JPS62167732A - Hydrolysis of aromatic iodide - Google Patents

Hydrolysis of aromatic iodide

Info

Publication number
JPS62167732A
JPS62167732A JP61007985A JP798586A JPS62167732A JP S62167732 A JPS62167732 A JP S62167732A JP 61007985 A JP61007985 A JP 61007985A JP 798586 A JP798586 A JP 798586A JP S62167732 A JPS62167732 A JP S62167732A
Authority
JP
Japan
Prior art keywords
compound
hydrolysis
formula
aromatic
aromatic iodide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61007985A
Other languages
Japanese (ja)
Inventor
Mikio Kusuda
楠田 幹夫
Yuji Matsuoka
松岡 有二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP61007985A priority Critical patent/JPS62167732A/en
Publication of JPS62167732A publication Critical patent/JPS62167732A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain an aromatic hydroxyl compound in high selectivity, by hydrolyzing 4,4'-diiododiphenyl, etc., in the presence of a copper compound, etc., and an alkali metal hydroxide under mild condition using dimethylsulfoxide as a solvent. CONSTITUTION:The objective compound is produced by hydrolyzing a 4,4'- diiododiphenyl-type aromatic iodide of formula I (X is -O-, -, -CH2-, -SO4- or group of formula II) in dimethylsulfoxide solvent in the presence of a copper compound such as CuI, Cu2O, etc., or an iron compound such as FeO, an alkali metal hydroxide such as KOH and optionally water in solubilized state preferably at 80-250 deg.C, especially 100-180 deg.C. The amount of dimethyl-sulfoxide is preferably 2-40pts. per 1pt. of the compound of formula I and the molar ratios of the copper compound and the alkali metal hydroxide to the compound of formula I are preferably 0.05-10 and 1-20, respectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、一般式(1)で表わされる4、4′−ショー
トジフェニルタイプの芳香族ヨウ素化物を加水分解する
ことにより、芳香族ヒドロキシ化合物を製造する方法に
関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention provides an aromatic hydroxy compound by hydrolyzing a 4,4'-short diphenyl type aromatic iodide represented by the general formula (1). The present invention relates to a method for manufacturing.

〔従来の技術〕[Conventional technology]

従来、一般式(1)で表される芳香族ハロゲン化物に類
似の化合物の加水分解方法としては、4.4′−ジブロ
モジフェニルエーテルを苛性アルカリ水溶液中で、アル
カリ金属過酸化物、ハロゲン化銅存在下に加水分解する
ことにより4.4′−ジヒドロキシジフェニルエーテル
を得る方法(USP3290386 )があり、更に4
,4′−ジブロモジフェニルを銅化合物触媒存在下に、
アルカリ水?$ t&中で加水分解し、4.4′−ジヒ
ドロキシジフェニルを得る方法(特開昭55−1730
4)がある。
Conventionally, as a method for hydrolyzing a compound similar to the aromatic halide represented by the general formula (1), 4,4'-dibromodiphenyl ether was treated in an aqueous caustic solution in the presence of an alkali metal peroxide and a copper halide. There is a method to obtain 4,4'-dihydroxydiphenyl ether by hydrolysis (USP 3290386), and
, 4'-dibromodiphenyl in the presence of a copper compound catalyst,
Alkaline water? A method for obtaining 4,4'-dihydroxydiphenyl by hydrolysis in $t&
4).

しかし、未だ、4.4′の位置にヨードを有する一般式
(1)で表される芳香族ヨウ素化物の加水分解方法は、
開示されていない。
However, there are still no methods for hydrolyzing aromatic iodides represented by general formula (1) having iodine at the 4.4' position.
Not disclosed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

芳香族ハロゲン化合物の大きな特色の一つは、ハロゲン
の反応性が、脂肪族の場合に比して、はるかに小さいこ
とである。
One of the major characteristics of aromatic halogen compounds is that the reactivity of the halogen is much lower than that of aliphatic compounds.

従って、該従来方法は、アルカリ水溶液中で、銅化合物
触媒存在下に180〜250℃で加水分解を行なってい
る。
Therefore, in the conventional method, hydrolysis is carried out at 180 to 250° C. in an aqueous alkaline solution in the presence of a copper compound catalyst.

該従来方法を一般式(1)で表される芳香族ヨウ素化物
(以下単に芳香族ヨウ素化物と略記する)の加水分解反
応に適用した場合、脱ヨウ素反応などの熱分解が起こり
、加水分解生成物は全く得られない。
When this conventional method is applied to the hydrolysis reaction of the aromatic iodide represented by the general formula (1) (hereinafter simply referred to as aromatic iodide), thermal decomposition such as deiodination reaction occurs, and hydrolysis products You can't get anything at all.

