JPS62167876A - Sputtering apparatus - Google Patents

Sputtering apparatus

Info

Publication number
JPS62167876A
JPS62167876A JP966286A JP966286A JPS62167876A JP S62167876 A JPS62167876 A JP S62167876A JP 966286 A JP966286 A JP 966286A JP 966286 A JP966286 A JP 966286A JP S62167876 A JPS62167876 A JP S62167876A
Authority
JP
Japan
Prior art keywords
vacuum chamber
electrode
main
auxiliary
main vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP966286A
Other languages
Japanese (ja)
Inventor
Masao Hayashi
正夫 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP966286A priority Critical patent/JPS62167876A/en
Publication of JPS62167876A publication Critical patent/JPS62167876A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To form a high quality thin film free from defects by placing a substrate for deposition in an auxiliary vacuum chamber installed in a main vacuum chamber and having a higher degree of vacuum than the main vacuum chamber and by colliding particles in plasma against the substrate by the pressure difference between the chambers. CONSTITUTION:A substrate 7 for deposition is placed in an auxiliary vacuum chamber 5 installed in a main vacuum chamber 1 and having a higher degree of vacuum than the chamber 1 by <=10<-2>Torr. The part of the auxiliary vacuum chamber 5 confronting a target electrode 4 placed in the main vacuum chamber 1 is used as an electrode (counter electrode) 5a so that a pair of electrodes 4, 5a are formed. A hole 6 through which the main vacuum chamber 1 communicates with the auxiliary vacuum chamber 5 is pierced in the electrode 5a.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、スパッタリング装置に関する。[Detailed description of the invention] A. Industrial application field The present invention relates to a sputtering device.

B6発明の概要 本発明は、JIc空室内に相対向する一対の?i電極を
設けてなるスパッタリング装置において、主真空室内に
一方の電極を兼ねかっ主真空室より高真空の補助真空室
を設け、この補助真空室内に堆積基板を配置して主真空
室と補助′FC空室との差圧によシ粒子を堆積基板に衝
突させることにょシ、 欠陥の極めて少ない良質なiv@を得ることができるよ
う(したものである。
B6 Summary of the Invention The present invention provides a pair of ? In a sputtering apparatus equipped with an i-electrode, an auxiliary vacuum chamber is provided in the main vacuum chamber that also serves as one electrode and has a higher vacuum than the main vacuum chamber. It is possible to obtain high-quality iv@ with extremely few defects by colliding the particles with the deposition substrate using the differential pressure with the FC cavity.

C0従来の技術 従来、スパッタリング装置は、一対の電極間に昼尚波等
の電圧を印加し、堆積基板を一方のα極に配置してプラ
ズマに直接晒し、イオン等を7z界によシ堆積基板に衝
突させて成膜する構成となっていた。ダイヤモンド状カ
ーボン薄膜の形成にありては、アイゼンベルブ氏等の論
文「ダイヤモンドカーボン#膜のイオンビーム薄膜生成
J(ジャーナル番オプ・アプライド・フィジックス誌第
42巻第7号、1971年、第2953〜2958頁)
に開示されるように、通常の放電電極の他にイオン加速
用電極等を設けて、高速高エネルギー状態のカーボンイ
オンを堆積基板に衝突せしめて硬質ダイヤモンド状のH
@を得ていた。
C0 Conventional technology Conventionally, sputtering equipment applies a voltage such as a high voltage between a pair of electrodes, places the deposition substrate at one α pole and exposes it directly to plasma, and deposits ions etc. in the 7z field. The structure was such that the film was formed by colliding with the substrate. Regarding the formation of diamond-like carbon thin films, there is a paper by Dr. Eisenberg et al. entitled "Ion Beam Thin Film Formation of Diamond Carbon # Films J" (Journal No. Op Applied Physics, Vol. 42, No. 7, 1971, No. 2953-- 2958 pages)
As disclosed in 2003, an ion accelerating electrode is provided in addition to a normal discharge electrode, and carbon ions in a high-velocity, high-energy state collide with the deposition substrate to generate hard diamond-like H
I was getting @.

