JPS62167834A - Wear and corrosion resistant ni base alloy for centrifugal covering - Google Patents

Wear and corrosion resistant ni base alloy for centrifugal covering

Info

Publication number
JPS62167834A
JPS62167834A JP720486A JP720486A JPS62167834A JP S62167834 A JPS62167834 A JP S62167834A JP 720486 A JP720486 A JP 720486A JP 720486 A JP720486 A JP 720486A JP S62167834 A JPS62167834 A JP S62167834A
Authority
JP
Japan
Prior art keywords
alloy
corrosion resistance
base alloy
wear
centrifugal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP720486A
Other languages
Japanese (ja)
Other versions
JPH0535208B2 (en
Inventor
Kuniaki Kobayashi
小林 邦明
Kazuhiko Takei
武井 和彦
Tatsuya Kuramoto
蔵本 竜也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP720486A priority Critical patent/JPS62167834A/en
Publication of JPS62167834A publication Critical patent/JPS62167834A/en
Publication of JPH0535208B2 publication Critical patent/JPH0535208B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain the titled alloy superior in solidifying characteristic and corrosion resistance, by restricting contents of Si and Mn, in the title alloy contg. prescribed ratios of B, Si, C, Cr, Mn and Mo in addition to Ni. CONSTITUTION:The Ni base alloy for centrifugal covering is composed of, by weight 2.0-4.5% B, 0.3-1.5% C, 5.0-20.0% Cr, 7.0-20.0% Mo, <=0.4% Si, <=0.4% Mn and the balance Ni. If melting and casting are carried out without adding Si, Mn in such a way, ingot having remarkably improved corrosion resistance in addition to soundness without being badly affected in hardness and temp. during solidification is obtd. The Ni base alloy has equal or better wear resistance compared with conventional Ni and Ni-Co base alloy, and the solidifying characteristic and corrosion resistance remarkably that of exceed the conventional alloy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、プラスチック成型機等の円筒状シリンダー内
面の摩耗腐食し易い部分に遠心被覆法により被着して用
いられる耐摩耗、耐食性合金に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a wear-resistant and corrosion-resistant alloy that is used by being coated by a centrifugal coating method on the inner surface of a cylindrical cylinder of a plastic molding machine, etc., which is easily subject to abrasion and corrosion. It is something.

〔従来の技術〕[Conventional technology]

プラスチック成型機用シリンダー内面層には、成型中の
樹脂又は樹脂に加えた添加剤等による腐食や摩耗を防止
するために、耐食性と耐摩耗性を兼ね備えた合金材料が
要求される。
The inner surface layer of a cylinder for a plastic molding machine requires an alloy material that has both corrosion resistance and wear resistance in order to prevent corrosion and wear caused by the resin during molding or additives added to the resin.

従来から知られている耐摩耗合金、例えば鉄系合金は安
価ではあるが、近年著しく増大している耐摩耗性、耐食
性が要求されるようなプラスチックの成型には使用に耐
えない。
Although conventionally known wear-resistant alloys, such as iron-based alloys, are inexpensive, they cannot be used for molding plastics, which require wear resistance and corrosion resistance, which have increased significantly in recent years.

この難点を解決するために、遠心被覆法による被着材合
金として種々の合金が開発されている。
In order to solve this difficulty, various alloys have been developed as adherend alloys for centrifugal coating.

しかしこれらの中でCo基合金及びCo−Ni基合金は
耐摩耗性は優れているが、近来耐食性の面で使用者側の
要求が厳しくなり不充分となりつつある。
However, among these alloys, Co-based alloys and Co-Ni-based alloys have excellent wear resistance, but in recent years, users have become more demanding in terms of corrosion resistance, and these alloys are becoming insufficient.

