publication of JPS554601U publication Critical patent/JPS554601U/ja
Application granted granted Critical
Publication of JPS6216800Y2 publication Critical patent/JPS6216800Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本案は、高電圧地域でも低電圧地域でも使用で
きる二電圧用整流子モータを提供せんとするもの
である。 整流子モータを高低いずれの電圧地域でも使用
できるようにするための方法として、従来はチヨ
ーク方式と、固定子巻線の接続切換方式とが知ら
れている。 チヨーク方式は、チヨークで電圧を落とし、電
源電圧が違つてもモータにかかる電圧は同一にな
るようにするのであるが、チヨークを必要とする
ために高価になると共に、チヨークを取付けるた
めのスペースが必要となる。また固定子巻線の接
続切換方式は、比較的安価であるという利点があ
る反面、高電圧地域での効率が悪く、且つモータ
の巻線量が増大して加工性の悪い欠点がある。即
ちこの方式によると、通常高電圧地域では第1図
に示す如く四つの固定子巻線1,2,3,4を直
列に接続し、低電圧地域では第2図に示す如く二
つの固定子巻線2,3を並列に接続すると共に、
他の二つの固定子巻線1,4を遊ばせている。従
つて高電圧地域では、電機子巻線のアンペアター
ンに対する界磁巻線のアンペアターンの比即ち巻
線比が大きくなりすぎて、第4図でわかるとうり
モータの効率が低下する欠点がある。また固定子
巻線を四つも接続するので巻線量が多くなり、且
つ低電圧地域では二つの巻線を遊ばせるので巻線
の使用率が悪いという欠点もある。 更に整流子モータは半波電圧を印加しても回転
するところから、低電圧地域では全波電圧を印加
し、高電圧地域ではダイオードを接続して半波電
圧で回転することも考えられる。しかしながら半
波電圧で運転するとトルクの振動が大きく、ノツ
キング振動を起こすことがある他、ブラシの摩耗
が大きくなる欠点がある。即ち整流子モータを交
流電圧で運転すると、ブラシによつて短絡される
コイルに発生する電圧は、電流の変化によつて自
己誘導されるリアクタンス電圧と、短絡コイルが
磁束を切るために発生する整流起電圧と、界磁磁
束が50サイクルあるいは60サイクルで変化するた
めに短絡コイルに発生する変成器起電圧とのベク
トル和であり、この電圧によつて短絡コイル内に
流れる電流の変化率が整流周期の終りで負又は小
さくなるようにブラシの位置を設定している。し
かるに半波電圧で運転すると短絡コイル内の電流
の変化が大きく、前記リアクタンス電圧が大きく
なつて整流条件を悪化し、ブラシの摩耗を増大す
るのである。 そこで本案は、高電圧地域では双方向性制御整
流素子を接続し、該素子で位相角を制御された交
流電圧をモータに印加することによつてモータの
効率低下を防ぐと同時に、ブラシの摩耗も減少せ
んとするものである。 以下本案を第3図に基いて説明すると、5は二
つの並列回路ができるように電機子巻線6,7を
接続した整流子モータの回転子で、一方のブラシ
8は電源9側に接続し、他方のブラシ10は、切
換スイツチ11内の一つの固定接点12に直接接
続すると共に、界磁巻線13を介して他の固定接
点14にも接続している。前記切換スイツチ11
内にはそれ等の固定接点12,14の他に二つの
固定接点15,16を有し、互に連動する二つの
可動接片17,18によつて前記固定接点12と
15、及び14と16を切換えられるようにして
いる。19は整流子モータの他の界磁巻線で、前
記二つの可動接片17,18間に接続すると共
に、一端を電源9側に接続している。20は前記
巻線13の一端と固定接点15との間に接続した
双方向性制御整流素子で、ダイアツク21を介し
て半固定抵抗22とコンデンサ23との間に接続
されている。24は誤動作防止用のコンデンサで
ある。 以上の構成に於てその動作を説明する。低電圧
地域例えば110V地域で使用する場合は、切換ス
イツチの可動接片17,18を実線の如く固定接
点12,14側に入れる。すると二つの界磁巻線
13,19が並列に接続されるので、この界磁巻
線での電圧降下が少くなり、低電圧運転に適した
接続となる。 高電圧地域例えば220V地域で使用する場合に
は、可動接片17,18を点線の如く固定接点1
5,16側に入れる。すると回転子5と界磁巻線
13,19と双方向性制御整流素子20とが直列
に接続される。この状態で電源電圧を印加すると
各半サイクル毎にコンデンサ24が充電され、そ
れが所定電圧に達するとダイアツク21が導通し
て双方向制御整流素子20の制御極に電流が流
れ、これが導通する。倍電圧の地域で使用する場
合、導通するまでの位相の遅れを90゜になるよう
に半固定抵抗22を調整すれば界磁巻線13,1
9は並列のままでもよいが、このようにすると、
ダイオードを使用した場合と同様の理由によつて
ブラシの摩耗が大きくなる。ブラシの摩耗の点か
ら言えば双方向性制御整流素子20による電圧降
下は40%以下が望ましく、他は界磁巻線13,1
9を直列に接続することによつて降下させること
が望ましいことが実験の結果わかつた。 また別の実験によると、第5図に示す如く界磁
巻線13,19のアンペアターンと電機子巻線
6,7のアンペアターンの比即ち巻線比が0.8以
下になるとブラシの摩耗が著しくなる。また第4
図に示す如く前記の比が2.5以上になるとモータ
の効率が悪くなる。 従つて界磁巻線13,19の直列巻線N、電機
子巻線6,7の一つの巻線の数をN′、全体を流
れる電流をIとすると、高電圧使用時には
The present invention aims to provide a dual-voltage commutator motor that can be used in both high-voltage and low-voltage areas. Conventionally known methods for making a commutator motor usable in both high and low voltage regions include a chi-yoke method and a stator winding connection switching method. In the chi-yoke method, the voltage is reduced by a chi-yoke so that the voltage applied to the motor is the same even if the power supply voltage is different, but it is expensive because it requires a chi-yoke, and it takes up a lot of space to install the chi-yoke. It becomes necessary. Further, the stator winding connection switching method has the advantage of being relatively inexpensive, but has the disadvantage that it is inefficient in high voltage areas and has poor workability due to an increase in the amount of windings in the motor. That is, according to this method, normally in high voltage areas, four stator windings 1, 2, 3, and 4 are connected in series as shown in Figure 1, and in low voltage areas, two stator windings are connected in series as shown in Figure 2. While connecting windings 2 and 3 in parallel,
The other two stator windings 1 and 4 are left idle. Therefore, in high voltage areas, the ratio of the ampere turns of the field winding to the ampere turns of the armature winding, that is, the winding ratio, becomes too large, and as can be seen in Figure 4, there is a disadvantage that the efficiency of the motor decreases. . Furthermore, since four stator windings are connected, the number of windings increases, and two windings are left idle in low voltage regions, resulting in poor winding utilization. Furthermore, since the commutator motor rotates even when a half-wave voltage is applied, it is conceivable to apply a full-wave voltage in low-voltage areas and to rotate with a half-wave voltage by connecting a diode in high-voltage areas. However, when operating at half-wave voltage, there is a drawback that torque vibration is large, knocking vibration may occur, and brush wear increases. That is, when