JPS62167898A - Steel sheet for rust prevention - Google Patents

Steel sheet for rust prevention

Info

Publication number
JPS62167898A
JPS62167898A JP889886A JP889886A JPS62167898A JP S62167898 A JPS62167898 A JP S62167898A JP 889886 A JP889886 A JP 889886A JP 889886 A JP889886 A JP 889886A JP S62167898 A JPS62167898 A JP S62167898A
Authority
JP
Japan
Prior art keywords
plating
zinc
layer
particles
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP889886A
Other languages
Japanese (ja)
Inventor
Tatsuya Kanamaru
金丸 辰也
Riyouichi Naka
亮一 那珂
Motohiro Nakayama
元宏 中山
Katsutoshi Arai
新井 勝利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP889886A priority Critical patent/JPS62167898A/en
Publication of JPS62167898A publication Critical patent/JPS62167898A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To remarkably improve the corrosion resistance of the titled steel sheet obtd. by forming a coating layer dispersed with metallic Cr particles in a Zn (alloy) plating layer on the steel sheet. CONSTITUTION:An example is taken of the case in which Zn (alloy) plating is executed by an electroplating method. The metallic Cr particles of about <=200 mesh minus sieve are added to an acidic Zn (alloy) plating bath and while the bath is kept stirred, the steel sheet is subjected to plating, by which the coating layer taking the Cr particles of about 1mum diameter into the plating layer is formed thereon. The large particles of Cr settle down onto the bottom of the plating bath. The same effect is obtd. as well in the case of executing the above-mentioned plating by a hot dip coating method, ion plating method, thermal spraying method, etc. The double coating layers are formed by forming the above-mentioned coating layer as an inside layer and subjecting the extreme surface layer to Zn or Fe plating or alloy plating essentially consisting thereof. Such steel sheet is adequate for an automobile, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は建築用材料、?!!気機器材料、自動車あるい
は運輸用材料等に使用される防錆用鋼板しこ関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to construction materials, ? ! ! This relates to rust-preventing steel plates used in gas equipment materials, automobiles, transportation materials, etc.

〔従来技術〕[Prior art]

従来、亜鉛ないし亜鉛を主体とする合金めっき鋼板が防
錆用途に広く用いられてしするが、これ&ま亜鉛の持つ
犠牲防食作用が基本となっている。しかし使用、腐食環
境が厳しくなってゆくなかで。
Conventionally, zinc or zinc-based alloy plated steel sheets have been widely used for rust prevention purposes, and the sacrificial anticorrosion effect of zinc and zinc is the basis. However, as usage and corrosive environments become more severe.

材料の耐久性がますます要望される現状では、さらに高
耐食性の優れた鋼板が要求されている。
In the current situation where there is an increasing demand for the durability of materials, steel plates with even higher corrosion resistance are required.

犠牲防食作用の観点からは、亜鉛系めっき層の厚さを高
めることがひとつの対応ではあるが、プレス加工性、溶
接性を阻害する難点がある。
From the viewpoint of sacrificial corrosion protection, one solution is to increase the thickness of the zinc-based plating layer, but this has the disadvantage of impeding press workability and weldability.

亜鉛とより責な金属、たとえばニッケル、鉄と    
′の合金めっき鋼板(特開昭60−152662号)も
提案されている。ニッケル、鉄等と合金化することによ
り、めっき層と鋼素地との電位差をより小さくし、亜鉛
のもつ過度の電気化学的活性をある程度抑制することに
より、腐食環境におけるめつき届の溶損速度をより小さ
くすることを狙いとしたものである。しかしながら、犠
牲防食効果を減少させる危険性を伴うことは否めない。
Zinc and more dangerous metals such as nickel and iron
An alloy-plated steel sheet (Japanese Patent Application Laid-open No. 152662/1983) has also been proposed. By alloying with nickel, iron, etc., the potential difference between the plating layer and the steel base is reduced, and the excessive electrochemical activity of zinc is suppressed to some extent, thereby reducing the corrosion rate of plating in corrosive environments. The aim is to make it even smaller. However, it cannot be denied that there is a risk of reducing the sacrificial corrosion protection effect.