D0発明が解決しようとする問題点 しかしながら、従来のスパッタリング装置においては、
堆積基板をプラズマに直接晒してお〕、イオン等が電界
によシ堆積基板に衝突するために、得られた薄膜は、局
部的に損傷を受けた欠陥の多いものであった。また、ア
イゼンベルブ氏尋のイオンビームスパッタリング装置は
、イオン加速用電極、電源等を設けるために装置が複雑
であり、炭素イオンおよびアルゴンイオンのイオン衝撃
ニよシ薄膜の欠陥がより多くなるという問題があった。
Problems to be solved by the D0 invention However, in conventional sputtering equipment,
When the deposition substrate was directly exposed to plasma], the resulting thin film was locally damaged and had many defects because ions and the like collided with the deposition substrate due to the electric field. In addition, Mr. Eisenberg's ion beam sputtering equipment is complicated because it is equipped with ion accelerating electrodes, power supplies, etc., and the problem is that the ion bombardment of carbon ions and argon ions increases the number of defects in the thin film. was there.

一方、イオンattrs等による悪影響を防止するため
に、堆積基板と放電プラズマとの間に金属メツシュを配
置し、この金属メック5If−正電界を印加したシまた
は接地し九シした装置が知られている。
On the other hand, in order to prevent the adverse effects of ion attrs, etc., there are known devices in which a metal mesh is placed between the deposition substrate and the discharge plasma, and a positive electric field is applied or the device is grounded. There is.

かかる装置によれば、成膜速度は多少遅くなるが、薄膜
の欠陥はかなり改善される。しかし、この装置によシ、
例えばアモルファスシリコン薄膜を形成した場合には、
良好な特性の薄膜を得ることができず、またアモルファ
スカーボン薄膜を形gした場合には、水素の含有量が多
くなってしまつ九。
According to such an apparatus, although the film formation rate is somewhat slow, defects in the thin film are significantly improved. However, with this device,
For example, when forming an amorphous silicon thin film,
It is not possible to obtain a thin film with good characteristics, and when an amorphous carbon thin film is formed, the hydrogen content becomes large.

水素の含有量が多くなるのは、中性粒子が雰囲気ガスで
ある水素と反応して重合が進むためと考えられ、かかる
現象を抑制するために、プラズマに堆積基板および金属
メツシュを近づけると、またプラズマの影響によシ欠陥
の多い薄膜となってしまった。
The reason why the hydrogen content increases is thought to be because neutral particles react with hydrogen, which is an atmospheric gas, and polymerization progresses.In order to suppress this phenomenon, when the deposition substrate and metal mesh are brought close to the plasma, Furthermore, the plasma resulted in a thin film with many defects.

E0問題点を解決するための手段 上記従来の問題点を解決するために、本発明は、真全室
内に相対向する一対の電極を設けてなるスパッタリング
装置において、前記真空室を主真空室とし、その主X空
室内に主真空室の圧力より10 以下の高A!2!とな
る補助真空室を設けるとともに、その補助真空室におけ
る少なくとも一方の電極に対向する部分を他方の電極と
し、その他方の電極に主X空室と補助真空室とを連通ず
る連通孔を形成し、補助真空室内にm積基板を配置した
ものである。
Means for Solving the E0 Problem In order to solve the above-mentioned conventional problems, the present invention provides a sputtering apparatus in which a pair of electrodes facing each other is provided in a full chamber, in which the vacuum chamber is used as a main vacuum chamber. , a high A in its main 2! In addition to providing an auxiliary vacuum chamber, a portion of the auxiliary vacuum chamber opposite to at least one electrode is used as the other electrode, and a communication hole is formed in the other electrode to communicate the main X cavity and the auxiliary vacuum chamber. , m-sized substrates are placed in an auxiliary vacuum chamber.

補助真空室の圧力が主真空室の圧力の10 を越えると
、補助真空室と主真空室との圧力差が十分でなくなり、
成膜速度が遅くなるとともに、良質な′#膜を得ること
ができない。また、補助真空室の圧力を、主真空室の圧
力の10 未満とすることは実用上無理がある。すなわ
ち、補助真空室の圧力をPI  、主真空室の圧力をP
2とすると、Pt==P2X10 〜10 1)”好ま
しい。
If the pressure in the auxiliary vacuum chamber exceeds the pressure in the main vacuum chamber by 10%, the pressure difference between the auxiliary vacuum chamber and the main vacuum chamber will not be sufficient.
The film formation rate becomes slow and a high-quality '# film cannot be obtained. In addition, it is practically impossible to set the pressure in the auxiliary vacuum chamber to less than 10 degrees lower than the pressure in the main vacuum chamber. That is, the pressure in the auxiliary vacuum chamber is PI, and the pressure in the main vacuum chamber is P.
2, Pt==P2X10 ~10 1)" is preferable.