また、耐摩耗性、耐食性合金として公知のNi基合金は
、Co基及びGo−Ni基合金に比べ耐食性は優れてい
るが、遠心被覆用にこれら公知Ni基合金を使用しよう
としても゛耐摩耗性及び凝固特性のいずれか又は両方に
より使用に耐えない。ここで、凝固特性というのは、凝
固区間温度即ち合金を示差熱分析に供して得られた凝固
開始温度と凝固終了温度との差を意味する。これがあま
り広いと遠心鋳造時にシリンダー内面の不健全部が多く
なり、切削加工を深くまで行なわなくてはならず、材料
の歩留りが低下し経済性を損なうので、狭い方が望まし
い。
In addition, Ni-based alloys, which are known as wear-resistant and corrosion-resistant alloys, have superior corrosion resistance compared to Co-based and Go-Ni-based alloys. Unsuitable for use due to either or both of its properties and coagulation properties. Here, the solidification characteristic means the solidification zone temperature, that is, the difference between the solidification start temperature and the solidification end temperature obtained by subjecting the alloy to differential thermal analysis. If it is too wide, there will be many unhealthy parts on the inner surface of the cylinder during centrifugal casting, and cutting will have to be carried out deeply, which will reduce the material yield and impair economic efficiency, so a narrower one is preferable.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、凝固特性及び耐食性のより優れた遠心
被覆用Ni基合金を提供することにある。
An object of the present invention is to provide a Ni-based alloy for centrifugal coating that has better solidification properties and corrosion resistance.

この目的を達成するため、本発明者等は研究を重ね、B
、Si、C,Cr、Mn及びMoを添加含有させること
が有効である知見を得、既に提案した(特願昭60−2
28885号)。そして、更に′m続して行なった研究
により、上記元素のうち、硬度上昇及び脱酸に効果的と
考えられたSt及びMnが意外にも充分作用していない
上に、耐食性をも低下させるという知見を得た。即ち、
Si+Mnを添加せずに溶解鋳造を行なって得た鋳塊は
、健全である上に、その硬度、凝固区間温度は共に悪影
響を受けず、その耐食性は大幅に向上していた。
In order to achieve this objective, the inventors have conducted repeated research and
, we have found that it is effective to add and contain Si, C, Cr, Mn, and Mo, and have already proposed it (Japanese Patent Application No. 60-2
No. 28885). Furthermore, subsequent research revealed that among the above elements, St and Mn, which were thought to be effective in increasing hardness and deoxidizing, surprisingly did not work sufficiently and also decreased corrosion resistance. I obtained this knowledge. That is,
The ingot obtained by melting and casting without adding Si+Mn was not only sound, but also had no adverse effects on its hardness or solidification zone temperature, and its corrosion resistance was significantly improved.

〔問題点を解決するための手段〕 その結果、本発明合金は重量%で、B 2. 0〜4.
5%、C0.3〜1.5%、Cr5.0〜20.0%、
Mo 7.0〜20.0%、Si0.4%以下、Mn0
.4%以下、残部Ni及び不可避的不純物よりなる組成
としたものである。
[Means for solving the problem] As a result, the alloy of the present invention has a B2. 0-4.
5%, C0.3-1.5%, Cr5.0-20.0%,
Mo 7.0-20.0%, Si 0.4% or less, Mn0
.. The composition was made up of 4% or less, the balance being Ni and unavoidable impurities.

〔作 用〕[For production]

本発明合金の成分組成限定理由を以下に述べる。 The reason for limiting the composition of the alloy of the present invention will be described below.

以下%は重量%を表わすものとする。Hereinafter, % represents weight %.

BはCrと反応して硬度を上げると同時に凝固開始温度
を下げる。しかし、2.0%未満では硬度上昇に余り寄
与せず、4.5%を超えると材料を脆くする。CはCr
と反応して硬度を上げる効果がある。この効果は0.3
%未満では効果が認められず、1.5%を超えるとR危
くなる。CrはC,Bと反応して炭化物、硼化物を形成
して硬度上昇に寄与する。5.0%未満ではその効果は
認められず、20.0%を超えて添加してもその効果は
薄らぐと同時に、溶湯の流動性を低下させる。Moは耐
食性を向上させる効果があり、7.0%未満ではその効
果がなく、20.0%を超えて含有させると凝固特性が
低下する。St及びMnは含有されない方が望ましく、
含有されてもいずれも0.4%以下であることが必要で
ある。少くとも一方が0.4%を超えると凝固区間温度
の広がりと耐食性の低下が無視できなくなる。
B reacts with Cr to increase the hardness and at the same time lower the solidification initiation temperature. However, if it is less than 2.0%, it will not contribute much to increasing hardness, and if it exceeds 4.5%, it will make the material brittle. C is Cr
It has the effect of increasing hardness by reacting with This effect is 0.3
If it is less than 1.5%, no effect is observed, and if it exceeds 1.5%, R becomes dangerous. Cr reacts with C and B to form carbides and borides, contributing to an increase in hardness. If it is less than 5.0%, no effect will be observed, and if it is added in excess of 20.0%, the effect will be weakened and at the same time the fluidity of the molten metal will be reduced. Mo has the effect of improving corrosion resistance, and if it is less than 7.0%, it has no effect, and if it is contained in more than 20.0%, the coagulation properties deteriorate. It is preferable that St and Mn not be contained;
Even if it is contained, it needs to be 0.4% or less. If at least one of them exceeds 0.4%, the spread of the solidification zone temperature and the decrease in corrosion resistance cannot be ignored.