亜鉛系めっき層の中にSiO□やTiO□などのコロイ
ド粒子を分散して複合させる被覆鋼板も提案されている
A coated steel sheet in which colloidal particles such as SiO□ and TiO□ are dispersed and composited in a zinc-based plating layer has also been proposed.

これら分散相は腐食環境で不活性であり、亜鉛が腐食に
よって溶損した後、残存する分散相の水や塩分などの侵
入に対する物理的遮断効果がその基本的作用であるにす
ぎず、未だ不十分である。
These dispersed phases are inert in a corrosive environment, and after the zinc is dissolved away due to corrosion, the basic effect of the remaining dispersed phase against intrusion of water, salt, etc. is merely the physical barrier effect, and it is still inactive. It is enough.

〔問題点を解決する手段〕[Means to solve problems]

鋼素地に犠牲防食作用を維持し、かつめっき層の腐食環
境における溶損速度を減少させることができれば、理想
的な防錆鋼板が得られる。本発明は、このような観点で
開発されたものであり、その骨子は、亜鉛または亜鉛を
主体とする合金めっき層中に金属クロム粒子を分散して
含有する被覆層を有する防錆用鋼板であり、又、亜鉛ま
たは亜鉛を主体とする合金めっき層中に金属クロム粒子
を分散して含有する被覆層を内層に有し、最表層に亜鉛
または鉄、あるいはそれらを主成分とする合金めっき層
を有する複層の防錆用鋼板である。
If sacrificial corrosion protection can be maintained in the steel base and the rate of erosion of the plating layer in a corrosive environment can be reduced, an ideal rust-proof steel plate can be obtained. The present invention was developed from this point of view, and its gist is a rust-preventing steel sheet having a coating layer containing metallic chromium particles dispersed in a zinc or zinc-based alloy plating layer. Also, the inner layer has a coating layer containing metal chromium particles dispersed in a zinc or alloy plating layer mainly composed of zinc, and the outermost layer is a zinc or iron plating layer, or an alloy plating layer mainly composed of them. It is a multi-layer anti-rust steel plate with

本発明者らは1種々の基礎的な研究の結果、亜鉛または
亜鉛を主体とする合金めっき鋼板の腐食環境における溶
損速度を支配する因子として、亜鉛のもつ電気化学的活
性の他に、腐食生成物の保護作用に着目した。
As a result of various basic studies, the present inventors have found that, in addition to the electrochemical activity of zinc, the corrosion rate of zinc or zinc-based alloy coated steel sheets is We focused on the protective effect of the product.

周知のように、亜鉛は電気化学的に卑な金属であるにも
かかわらず、乾燥した大気中では腐食速度が極めて小さ
いのは、その酸化膜の保護作用によるものである。しか
し、湿った環境、特にF!A雪塩散布地域における自動
車の腐食環境などでは、その酸化膜は容易に溶出し5最
終的な腐食生成物は塩基性塩化亜鉛と見なされている。
As is well known, although zinc is an electrochemically base metal, its corrosion rate is extremely low in a dry atmosphere due to the protective effect of its oxide film. However, in a humid environment, especially F! A: In the corrosive environment of automobiles in areas where snow salt is sprayed, the oxide film is easily eluted5 and the final corrosion product is considered to be basic zinc chloride.

このものも湿潤環境では溶解度が比較的高く、まして酸
性域となる塗膜上腐食環境では全く保護作用は期待でき
ない。
This substance also has a relatively high solubility in a humid environment, and no protective effect can be expected at all in an acidic environment that corrodes the coating film.

亜鉛系合金めっきとして従来提案されている金属、たと
えばニッケル、鉄、マグネシウム、マンガン、コバルト
、銅、カドミウムなどもその腐食生成物の保護作用とい
う観点からは亜鉛と同様に期待できない。
Metals that have been conventionally proposed as zinc-based alloy plating, such as nickel, iron, magnesium, manganese, cobalt, copper, and cadmium, cannot be expected from the same point of view as zinc in protecting against corrosion products.