10作 用 上記構成のスパッタリング装置において、プラズマ中の
粒子は、主X空室と補助真空室との差圧により、連通孔
を介して補助Jic窒室内に導入されて堆積基板に衝突
し、薄膜が形成される。ここく、粒子のエネルギーが小
さいので堆積基板、薄膜に与える衝撃の影響はほとんど
なく、また堆積基板をプラズマの近くに配置できるため
に、例えばダイヤモンド状カーボン薄瞑形成の場合、補
助真空室内では粒子の平均自由行程が長く、プラズマ中
から重合していない炭素粒子(せいぜい1〜3個の炭素
)が水素付加反応を起こすことなく堆積基板に到達する
ことができる。
10. In the sputtering apparatus having the above configuration, particles in the plasma are introduced into the auxiliary JIC nitrogen chamber through the communication hole due to the pressure difference between the main X cavity and the auxiliary vacuum chamber, and collide with the deposition substrate, forming a thin film. is formed. Since the energy of the particles is small, there is almost no impact on the deposition substrate and thin film, and since the deposition substrate can be placed close to the plasma, for example, in the case of diamond-like carbon thin film formation, the particles are has a long mean free path, and unpolymerized carbon particles (at most 1 to 3 carbon particles) from the plasma can reach the deposition substrate without causing a hydrogen addition reaction.

G、実施例 以F1本発明を図に示す一実施例に基づき詳細に説明す
る。
G. Embodiment F1 The present invention will be explained in detail based on an embodiment shown in the drawings.

実施例1 図線本発明に係るプレーナ型!ダネトロンスパッタリン
グ装置の概略構成図で、主真空室1には、雰囲気ガス導
入管2および排気管3が接続されている。また、主真空
室1内には、75■φのグラファイトディスクターゲッ
ト電極4が設けられておシ、このターゲット電極4は、
主真空室1外に設けられた高周波電源(図示省略)に接
続されている。さらに、主真空室1内には、ターゲット
電極4に対向する有底円筒状の対向電極である補助真空
室5が設けられている。
Example 1 Diagram Planar type according to the present invention! 1 is a schematic configuration diagram of a Dunnetron sputtering apparatus, in which a main vacuum chamber 1 is connected to an atmospheric gas introduction pipe 2 and an exhaust pipe 3. Furthermore, a graphite disk target electrode 4 with a diameter of 75 mm is provided in the main vacuum chamber 1.
It is connected to a high frequency power source (not shown) provided outside the main vacuum chamber 1. Further, within the main vacuum chamber 1, an auxiliary vacuum chamber 5 is provided, which is a cylindrical counter electrode with a bottom facing the target electrode 4.

補助真空室5におけるターゲット電極4の対向面5aに
は、その中心部に主真空室1と補助真空室5とを連通す
る約0.2 mφの小孔である連通孔6が穿設されてい
る。また、補助真空室5内には、シリコン単結晶、石英
ガラスまたは金蒸着ガラス等からなる堆積基板7がター
ゲット電極4と対向して配置されている。補助真空室5
の天井面に相当する主真空室1の壁面には、補助真空室
5内を高に空に排気するための排気管8が接続されてい
る。なお、本実施例において、ターゲット電極4と補助
真空室5の対向面5aとの間の距離は約20篇とし、連
通孔6から堆積基板7までの距離は約lO■とじた。
A communication hole 6, which is a small hole of about 0.2 mφ, is bored in the center of the opposing surface 5a of the target electrode 4 in the auxiliary vacuum chamber 5, which communicates the main vacuum chamber 1 and the auxiliary vacuum chamber 5. There is. Further, in the auxiliary vacuum chamber 5, a deposition substrate 7 made of silicon single crystal, quartz glass, gold-deposited glass, or the like is placed facing the target electrode 4. Auxiliary vacuum chamber 5
An exhaust pipe 8 for evacuating the inside of the auxiliary vacuum chamber 5 to a high level is connected to the wall surface of the main vacuum chamber 1 corresponding to the ceiling surface of the main vacuum chamber 1 . In this example, the distance between the target electrode 4 and the facing surface 5a of the auxiliary vacuum chamber 5 was approximately 20 cm, and the distance from the communication hole 6 to the deposition substrate 7 was approximately 10 cm.

かかる構成のスパッタリング装&において、主真空室1
を予め13.3μPa (l X 10  Torr)
の真空状態に排気した後、雰囲気ガス導入管2を介して
主真空室1内に純度99.99999にの水素ガスを導
入し、主真空室lを66.7 pm (0,5Torr
 )  に保持した。一方、補助真空室5は、66.7
μPa(5xlOTorr)の高真空状態に保持し、陽
極電圧2 KVで13.56 Mtlzの高周波成力を
供給し、2時間スパッタリングを行った。なお、この時
の供給電力は300Wで、陽極電流は0.2人であった
In the sputtering apparatus having such a configuration, the main vacuum chamber 1
in advance at 13.3 μPa (l x 10 Torr)
After evacuating to a vacuum state of
) was held. On the other hand, the auxiliary vacuum chamber 5 is 66.7
Sputtering was performed for 2 hours by maintaining a high vacuum state of μPa (5×lOTorr) and supplying high frequency power of 13.56 Mtlz at an anode voltage of 2 KV. Note that the power supplied at this time was 300 W, and the anode current was 0.2.