〔実施例〕〔Example〕

次に本発明合金を実施例に基づいて説明する。 Next, the alloy of the present invention will be explained based on examples.

本発明合金、比較合金及び従来合金をそれぞれ高周波大
気溶解炉にて各10kg溶解し、棒状の鋳造物とした。
10 kg of each of the present invention alloy, comparative alloy, and conventional alloy were melted in a high-frequency atmospheric melting furnace to form rod-shaped castings.

これらの合金の成分、組成(%)を第1表に示す。The ingredients and composition (%) of these alloys are shown in Table 1.

次に各合金の一部から直径411、長さ51mの試験片
を採取して示差熱分析を行なった。試験条件は試料をア
ルミナ製のるつぼに入れ、アルゴン雲囲気中で900℃
まで毎分10℃の速度で昇温し900℃から1.200
℃まで毎分2℃の速度で昇温し凝固終了温度を決定した
Next, a test piece with a diameter of 411 m and a length of 51 m was taken from a portion of each alloy and subjected to differential thermal analysis. The test conditions were to place the sample in an alumina crucible and heat it at 900°C in an argon cloud.
The temperature is increased at a rate of 10℃ per minute from 900℃ to 1.200℃.
℃ at a rate of 2° C. per minute, and the solidification completion temperature was determined.

次に1.200℃から毎分2℃の速度で900℃まで降
温して凝固開始温度を決定し、この差から凝固区間温度
を求めた。
Next, the temperature was lowered from 1.200°C to 900°C at a rate of 2°C per minute to determine the solidification start temperature, and the solidification zone temperature was determined from this difference.

また、上記棒状鋳造物を切断し樹脂に埋込みアルミナバ
フ研磨で表面仕上げした後、ビッカース硬度(荷重10
kg)を測定した。各試料のビッカース硬度ならびに凝
固区間温度の結果を第2表に示す。
In addition, after cutting the rod-shaped casting, embedding it in resin, and finishing the surface by alumina buffing, the Vickers hardness (load 10
kg) was measured. The results of Vickers hardness and solidification zone temperature of each sample are shown in Table 2.

第2表 更に、各鋳造物から直径20mm、厚さ5龍の円柱状腐
食試験片を作成した。腐食試験は、ぶつ酸(濃度46%
)を10%、塩酸(濃度36%)を10%含む沸騰液中
で24時間行ない試験前後の重量変化から単位面積当り
の重量減少を求めた。
Table 2 Furthermore, cylindrical corrosion test pieces with a diameter of 20 mm and a thickness of 5 mm were prepared from each casting. The corrosion test was carried out using butic acid (concentration 46%).
) in a boiling liquid containing 10% hydrochloric acid (concentration 36%) for 24 hours, and the weight loss per unit area was determined from the weight change before and after the test.

得られた結果を第2表に示す。The results obtained are shown in Table 2.

従来合金りは現用Ni −Co基合金であるが、本発明
合金の硬度は同等もしくはそれ以上で、高い耐摩耗性を
有している。凝固区間温度は狭い程よく、例えば30℃
以内が望ましいが、本発明合金は従来合金より狭い凝固
区間温度を有している。
The conventional alloy is the current Ni--Co based alloy, but the alloy of the present invention has the same or higher hardness and has high wear resistance. The narrower the solidification zone temperature, the better, for example 30℃
The alloy of the present invention has a narrower solidification zone temperature than conventional alloys.

また、本発明合金の耐食性は、従来合金に比べて著しく
向上している。
Furthermore, the corrosion resistance of the alloy of the present invention is significantly improved compared to conventional alloys.

〔発明の効果〕〔Effect of the invention〕

以上に詳述した如く、本発明合金は、従来のC。 As detailed above, the alloy of the present invention is similar to conventional C.