本発明者らはクロムに着目した。金属クロムは周知のよ
うに酸素の存在下では不働態化し、希酸中でも腐食され
ない極めて耐食性のある材料である。しかるに、亜鉛と
接触していれば、クロムは電気化学的に亜鉛に近い卑な
状態となり、鋼素地に対して十分な犠牲防食作用をもっ
ことを確認した。湿潤環境下での腐食生成物は三価クロ
ムの塩基性塩化物と推定されるが、f@めて難溶性の多
核錯体の一種と認められる。
The present inventors focused on chromium. As is well known, metallic chromium is an extremely corrosion-resistant material that becomes passivated in the presence of oxygen and is not corroded even in dilute acids. However, when in contact with zinc, chromium becomes electrochemically in a base state similar to zinc, and it has been confirmed that it has a sufficient sacrificial corrosion protection effect on steel substrates. The corrosion product in a humid environment is presumed to be a basic chloride of trivalent chromium, but f@ is recognized as a type of poorly soluble polynuclear complex.

金属クロムを亜鉛系めっきに適用する態様としては、合
金めっきとして耐食性に寄与するに足る十分な(たとえ
ば0,1重量%以上の)クロム含有量を確保することは
、電気めっき法、溶融めっき法いずれにおいても事実上
不可能である。他の態様として、酸化クロムまたは金属
クロムもしくはこれら両者を亜鉛めっき層の表面に被覆
しためっき鋼板が提案されているが1表面被膜が腐食環
境で溶解し尽くせば耐食性に寄与しない難点がある。
When applying metallic chromium to zinc-based plating, ensuring sufficient chromium content (for example, 0.1% by weight or more) to contribute to corrosion resistance as an alloy plating is achieved by electroplating, hot-dip plating, etc. In either case, it is virtually impossible. As another aspect, a plated steel sheet has been proposed in which the surface of a galvanized layer is coated with chromium oxide, metallic chromium, or both, but there is a drawback that once the surface coating is completely dissolved in a corrosive environment, it does not contribute to corrosion resistance.

従って、本発明では金属クロム粒子を亜鉛ないし亜鉛を
主体とした合金めっき層中に分散した被m層を形成する
態様とした。かくすることにより、金属クロムは亜鉛と
接触状態を続ける限り、腐食環境で鋼素地に対する犠牲
防食作用に加担しつつ、亜鉛とほぼ同じ速度でマトリッ
クス(めっき層)と均一に腐食を受け、クロムの腐食生
成物が分散相のみならずめっき層表面にも沈積して保護
被膜を形成し、腐食しつつある局部の腐食を終焉させる
。いわゆる自己修復作用により、犠牲防食作用を殺さず
にめっき層の溶損速度を低減させる。耐久性ある防錆鋼
板となるものである。
Therefore, in the present invention, a layer is formed in which metallic chromium particles are dispersed in a zinc or zinc-based alloy plating layer. By doing this, as long as metallic chromium continues to be in contact with zinc, it participates in sacrificial corrosion protection against the steel substrate in a corrosive environment, and is uniformly corroded with the matrix (plating layer) at almost the same rate as zinc, and the chromium Corrosion products are deposited not only on the dispersed phase but also on the surface of the plating layer to form a protective film, thereby terminating the local corrosion. The so-called self-healing action reduces the rate of erosion of the plating layer without sacrificial corrosion protection. This is a durable rust-proof steel plate.

めっき層中に含有するクロム量は、自己修復効果を出す
ためには0.3〜20%が好ましい。
The amount of chromium contained in the plating layer is preferably 0.3 to 20% in order to produce a self-healing effect.

0.3%以下では耐食性等の効果が少なく、又20%以
上なくとも十分効果が得られる。またクロム粒子径は1
0μm以下が好ましい。10μm径を超える粒子は周辺
のマトリックスとの腐食に関する相互作用が乏しく、ま
た亜鉛が溶解した後残存し、鋼素地に対する孔食を促進
する危険性があり好ましくない。
If it is less than 0.3%, there will be little effect on corrosion resistance, etc., and even if it is less than 20%, sufficient effects can be obtained. Also, the chromium particle size is 1
It is preferably 0 μm or less. Particles having a diameter of more than 10 μm are not preferable because they have poor corrosion interaction with the surrounding matrix and remain after the zinc has been dissolved, potentially promoting pitting corrosion on the steel substrate.