本発明者らは、低温、短時間で高選択的に加水、分解す
る方法を開発すべく鋭意研究を重ねた結果芳香族ヨウ素
化物が、ジメチルスルホキシド溶媒中で、銅化合物また
は、鉄化合物と苛性アルカリの存在下で容易に加水分解
され、目的とする芳香族ヒドロキシ化合物に転化するこ
とを見い出し、この知見に基づいて本発明を完成するに
至った。
The present inventors have conducted intensive research to develop a method for highly selective hydrolysis and decomposition at low temperatures and in a short time. It was discovered that it is easily hydrolyzed in the presence of an alkali and converted into the target aromatic hydroxy compound, and based on this finding, the present invention was completed.

〔問題点を解決するための手段及び作用〕本発明におい
ては、反応溶媒にジメチルスルホキシドを用いることが
必須条件である。ジメチルスルホキシドを溶媒として用
いることによって、基質である所の芳香族ヨウ素化物、
銅化合物または鉄化合物、苛性アルカリ及び水または、
苛性アルカリ単独が可溶化され、その結果、穏和な条件
下においても加水分解反応が進行するものと推定される
。ジメチルスルホキシド溶媒は、単独で用いてもよいが
、触媒の溶解度を高めることを目的として第3級アミン
および/または相間移動触媒、例えば、第4級アンモニ
ウムハロゲン化物などと組合せて用いてもよい。ジメチ
ルスルホキシドの使用量は、特に制限はないが実用上芳
香族ヨウ素化物に対して、2倍1〜40倍量程度が好ま
しい。
[Means and effects for solving the problems] In the present invention, it is essential to use dimethyl sulfoxide as a reaction solvent. By using dimethyl sulfoxide as a solvent, the aromatic iodide as a substrate,
Copper or iron compounds, caustic and water or
It is presumed that the caustic alkali alone is solubilized, and as a result, the hydrolysis reaction proceeds even under mild conditions. The dimethyl sulfoxide solvent may be used alone, or may be used in combination with a tertiary amine and/or a phase transfer catalyst, such as a quaternary ammonium halide, for the purpose of increasing the solubility of the catalyst. The amount of dimethyl sulfoxide used is not particularly limited, but in practice it is preferably about 2 to 40 times the amount of the aromatic iodide.

本発明において、加水分解反応に供せられる一般式(1
)で表される芳香族ヨウ素化物において−X−は、特に
限定されるものではないが、−〇−2−、−CH2−、
−3o□−または−〇−等が、好適である。
In the present invention, the general formula (1
) In the aromatic iodide represented by -X- is not particularly limited, but -〇-2-, -CH2-,
-3o□- or -〇- etc. are suitable.

本発明において用いる触媒は、銅単独、鉄単独を除く銅
化合物または鉄化合物である。これらの化合物は、単独
で用いてもよいし、また2種以上混合して用いてもよい
The catalyst used in the present invention is copper alone, a copper compound excluding iron alone, or an iron compound. These compounds may be used alone or in combination of two or more.

その例を挙げると次の様になる。An example of this is as follows.

CL120. CuO、Cu(Olf)g、CuzOs
、 CuF、CuC1,CuBr。
CL120. CuO, Cu(Olf)g, CuzOs
, CuF, CuC1, CuBr.

Cul+CuCN、?I:l’ (C1l(CN)4)
 (M’は、1価の陽イオン) * CuF z + 
CuC121CuBr 2 + Cu (CN) z 
+  M z ’  (Cu (CN) 4) tCu
SO4,Cu(NOz)z、Cu(C)lzcOO)z
、 CuC0+、Cu+(POt)z+Fed、 Fe
(OH)z、 Fe2O3+ Fed(OH)、 Fe
S、Fe5z、 FeFz+M’FeFi+ Mz ’
FeFa + FeF3. M’ FeF4 、 Mz
 ’ FeF3. Mz ’FeF、、。
Cul+CuCN,? I:l' (C1l(CN)4)
(M' is a monovalent cation) *CuF z +
CuC121CuBr 2 + Cu (CN) z
+ M z ' (Cu (CN) 4) tCu
SO4, Cu(NOz)z, Cu(C)lzcOO)z
, CuC0+, Cu+(POt)z+Fed, Fe
(OH)z, Fe2O3+ Fed(OH), Fe
S, Fe5z, FeFz+M'FeFi+ Mz'
FeFa + FeF3. M'FeF4, Mz
'FeF3. Mz 'FeF,,.