a commutator motor is operated with alternating current voltage, the voltage generated in the coil short-circuited by the brushes is composed of the reactance voltage self-induced by the change in current, and the rectification generated because the short-circuited coil cuts the magnetic flux. It is the vector sum of the electromotive force and the transformer electromotive force generated in the shorted coil because the field magnetic flux changes every 50 or 60 cycles, and this voltage rectifies the rate of change of the current flowing in the shorted coil. The brush position is set so that it becomes negative or small at the end of the cycle. However, when operating at a half-wave voltage, the current in the short-circuited coil changes greatly, and the reactance voltage increases, deteriorating the rectification conditions and increasing wear on the brushes. Therefore, this proposal connects a bidirectional control rectifier element in high voltage areas and applies an AC voltage whose phase angle is controlled by the element to the motor, thereby preventing a decrease in motor efficiency and at the same time preventing brush wear. We also aim to reduce this. The present invention will be explained below based on Fig. 3. 5 is a rotor of a commutator motor with armature windings 6 and 7 connected to form two parallel circuits, and one brush 8 is connected to the power supply 9 side. However, the other brush 10 is directly connected to one fixed contact 12 in the changeover switch 11 and also connected to another fixed contact 14 via a field winding 13. The changeover switch 11
In addition to these fixed contacts 12 and 14, there are two fixed contacts 15 and 16 inside, and the fixed contacts 12, 15, and 14 are connected by two movable contact pieces 17 and 18 that interlock with each other. 16 can be switched. Reference numeral 19 denotes another field winding of the commutator motor, which is connected between the two movable contact pieces 17 and 18, and has one end connected to the power source 9 side. Reference numeral 20 denotes a bidirectional control rectifier element connected between one end of the winding 13 and the fixed contact 15, and connected between a semi-fixed resistor 22 and a capacitor 23 via a diode 21. 24 is a capacitor for preventing malfunction. The operation of the above configuration will be explained. When used in a low voltage area, for example, a 110V area, the movable contacts 17 and 18 of the changeover switch are inserted into the fixed contacts 12 and 14 as shown by the solid lines. Then, since the two field windings 13 and 19 are connected in parallel, the voltage drop in the field windings is reduced, resulting in a connection suitable for low voltage operation. When used in a high voltage area, for example, a 220V area, move the movable contacts 17 and 18 to the fixed contact 1 as shown by the dotted line.
Put it on the 5, 16 side. Then, the rotor 5, field windings 13, 19, and bidirectional control rectifying element 20 are connected in series. When the power supply voltage is applied in this state, the capacitor 24 is charged every half cycle, and when it reaches a predetermined voltage, the diode 21 becomes conductive and current flows to the control pole of the bidirectional control rectifying element 20, which becomes conductive. When used in areas with double voltage, the field windings 13 and 1 can be adjusted by adjusting the semi-fixed resistor 22 so that the phase delay until conduction is 90°.
9 can remain in parallel, but if you do it like this,
The wear of the brush increases for the same reason as when using a diode. From the viewpoint of brush wear, it is desirable that the voltage drop due to the bidirectional control rectifying element 20 is 40% or less, and the voltage drop due to the bidirectional control rectifying element 20 is preferably 40% or less.
As a result of experiments, it was found that it is desirable to connect 9 in series to reduce the drop. According to another experiment, as shown in Fig. 5, when the ratio of the ampere turns of the field windings 13 and 19 to the ampere turns of the armature windings 6 and 7, that is, the winding ratio, was less than 0.8, the brushes were significantly worn. Become. Also the fourth
As shown in the figure, when the ratio becomes 2.5 or more, the efficiency of the motor deteriorates. Therefore, when the series winding N of the field windings 13 and 19, the number of windings in one of the armature windings 6 and 7 is N', and the current flowing through the whole is I, when using high voltage,