マトリックスのめっき層は亜鉛ないし亜鉛を主体とする
合金めっきである。後者については亜鉛を60重量%以
上含有する合金めっきであることが好ましい。その理由
はマトリックス自身に十分な犠牲防食作用があると同時
に、クロム分散相との電気化学的相互作用を考慮するか
らである。クロムの犠牲防食作用を保持するためには、
クロムと接触しているめっき層の電位が活性状態のクロ
ムの電位に近いものでなければならない。
The matrix plating layer is zinc or zinc-based alloy plating. The latter is preferably an alloy plating containing 60% by weight or more of zinc. The reason for this is that the matrix itself has sufficient sacrificial corrosion protection, and at the same time, electrochemical interaction with the chromium dispersed phase is taken into account. In order to maintain the sacrificial anticorrosion effect of chromium,
The potential of the plating layer in contact with chromium must be close to the potential of chromium in its active state.

めっき層の電位が貴に近づけば、クロムの電位も連動し
て貴になると考察されるからである。このような考察か
らマトリックス中の合金元素としては、鉄、ニッケル、
マンガン、クロム、コバルト、アルミニウム、マグネシ
ウム、セリウム、チタン、ジルコニウム、カドミウム、
スズ、トリウム、鉛、銅、炭素、りん等から選ばれた1
種または2種以上の元素が適用できる。本発明において
This is because it is considered that if the potential of the plating layer approaches a nobler potential, the potential of chromium will also become nobler. Based on these considerations, the alloying elements in the matrix include iron, nickel,
Manganese, chromium, cobalt, aluminum, magnesium, cerium, titanium, zirconium, cadmium,
1 selected from tin, thorium, lead, copper, carbon, phosphorus, etc.
A species or two or more elements can be applied. In the present invention.

金属クロム粒子は単一金属クロム粒子の他、金属クロム
粒子中にF e + N i+ Co I Cu + 
T 1rAQ、Zn、P等の1以上を適量含有せしめて
もよい。
Metal chromium particles include single metal chromium particles as well as Fe + Ni + Co I Cu + in metal chromium particles.
One or more of T1rAQ, Zn, P, etc. may be contained in appropriate amounts.

次に本発明の製造態様例について述べる。通常、亜鉛め
っきまたは亜鉛系合金めっき鋼板は電気めっき法、溶融
めっき法、イオンめっき法、溶射法等が適用されている
が、本発明の金属クロム分散方法は、これらいずれにお
いても適用可能であるが、現在一般に普及しており、適
用が容易な電気めっき法を例にとって実施態様を説明す
る。
Next, an example of the manufacturing mode of the present invention will be described. Normally, electroplating, hot-dip plating, ion plating, thermal spraying, etc. are applied to galvanized or zinc-based alloy coated steel sheets, but the metal chromium dispersion method of the present invention can be applied to any of these methods. However, embodiments will be described by taking as an example the electroplating method, which is currently widely used and easy to apply.

亜鉛めっきまたは亜鉛系合金の電気めっき法は酸性浴を
用いることが多いが、金属クロム粒子はpH=1内外の
酸性溶液中でも不働態化することによって、安定に存在
できる。また粒子表面に溶液中のイオンを吸着すること
により、凝集することなく、分散状態を維持できる。も
し必要ならば帯電を促進するためのイオンを浴中に添加
してもよい。めっき層中に取り込まれる金属クロムの体
積占有率は金属クロム粒子の浴中分散濃度1粒径、電流
密度、流速でコントロールできる。
Zinc plating or electroplating of zinc-based alloys often uses an acidic bath, but metallic chromium particles can exist stably by being passivated even in an acidic solution with a pH of around 1. Furthermore, by adsorbing ions in the solution onto the particle surface, a dispersed state can be maintained without aggregation. If necessary, ions may be added to the bath to promote charging. The volume occupancy of metallic chromium incorporated into the plating layer can be controlled by the dispersion concentration of metallic chromium particles in the bath, particle size, current density, and flow rate.