及びNi −Co基合金と同等もしくはそれ以上の耐摩
耗性を有しており、また凝固特性と耐食性は上記従来合
金を大きく上回っている。従って遠心鋳造時に内面に発
生する微小クランクが著しく少なくなるため材料の歩留
りが向上すると共に、プラスチック成型用シリンダー等
に極めておこり易い腐食による摩耗損傷も充分抑えるこ
とができる。
It has wear resistance equivalent to or better than Ni--Co based alloys, and its solidification properties and corrosion resistance greatly exceed those of the conventional alloys. Therefore, the number of minute cranks generated on the inner surface during centrifugal casting is significantly reduced, which improves the material yield, and also sufficiently suppresses wear and tear caused by corrosion, which is extremely likely to occur in plastic molding cylinders and the like.

Claims (1)

【特許請求の範囲】[Claims] (1)重量%で、B2.0〜4.5%、C0.3〜1.
5%、Cr5.0〜20.0%、Mo7.0〜20.0
%、Si0.4%以下、Mn0.4%以下、残部Ni及
び不可避的不純物よりなる耐摩耗・耐食性遠心被覆用N
i基合金。
(1) In weight%, B2.0-4.5%, C0.3-1.
5%, Cr5.0-20.0%, Mo7.0-20.0
%, Si 0.4% or less, Mn 0.4% or less, balance Ni and unavoidable impurities.
i-base alloy.
JP720486A 1986-01-18 1986-01-18 Wear and corrosion resistant ni base alloy for centrifugal covering Granted JPS62167834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP720486A JPS62167834A (en) 1986-01-18 1986-01-18 Wear and corrosion resistant ni base alloy for centrifugal covering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP720486A JPS62167834A (en) 1986-01-18 1986-01-18 Wear and corrosion resistant ni base alloy for centrifugal covering

Publications (2)

Publication Number Publication Date
JPS62167834A true JPS62167834A (en) 1987-07-24
JPH0535208B2 JPH0535208B2 (en) 1993-05-26

Family

ID=11659492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP720486A Granted JPS62167834A (en) 1986-01-18 1986-01-18 Wear and corrosion resistant ni base alloy for centrifugal covering

Country Status (1)

Country Link
JP (1) JPS62167834A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04160438A (en) * 1990-10-23 1992-06-03 Mitsubishi Electric Corp Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04160438A (en) * 1990-10-23 1992-06-03 Mitsubishi Electric Corp Semiconductor device

Also Published As

Publication number Publication date
JPH0535208B2 (en) 1993-05-26

Similar Documents

Publication Publication Date Title
US3352666A (en) Precipitation hardening stainless steel alloy
US4133680A (en) Method of producing dopant material for iron or nickel-base alloys
JPH04141553A (en) Composite roll for hot rolling
US3392015A (en) Aluminum-base alloy for use at elevated temperatures
JPH04105787A (en) Filler metal for surface reforming of aluminum material
JPH07109542A (en) Roll material for hot rolling
JPS62167834A (en) Wear and corrosion resistant ni base alloy for centrifugal covering
JP2745646B2 (en) Method for producing high-temperature wear-resistant Co-based alloy with excellent hot workability
JPS622626B2 (en)
JP2001279369A (en) Wear resistant and corrosion resistant alloy and cylinder for molding machine
JP3531752B2 (en) Molding machine cylinder and method of manufacturing the same
JPS59116348A (en) Wear-resistant cu alloy having high strength and high toughness
JPS6289835A (en) Ni-base alloy for centrifugal coating having resistance to wear and corrosion
JP4383988B2 (en) Spheroidal graphite cast iron with excellent machinability and mechanical properties of fatigue strength, tensile strength, proof stress and elongation
JPS62146232A (en) Dental cast co alloy
JPS6289836A (en) Ni-base alloy for centrifugal coating having resistance to wear and corrosion
JPS6126739A (en) Heat resistant co alloy for metallic mold for molding
JPH1161322A (en) Rolling roll outer layer material and rolling roll using the material
JPH01139737A (en) Internal hardening material for cylinder
JPS6341977B2 (en)
JPS6341975B2 (en)
JP2002275588A (en) Wear resistant and corrosion resistant alloy and cylinder for molding machine
JP2642570B2 (en) Heat- and wear-resistant cast slab support for continuous casting
JPS61257449A (en) Wear and corrosion resistant ni alloy for centrifugal coating
JP2745647B2 (en) Method for producing high-temperature wear-resistant Co-based alloy with excellent hot workability