Mz’ (FeFs(HzO)) 、 FeC1,、M
’FeCl3. M、’FeC1,。
Mz' (FeFs(HzO)), FeC1,, M
'FeCl3. M,'FeC1,.

M4’FeC16,FeC1=、 M’FeCl4+ 
MZ’ (FeC1s(HzO)) +FeBrz、 
FeBr:+、 Fe1z、 Fe(ClO2)z+ 
Fe(C104)+。
M4'FeC16, FeC1=, M'FeCl4+
MZ' (FeC1s(HzO)) +FeBrz,
FeBr:+, Fe1z, Fe(ClO2)z+
Fe(C104)+.

Flll(NO3)21 Fe(No:+)a、 Fe
SO41Fez(SO4)a、 Fe2O3+Mt’ 
CFe(CN)b〕+lb’ (Fe(CN)b) +
 Fe5(PO4)z。
Flll(NO3)21 Fe(No:+)a, Fe
SO41Fez(SO4)a, Fe2O3+Mt'
CFe(CN)b〕+lb' (Fe(CN)b) +
Fe5(PO4)z.

FePO,、Fe(C1l=COO) 2+ Fe(C
I、C00) 3+が挙げられ、この中で、特にハロゲ
ン化物、酸化物が工業的には、好ましい。これらの銅化
合物または鉄化合物の使用量に関しては、特に制限はな
いが、実用上芳香族ヨウ素化物に対して0.05〜lO
倍モル程度が好ましい。
FePO,, Fe(C1l=COO) 2+ Fe(C
I, C00) 3+, among which halides and oxides are particularly preferred industrially. There is no particular restriction on the amount of these copper compounds or iron compounds used, but in practice it is 0.05 to 1O per aromatic iodide.
It is preferably about twice the molar amount.

本発明において用いる苛性アルカリの使用量は、実用上
芳香族ヨウ素化物に対して1〜20倍モル程度が好まし
い。
The amount of caustic alkali used in the present invention is practically preferably about 1 to 20 times the mole of the aromatic iodide.

本発明において水の存在は、必須条件ではないが、苛性
アルカリのジメチルスルホキシドへの溶解度を高めるこ
とを目的として苛性アルカリに対して0.5〜3倍量の
水を加えることは、好ましい。
Although the presence of water is not an essential condition in the present invention, it is preferable to add 0.5 to 3 times the amount of water to the caustic alkali in order to increase the solubility of the caustic alkali in dimethyl sulfoxide.

本発明において反応温度は、目的とする芳香族ヒドロキ
シ化合物を得るために80〜250℃が好ましい。温度
が低いと反応が進まないばかりでなく、加水分解生成物
の選択率も低くなる。
In the present invention, the reaction temperature is preferably 80 to 250°C in order to obtain the desired aromatic hydroxy compound. If the temperature is low, not only will the reaction not proceed, but the selectivity of the hydrolysis product will also be low.

又、温度が高いと脱ヨウ素反応などの熱分解が起こり、
加水分解生成物の選択率も低くなる。特に好ましくは、
100℃〜180℃である。
In addition, if the temperature is high, thermal decomposition such as deiodination reaction occurs,
The selectivity of hydrolysis products is also lower. Particularly preferably,
The temperature is 100°C to 180°C.

本発明において反応時間は、反応温度と目的とする芳香
族ビトロキシ化合物によって規定されるものであり特に
制限はない。
In the present invention, the reaction time is determined by the reaction temperature and the target aromatic bitroxy compound, and is not particularly limited.

本発明方法に於いて得られた、反応生成物を含むアルカ
リ水溶液中、ジメチルスルホキシドまたは、不溶の抽出
剤を用いて抽出を行なった後または、抽出を行なう前に
、鉱酸で中和し、フリー化される。
After or before extraction in the alkaline aqueous solution containing the reaction product obtained in the method of the present invention using dimethyl sulfoxide or an insoluble extractant, neutralization with a mineral acid, Becomes free.

本発明方法において、反応生成物のフリー化および単離
、精製方法については特に制限はない。
In the method of the present invention, there are no particular limitations on the method for freeing, isolating, and purifying the reaction product.

〔発明の効果〕〔Effect of the invention〕

以上述べてきた様に、本発明によれば、銅化合物または
鉄化合物と苛性アルカリの存在下にジメチルスルホキシ
ドを溶媒として用いることによって、一般式(1)で表
される芳香族ヨウ素化物を穏和な条件下で高選択的に加
水分解することが可能となる。
As described above, according to the present invention, by using dimethyl sulfoxide as a solvent in the presence of a copper compound or an iron compound and a caustic alkali, the aromatic iodide represented by the general formula (1) can be mildly treated. It becomes possible to perform highly selective hydrolysis under certain conditions.