本発明者らの実験によれば、金属クロム粒子はめっき層
の亜鉛ないし亜鉛系合金の中に埋め込まれる形で電着し
ているが、自動車用防錆鋼板等に供される場合には化成
処理工程でめっき層がエツチングされ、クロム粒子の一
部が露出し、その部分に化成被膜が形成されないことが
ある。化成被膜が不完全であれば、腐食環境下での塗膜
密着性が十分確保できない。これに対処するには例えば
最表面1g/m以上、好ましくは2 g / m以上に
、金属クロムを含有しないマトリックス金属のみの、め
っきMを施せば、かかる支障が回避できる。上記最表面
層の厚さは化成処理中のエツチング量から決めることが
できる。
According to experiments conducted by the present inventors, metallic chromium particles are electrodeposited in a form embedded in the zinc or zinc-based alloy of the plating layer; In some cases, the plating layer is etched during the treatment process, exposing a portion of the chromium particles, and no chemical conversion coating is formed on that portion. If the chemical conversion coating is incomplete, sufficient coating adhesion cannot be ensured in a corrosive environment. To deal with this problem, for example, if the outermost surface is plated at 1 g/m or more, preferably at 2 g/m or more, with only a matrix metal that does not contain metallic chromium, this problem can be avoided. The thickness of the outermost surface layer can be determined from the amount of etching during the chemical conversion treatment.

更に好ましい態様としては、最表面1g/n?以上、好
ましくは2 g / rr?以上の塗膜vB看性のよい
As a more preferable embodiment, the outermost surface is 1 g/n? Above, preferably 2 g/rr? The above coating film vB has good visibility.

めっき層を金属クロム分散めっき層の上に施せばよい。A plating layer may be applied on top of the metal chromium dispersed plating layer.

その好適例としてはFe60重量%含有する鉄ないし鉄
−亜鉛合金めっきを施せばよい。
As a preferable example, iron or iron-zinc alloy plating containing 60% by weight of Fe may be applied.

以下、実施例をもって説明する。This will be explained below using examples.

後述実施例のめっき鋼板の製造例を挙げる。An example of manufacturing a plated steel sheet in an example described below will be given.

〔実施例1〜2〕 Zn”:=75g/Q+ M離H2S O−” 30 
g /Q、Na2So4=65g/Qからなる酸性亜鉛
めっき浴に200メツシユふるい下の金属クロム粒子を
500 g / Q添加し、攪拌状態でめっきを行なっ
た。7Ii流密度は10 A / d rrf 〜l 
00 A /diまで変化させ、目付量とクロムの含有
率を調整した。クロムの大粒子はめっき浴の底に沈み。
[Examples 1 to 2] Zn":=75g/Q+ M separation H2S O-" 30
500 g/Q of metal chromium particles under a 200 mesh sieve were added to an acidic zinc plating bath consisting of Na2So4 = 65 g/Q, and plating was performed under stirring. 7Ii current density is 10 A/d rrf ~l
00 A/di to adjust the basis weight and chromium content. Large particles of chromium sink to the bottom of the plating bath.

実際にめっき層中に取り込まれる粒子は1μmμm下が
ほとんどであった。目付量を測定するためにめっき層を
10%HCQで溶解すると、亜鉛とともにクロムは完全
溶解した。なお、めっき浴は数日放置してもCr’+に
よる着色は認められず、水素ガスの発生もなく、安定で
あった。
Most of the particles actually incorporated into the plating layer were below 1 μm. When the plating layer was dissolved with 10% HCQ to measure the basis weight, chromium was completely dissolved along with zinc. Note that the plating bath remained stable even after being left for several days, with no coloring due to Cr'+ being observed and no hydrogen gas being generated.

〔実施例3〜6〕 Zn”+とFe”+の合計が110 g / Q r遊
離H2So4=15g/Qからなる酸性亜鉛−鉄メッき
浴に金属クロム粒子を500 g / Q添加し、攪拌
状態でめっきを行なった。電流密度は10A/d rr
?〜100 A /、d留まで変化させ、日付量とクロ
ムの含有率を調整した。めっき層中の鉄/亜鉛合金組成
は浴中のFe”“/Zn2+イオン比を変化させて調整
した。めっき層中の鉄/亜4イ1合金組成は浴中のFe
”/Zn2+イオン比を変化させて調整した。クロムの
大粒子はめっき浴の底に沈み。
[Examples 3 to 6] 500 g/Q of metallic chromium particles were added to an acidic zinc-iron plating bath consisting of a total of Zn"+ and Fe"+ of 110 g/Q r free H2So4 = 15 g/Q, and stirred. Plating was performed in this state. Current density is 10A/drr
? It was varied at ~100 A/d, and the date amount and chromium content were adjusted. The iron/zinc alloy composition in the plating layer was adjusted by changing the Fe""/Zn2+ ion ratio in the bath. The iron/nitrous alloy composition in the plating layer is the Fe in the bath.
”/Zn2+ ion ratio was adjusted by changing. Large particles of chromium sank to the bottom of the plating bath.