このようKして得られ九薄膜は、すべて無色透明であシ
、赤外線吸収スペクトルの測定ではC−Hに起因する吸
収は認められなかった。また、薄膜にお秒る欠陥密度は
従来法による薄膜の115〜1/lO程度に低減されて
いた。さらに、本実施例によシ得九薄模は、比抵抗10
 Ω・儒以上の高い絶縁性t−wし、マイクロビッカー
ス硬度計による硬度測定では2000Kf/−以上の値
を示した。そして、紫外光(例えばH@−Cdレーザ3
25nm)によシフオドルミネッセンスが観測された。
All of the nine thin films obtained in this manner were colorless and transparent, and no absorption due to C-H was observed in the measurement of infrared absorption spectra. In addition, the defect density in the thin film was reduced to about 115 to 1/1O of the thin film produced by the conventional method. Furthermore, the nine-thin model obtained according to this example has a specific resistance of 10
It has a high insulation tw of Ω·F or more, and the hardness measured with a micro Vickers hardness tester showed a value of 2000 Kf/- or more. Then, ultraviolet light (for example, H@-Cd laser 3
25 nm), sifodoluminescence was observed.

実施例2 雰囲気ガスをアルゴンとした他は、実施例1と同一条件
でスパッタリングk 行ツft。
Example 2 Sputtering was performed under the same conditions as in Example 1 except that the atmosphere gas was argon.

七の結果、得られた薄膜は、淡黄色透明であり、欠陥密
度は従来法による薄膜の1/10〜1/100に低減さ
れ、比抵恍10  Ω・3以上で、マイクロビッカース
硬度計による硬度測定では3000 Kf/M以上の値
を示し九。
As a result of step 7, the obtained thin film was pale yellow and transparent, the defect density was reduced to 1/10 to 1/100 of that of the thin film made by the conventional method, and the specific resistance was 10 Ω・3 or more, which was measured by a micro Vickers hardness meter. Hardness measurements showed a value of 3000 Kf/M or more.9.

H0発明の効果 以上のように、本発明のスパッタリング装置によれば、
主真空室内にその主真9室の圧力より高真空の補助真空
室を設け、この補助真空室内lCC堆積基金配置し、主
に9呈と補助に22室との差圧によシ粒子をjIi積基
板基板突させてスパッタリングを行うために、堆積基板
がプラズマに直接的されず、また粒子の持つエネルギー
も小さいので、欠陥の極めて少ない良質なR1[を得る
ことができ、電子デバイスとして用いることができる。
H0 Effects of the invention As described above, according to the sputtering apparatus of the invention,
An auxiliary vacuum chamber with a pressure higher than that of the main vacuum chamber 9 is provided in the main vacuum chamber, and the ICC deposition fund is placed in this auxiliary vacuum chamber, and the particles are collected by the differential pressure between the main vacuum chamber 9 and the auxiliary chamber 22. Since the sputtering is performed against the laminated substrate, the deposited substrate is not directly exposed to plasma, and the energy of the particles is small, so it is possible to obtain high quality R1 with extremely few defects, and it can be used as an electronic device. I can do it.

また、本発明の装置は、アイゼンベルブ氏等のイオンビ
ームスパッタリング装置に比べて簡単な構造である。
Furthermore, the apparatus of the present invention has a simpler structure than the ion beam sputtering apparatus of Eisenberg et al.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明のスパッタリング装置の一実施例を示す概絡
構成図である。 l・・・主罵空呈、4・・・ターゲット電極、5・・・
補助真空室(対向電極)、6・・・連通孔、7・・・堆
積基板。
The figure is a schematic diagram showing an embodiment of the sputtering apparatus of the present invention. l...Main insult, 4...Target electrode, 5...
Auxiliary vacuum chamber (counter electrode), 6... communicating hole, 7... deposition substrate.