【式】低電圧使用時には[Formula] When using low voltage

【式】であることが必要である。 この両式より0.8N′<N<1.25N′であることが必
要である。 以上の如く本案は、高電圧地域では、互に直列
に接続した複数個の界磁巻線と双方向性制御整流
素子の両方で電圧を落としているので、双方向性
制御整流素子だけで電圧を落とす場合のように整
流効果を悪くしてブラシの摩耗を増大するような
ことはなく、また多数の界磁巻線を直列に接続し
てこの界磁巻線のみで電圧を降下する場合のよう
に、界磁巻線のアンペアターンと電機子巻線のア
ンペンターンの比即ち巻線比が大きくなりすぎて
モータの効率を低下するようなこともない。
It is necessary that [Formula]. From both equations, it is necessary that 0.8N'<N<1.25N'. As described above, in high-voltage areas, this proposal reduces the voltage by both the multiple field windings connected in series and the bidirectional control rectifier, so the voltage is reduced only by the bidirectional control rectifier. It does not worsen the rectification effect and increase wear on the brushes as it does when dropping the field windings. Thus, the ratio of the ampere turns of the field winding to the ampere turns of the armature winding, that is, the winding ratio, does not become too large and reduce the efficiency of the motor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来の整流子モータの回路
図で第1図は高電圧使用時、第2図は低電圧使用
時である。第3図は本案整流子モータの回路図、
第4図及び第5図は夫々巻線比に対するモータ効
率の変化とブラシ摩耗率の変化を示している。 13,19……界磁巻線、20……双方向性制
御整流素子、6,7……電機子巻線。
FIGS. 1 and 2 are circuit diagrams of a conventional commutator motor. FIG. 1 shows the circuit when a high voltage is used, and FIG. 2 shows the circuit when a low voltage is used. Figure 3 is a circuit diagram of the proposed commutator motor.
FIGS. 4 and 5 show changes in motor efficiency and brush wear rate with respect to winding ratio, respectively. 13, 19... Field winding, 20... Bidirectional control rectifier, 6, 7... Armature winding.