実際にめっき層中に取り込まれる粒子は、1μmμm下
がほとんどであった。目付量をdl’l定するためにめ
っき層を10%HCQで溶解すると、めっき層とともに
完全溶解した。なお、めっき浴中ではクロム粒子は安定
で、水素ガス発生等の変化は認められなかった。
Most of the particles actually incorporated into the plating layer were below 1 μm. When the plating layer was dissolved with 10% HCQ to determine the basis weight dl'l, it was completely dissolved together with the plating layer. The chromium particles were stable in the plating bath, and no changes such as hydrogen gas generation were observed.

〔実施例7〕 z n2+とNi”の合計が100 g/ Q 、 N
 8m80.100g/Qからなる硫酸塩浴に全屈クロ
ム粒子を200 g / Q添加し、攪拌状態でめっき
を行なった。電流密度はIOA/dボ〜100A/ d
 nrまで変化させ、目付量とクロムの含有率を調整し
た。めっき層中のニッケル/亜鉛合金組成は浴中のN 
x ”/ Z n 24″イオン比を変化させて調整し
た。めっき層中に取り込まれるクロム粒子は、前述と同
様、1μm径以下がほとんどであった。
[Example 7] The total of z n2+ and Ni'' is 100 g/Q, N
200 g/Q of total chromium particles were added to a sulfate bath of 80.100 g/Q, and plating was performed under stirring. Current density is IOA/d~100A/d
nr, and the basis weight and chromium content were adjusted. The nickel/zinc alloy composition in the plating layer is determined by the N in the bath.
It was adjusted by changing the x ”/Z n 24” ion ratio. Most of the chromium particles incorporated into the plating layer had a diameter of 1 μm or less, as described above.

目付及測定のため、加熱した10%HCΩでめっき層を
溶解すると、マトリックスとともにクロムは完全溶解し
た。なお、めっき浴中のクロム粒子は安定で、水素ガス
発生等の変化は起こらなかった。
When the plating layer was dissolved with heated 10% HCΩ to measure the basis weight, the chromium was completely dissolved along with the matrix. Note that the chromium particles in the plating bath were stable, and no changes such as hydrogen gas generation occurred.

(試験条件) (めっき板の裸耐食性) 5%NaCQ水溶液に浸漬30分と大気中60℃湿度6
0%30分の繰り返しサイクルで6週間実施した。
(Test conditions) (Bare corrosion resistance of plated plate) Immersed in 5% NaCQ aqueous solution for 30 minutes and in the atmosphere at 60°C and humidity 6
It was carried out for 6 weeks with a 0% 30 minute repeat cycle.

(塗装後の射孔あき腐食性) 3mmの隙間をあけて相対したサンプルに浸漬型化成処
理、カチオン電着20μm外側に付着する条件で塗装し
、塩水噴霧6時間→乾燥70℃4時間→湿潤50℃95
RH4時間→冷却−20℃4時間の繰り返しサイクル試
験を6週間行なった。
(Corrosion caused by injection holes after painting) Samples facing each other with a gap of 3 mm were subjected to immersion chemical conversion treatment, and cationic electrodeposition was applied to the outside by 20 μm, followed by salt water spraying for 6 hours → drying at 70°C for 4 hours → moistening. 50℃95
A repeated cycle test of 4 hours at RH and then 4 hours at cooling at -20°C was conducted for 6 weeks.