次に実施例によって本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例1 3000m lのガラス製フラスコに4.4′−ショー
トジフェニルエーテル300g (0,71)mol)
、ヨウ化第1銅30g水酸化ナトリウム239 g (
4,27mol) 、水156 g 、 ジメチルスル
ホキシド1500 gを仕込み、系内に窒素を吹き込み
ながら、温度150℃で2時間攪拌した。
Example 1 300 g (0,71) mol) of 4,4'-short diphenyl ether was placed in a 3000 ml glass flask.
, cuprous iodide 30g sodium hydroxide 239g (
4.27 mol), 156 g of water, and 1500 g of dimethyl sulfoxide were charged, and the mixture was stirred at a temperature of 150° C. for 2 hours while blowing nitrogen into the system.

反応後、常温まで冷却した後に未溶解触媒と反応液とを
分離する。次に燐酸にて弱酸性まで中和した。
After the reaction, the undissolved catalyst and the reaction liquid are separated after cooling to room temperature. Next, it was neutralized to weak acidity with phosphoric acid.

ガスクロマトグラフおよび液クロマトグラフで生成物を
分析、定量した結果、4.4′−ショートジフェニルエ
ーテルの転化率は100%、4+4”;ヒドロキシジフ
ェニルエーテルが、129.3 g  (収率90%)
、4−ヒドロキシ、4′−ヨードジフェニルエーテルが
、1).1g  (収率5%)各々得られた。
As a result of analyzing and quantifying the product by gas chromatography and liquid chromatography, the conversion rate of 4.4'-short diphenyl ether was 100%, 4+4''; hydroxydiphenyl ether was 129.3 g (yield 90%).
, 4-hydroxy, 4'-iododiphenyl ether is 1). 1 g (yield 5%) of each was obtained.

この結果を表1に示す。The results are shown in Table 1.

実施例2〜1) 表−1に示した組成で行い、表−1の結果を得た。但し
、使用する反応溶液の沸点より高い温度で反応を行なっ
た実施例については、5US316製オートクレーブを
用い、窒素置換後に加圧系で反応を行なった。
Examples 2 to 1) The compositions shown in Table 1 were used to obtain the results shown in Table 1. However, for Examples in which the reaction was carried out at a temperature higher than the boiling point of the reaction solution used, a 5US316 autoclave was used and the reaction was carried out in a pressurized system after purging with nitrogen.

参考例 4.4′−ジブロモジフェニルを用いた従来技術を芳香
族ヨウ素化物に適用したときの反応例を示す。
Reference Example 4. An example of a reaction when the conventional technique using 4'-dibromodiphenyl is applied to an aromatic iodide is shown.

200mJのSUS製オートクレーブに4.4’−ショ
ートジフェニルエーテル4.22 g (0,01mo
l)、酸化銅4.0 g %’ 20wt%−水酸化ナ
トリウム水溶液100++1を仕込み密閉して空間の空
気を窒素と置換したのち昇温し、温度220℃で5時間
攪拌した。
4.22 g of 4.4'-short diphenyl ether (0.01 mo
1), copper oxide 4.0 g %' 20 wt % - sodium hydroxide aqueous solution 100 ++ 1 was charged, the space was sealed, the air in the space was replaced with nitrogen, the temperature was raised, and the temperature was stirred at a temperature of 220° C. for 5 hours.

反応後、常温まで冷却した後に燐酸にて中和した。After the reaction, the mixture was cooled to room temperature and neutralized with phosphoric acid.

フリー化した反応生成物と未反応物をクロロホルムにて
抽出した後、ガスクロマトグラフおよび液クロマトグラ
フで分析、定量した結果、4.4’−ショートジフェニ
ルエーテルの転化率は、100%であるが、4.4′−
ジヒドロキシジフェニルエーテルと4−ヒドロキシ、4
′−ヨードジフェニルエーテルは、はとんど得られなか
った。
After extracting the freed reaction products and unreacted substances with chloroform, they were analyzed and quantified by gas chromatography and liquid chromatography. As a result, the conversion rate of 4.4'-short diphenyl ether was 100%, but the conversion rate of 4.4'-short diphenyl ether was 100%. .4'-
Dihydroxy diphenyl ether and 4-hydroxy, 4
'-Iododiphenyl ether was rarely obtained.