Claims (1)

【実用新案登録請求の範囲】 (1) 電圧の異なつた地域で使用される整流子モー
タに於て、低電圧地域では複数個の界磁巻線を
並列に接続し、高電圧地域では、これ等界磁巻
線を直列に接続すると共にこの界磁巻線と直列
に双方向性制御整流子を接続してなる二電圧用
整流子モータ。 (2) 実用新案登録請求の範囲第1項に於て、双方
向性制御整流素子によつて電源電圧の40%以下
の電圧を降下するようにしてなる二電圧用整流
子モータ。 (3) 実用新案登録請求の範囲第1項に於て、低電
圧使用時に於ける界磁巻線及び電機子巻線の並
列回路数を夫々2とし、且つ各巻線の直列巻線
数を夫々N,N′としたとき、0.8N′<N<
1.25N′としたことを特徴とする二電圧用整流子
モータ。
[Claims for Utility Model Registration] (1) In a commutator motor used in areas with different voltages, multiple field windings are connected in parallel in low voltage areas, and in high voltage areas, A two-voltage commutator motor comprising equal field windings connected in series and a bidirectional control commutator connected in series with the field windings. (2) A two-voltage commutator motor configured to drop a voltage of 40% or less of the power supply voltage by a bidirectional control rectifier as claimed in claim 1 of the utility model registration. (3) In claim 1 of the utility model registration claim, the number of parallel circuits of the field winding and armature winding during low voltage use is two each, and the number of series windings of each winding is two. When N, N′, 0.8N′<N<
A two-voltage commutator motor characterized by a 1.25N′.
JP1978019533U 1978-02-15 1978-02-15 Expired JPS6216800Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1978019533U JPS6216800Y2 (en) 1978-02-15 1978-02-15

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1978019533U JPS6216800Y2 (en) 1978-02-15 1978-02-15

Publications (2)

Publication Number Publication Date
JPS554601U JPS554601U (en) 1980-01-12
JPS6216800Y2 true JPS6216800Y2 (en) 1987-04-27

Family

ID=28848813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1978019533U Expired JPS6216800Y2 (en) 1978-02-15 1978-02-15

Country Status (1)

Country Link
JP (1) JPS6216800Y2 (en)

Also Published As

Publication number Publication date
JPS554601U (en) 1980-01-12

Similar Documents

Publication Publication Date Title
CN108011559B (en) Electric tool and control method thereof
JPS6216800Y2 (en)
CA1147019A (en) Motor energizing circuit including free-running diodes and demagnetization windings
WO2019184835A1 (en) Three-phase asynchronous motor starting device and starting method therefor
US3435325A (en) Electric generator and speed control system therefor
JP2003189697A (en) Power supply provided with alternating-current generator
JPS6320460Y2 (en)
JPS58263B2 (en) Dual voltage commutator motor
EP4039529A1 (en) Electrically excited motor drive system integrated with obc, and electric vehicle
CN210958206U (en) Associated power supply of direct current motor with protection device
JPS6211199Y2 (en)
EP0402008B1 (en) Improvement of series excitation motor (1)
US2821673A (en) A. c. motor
JPH027797U (en)
JPS6165864U (en)
JP4207339B2 (en) Rotating electrical machine for vehicle
JPH0568187B2 (en)
JPH0317570Y2 (en)
JPS5932240Y2 (en) Voltage regulator for capacitor-excited synchronous generator
JPS6138393Y2 (en)
RU2173616C1 (en) Universal power source for welding
SU1249649A1 (en) Armature of electric machine
JPH0550201B2 (en)
JPS6156719B2 (en)
US2120848A (en) System of electric motor control