(塗装後の密看性) 浸漬型化成処理、カチオン電着20μm塗装した試験片
にクロスカットを入れ、前項と同一条件の繰り返しサイ
クル試験を4週間行なった後のクロスカットからの片側
最大ふくれ幅測定。
(Hermeticity after painting) A cross-cut was made on a test piece coated with 20 μm thick cationic electrodeposition using dipping type chemical conversion treatment, and the maximum bulging width on one side from the cross-cut after 4 weeks of repeated cycle tests under the same conditions as in the previous section. measurement.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、亜鉛又は亜鉛合金めっき鋼板の耐食性
を著しく向上することができ、自動車用鋼板等に適用す
ることができ、工業的に大きな効果を奏することができ
る等の優れた効果が得られる。
According to the present invention, the corrosion resistance of zinc or zinc alloy coated steel sheets can be significantly improved, and excellent effects can be obtained, such as being able to be applied to steel sheets for automobiles, etc., and achieving great industrial effects. It will be done.

Claims (2)

【特許請求の範囲】[Claims] (1)亜鉛または亜鉛を主体とする合金めっき層中に金
属クロム粒子を分散して含有する被覆層を有する防錆用
鋼板。
(1) A rust-preventing steel sheet having a coating layer containing metallic chromium particles dispersed in a zinc or zinc-based alloy plating layer.
(2)亜鉛または亜鉛を主体とする合金めっき層中に金
属クロム粒子を分散して含有する被覆層を内層に有し、
最表層に亜鉛または鉄、あるいはそれらを主成分とする
合金めっき層を有する複層の防錆用鋼板。
(2) The inner layer has a coating layer containing metal chromium particles dispersed in a zinc or zinc-based alloy plating layer,
A multi-layer anti-corrosion steel plate with a zinc, iron, or alloy plating layer mainly composed of these on the outermost layer.
JP889886A 1986-01-21 1986-01-21 Steel sheet for rust prevention Pending JPS62167898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP889886A JPS62167898A (en) 1986-01-21 1986-01-21 Steel sheet for rust prevention

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP889886A JPS62167898A (en) 1986-01-21 1986-01-21 Steel sheet for rust prevention

Publications (1)

Publication Number Publication Date
JPS62167898A true JPS62167898A (en) 1987-07-24

Family

ID=11705498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP889886A Pending JPS62167898A (en) 1986-01-21 1986-01-21 Steel sheet for rust prevention

Country Status (1)

Country Link
JP (1) JPS62167898A (en)

Similar Documents

Publication Publication Date Title
KR910007162B1 (en) High corrosion resistant plated composite steel strip and method therefor
Hamid et al. Process and performance of hot dip zinc coatings containing ZnO and Ni–P under layers as barrier protection
JP4615807B2 (en) Manufacturing method of surface-treated steel sheet, surface-treated steel sheet, and resin-coated surface-treated steel sheet
JPS5815554B2 (en) Plated steel materials for cationic electrodeposition coating
JP3043336B1 (en) Electro-galvanized steel sheet excellent in white rust resistance and method for producing the same
JPS63243295A (en) Rust preventive steel sheet having superior corrosion resistance
JP2018135570A (en) Sn BASED ALLOY PLATED STEEL SHEET AND METHOD FOR MANUFACTURING THE SAME
JPH03223472A (en) Surface treating liquid and surface treatment for galvanized steel sheet
JPS62167898A (en) Steel sheet for rust prevention
JPS6343479B2 (en)
JPH0536518B2 (en)
JP2011236471A (en) Composite electrogalvanized steel sheet, and method for producing the same
JPS59123796A (en) Production of electrogalvanized steel sheet having high corrosion resistance
JPH025839B2 (en)
JPH01176551A (en) Highly corrosion resistant organic composite plated steel plate
JPH03240994A (en) Rust preventive steel sheet excellent in corrosion resistance
JPH04337098A (en) Zn-ni-mo multi-ply electrogalvanized steel sheet excellent in corrosion resistance and plating adhesion
JPH01290797A (en) Composite electroplated steel sheet having superior corrosion resistance
US8802190B2 (en) Weldable corrosion resistant coating for steel and method of manufacture
KR920010778B1 (en) Excellant coating adhesive phosphate coating and water proof adhesive plating steel sheets and process for making
JPS6311696A (en) Composite plated steel sheet having high corrosion resistance
JPS6043498A (en) Galvanized steel sheet having high corrosion resistance and its production
KR920010777B1 (en) Electroplating steel sheet with two layer being of alloy metal and process for making
JPH01176095A (en) Composite electroplated steel sheet having high corrosion resistance
Turnpenny Inhibitive Pigments for Use on Zinc and Zinc-Alloy Coated Steel