Claims (1)

【特許請求の範囲】[Claims] (1)真空室内に相対向する一対の電極を設けてなるス
パッタリング装置において、前記真空室を主真空室とし
、その主真空室内に主真空室の圧力より10^−^2以
下の高真空となる補助真空室を設けるとともに、その補
助真空室における少なくとも一方の電極に対向する部分
を他方の電極とし、その他方の電極に主真空室と補助真
空室とを連通する連通孔を形成し、補助真空室内に堆積
基板を配置したことを特徴とするスパッタリング装置。
(1) In a sputtering apparatus comprising a pair of electrodes facing each other in a vacuum chamber, the vacuum chamber is a main vacuum chamber, and a high vacuum of 10^-^2 or less than the pressure of the main vacuum chamber is provided in the main vacuum chamber. At the same time, a portion of the auxiliary vacuum chamber opposite to at least one electrode is used as the other electrode, a communication hole is formed in the other electrode to communicate the main vacuum chamber and the auxiliary vacuum chamber, and the auxiliary vacuum chamber is A sputtering device characterized in that a deposition substrate is placed in a vacuum chamber.
JP966286A 1986-01-20 1986-01-20 Sputtering apparatus Pending JPS62167876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP966286A JPS62167876A (en) 1986-01-20 1986-01-20 Sputtering apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP966286A JPS62167876A (en) 1986-01-20 1986-01-20 Sputtering apparatus

Publications (1)

Publication Number Publication Date
JPS62167876A true JPS62167876A (en) 1987-07-24

Family

ID=11726427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP966286A Pending JPS62167876A (en) 1986-01-20 1986-01-20 Sputtering apparatus

Country Status (1)

Country Link
JP (1) JPS62167876A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4897172A (en) * 1987-03-26 1990-01-30 Kabushiki Kaisha Toshiba Sputtering chamber structure for high-frequency bias sputtering process
JP2012222243A (en) * 2011-04-12 2012-11-12 Ulvac Japan Ltd Semiconductor layer formation device, semiconductor layer manufacturing method
CN107068587A (en) * 2016-10-28 2017-08-18 北京七星华创电子股份有限公司 The control pressurer system and compress control method of reaction chamber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4897172A (en) * 1987-03-26 1990-01-30 Kabushiki Kaisha Toshiba Sputtering chamber structure for high-frequency bias sputtering process
JP2012222243A (en) * 2011-04-12 2012-11-12 Ulvac Japan Ltd Semiconductor layer formation device, semiconductor layer manufacturing method
CN107068587A (en) * 2016-10-28 2017-08-18 北京七星华创电子股份有限公司 The control pressurer system and compress control method of reaction chamber

Similar Documents

Publication Publication Date Title
Takayanagi et al. Deposition of monolayer and bulk lead on Ag (111) studied in vacuum and in an electrochemical cell
Zakroczymski et al. Activation of the iron surface to hydrogen absorption resulting from a long cathodic treatment in NaOH solution
Meyerhofer New technique of aligning liquid crystals on surfaces
JPS62167876A (en) Sputtering apparatus
KR20020081556A (en) Method of forming a thin film
Maier-Komor et al. Reproducibility and simplification of the preparation procedure for carbon stripper foils by laser plasma ablation deposition
Bruneteau et al. Effect of positive and negative ion energies on H− destruction by mutual neutralization in low‐pressure plasmas
JPH08319105A (en) Gas cluster and formation of gas cluster ion
Bass et al. Charge trapping and the desorption of anionic and metastable fragments by dissociative electron attachment to condensed
Stocker Cathode sputtering in inert-gas glow discharges
Lee et al. Ionic Current as a Function of Field in the Oxide during Plasma Anodization of Tantalum and Niobium
JP3478561B2 (en) Sputter deposition method
Kadota et al. Neutralization method for detection of metastable ions and its application to the production of metastable rare gas ions by electron impact
JPS6248759B2 (en)
Maeda et al. Work function and dipole barrier of sputter-cleaned Fe-Ni alloy surfaces
JPH02115379A (en) Device for forming thin film
Nyaiesh et al. The effects of gas composition on discharge and deposition characteristics when magnetron sputtering aluminium
JPH01230275A (en) Formation of superconductive thin film
RU1836487C (en) Method of metal hydride film applying in vacuum, application of metal hydride film, produced by the method of item 1, and application of substratum with metal hydride film, produced by the method of item 1
Aita et al. (ArO)+ and (ArO2)+ ions in rf sputter deposition discharges
JPS6022971B2 (en) Sputtering method for metal oxide film
Okamoto et al. Excited oxygen beam by RF type multicapillary ion source
JPS63145774A (en) Method and device for forming thin film
JPH03115561A (en) Method for coating film and coating device
JPH06158304A (en) Formation of thin silicon nitride film