以下余白Margin below

Claims (1)

【特許請求の範囲】 1)一般式(1) ▲数式、化学式、表等があります▼・・・・・・(1) で表される4,4′−ショートジフェニルタイプの芳香
族ヨウ素化物を銅化合物または鉄化合物と苛性アルカリ
の存在下にジメチルスルホキシド溶媒中で加水分解する
ことを特徴とする芳香族ヨウ素化物の加水分解方法 2)一般式(1)で表される芳香族ヨウ素化物において
−X−が、−O−、−、−CH_2−、−SO_4−、
又は、▲数式、化学式、表等があります▼である特許請
求の範囲第1項記載の方法 3)加水分解を温度100〜180℃で行なう特許請求
の範囲第1項記載の方法
[Claims] 1) A 4,4'-short diphenyl type aromatic iodide represented by general formula (1) ▲There are mathematical formulas, chemical formulas, tables, etc.▼... (1) A method for hydrolyzing an aromatic iodide, characterized by hydrolysis in a dimethyl sulfoxide solvent in the presence of a copper compound or an iron compound and a caustic alkali 2) In an aromatic iodide represented by the general formula (1) - X- is -O-, -, -CH_2-, -SO_4-,
or ▲There are mathematical formulas, chemical formulas, tables, etc.▼The method according to claim 1 3) The method according to claim 1 in which the hydrolysis is carried out at a temperature of 100 to 180°C
JP61007985A 1986-01-20 1986-01-20 Hydrolysis of aromatic iodide Pending JPS62167732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61007985A JPS62167732A (en) 1986-01-20 1986-01-20 Hydrolysis of aromatic iodide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61007985A JPS62167732A (en) 1986-01-20 1986-01-20 Hydrolysis of aromatic iodide

Publications (1)

Publication Number Publication Date
JPS62167732A true JPS62167732A (en) 1987-07-24

Family

ID=11680720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61007985A Pending JPS62167732A (en) 1986-01-20 1986-01-20 Hydrolysis of aromatic iodide

Country Status (1)

Country Link
JP (1) JPS62167732A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02250861A (en) * 1989-03-23 1990-10-08 Nikka Chem Co Ltd Production of 4,4'-dihydroxydiphenylsulfone
JPH06184004A (en) * 1992-12-22 1994-07-05 Fuji Photo Film Co Ltd Production of electron acceptive compound

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02250861A (en) * 1989-03-23 1990-10-08 Nikka Chem Co Ltd Production of 4,4'-dihydroxydiphenylsulfone
JPH06184004A (en) * 1992-12-22 1994-07-05 Fuji Photo Film Co Ltd Production of electron acceptive compound

Similar Documents

Publication Publication Date Title
US4105580A (en) Polyglycerol non-ionic surface active agents and process for preparing the same from crude glycidol
JPS62167732A (en) Hydrolysis of aromatic iodide
JPS6339578B2 (en)
Kagan et al. Ferric chloride in ether. A convenient reagent for the conversion of epoxides into chlorohydrins
US4001340A (en) Hydrolysis of haloaromatic compounds
Hellmann et al. Synthesis and Properties of Fluorinated Polyphenyls1, 2
CN107129466B (en) Synthesis method of 4-chloro-3-methoxy-2-methylpyridine-N-oxide
JP2667485B2 (en) Method for iodination of hydroxy aromatic and amino aromatic compounds
JPS61158941A (en) Manufacture of compound containing difluoromethylene or trifluoromethyl group
JPS63201144A (en) Manufacture of trialkoxybenzaldehyde
JPS6399029A (en) Hydrolysis of aromatic iodide
US4118426A (en) Production of hydroxy ethers
JP3278945B2 (en) Method for producing parafluorophenol
JPH0621086B2 (en) Process for producing 3,3 ', 5,5'-tetramethyl-4,4'-dihydroxydiphenyl
GB1008265A (en) Linear polyphenylene oxides
US3510514A (en) Process for the manufacture of sorbic acid
EP3292096B1 (en) Staged synthesis of diiodoperfluoro-c3 to c7-alkanes
JPS5849372A (en) Preparation of hexafluoropropene oxide
JPH0816076B2 (en) Process for producing 3,3 ', 5,5'-tetraalkyl-4,4' diphenoquinone
JPH02221239A (en) Preparation of anisole or derivative thereof
JPS6239534A (en) Production of phosphonitrile chloride oligomer
JPS6399036A (en) Production of aromatic hydroxycarboxylic acid
EP0158709A1 (en) A process for producing a para-substituted phenol derivative
JPH01100137A (en) Production of 1,1,1-trifluoro-2,2-dichloroethane
SU615066A1 (en) Method of obtaining solutions of monopermaleic or monoperphthalic acids