JPS62167560A - Production of artificial blood vessel - Google Patents

Production of artificial blood vessel

Info

Publication number
JPS62167560A
JPS62167560A JP61008437A JP843786A JPS62167560A JP S62167560 A JPS62167560 A JP S62167560A JP 61008437 A JP61008437 A JP 61008437A JP 843786 A JP843786 A JP 843786A JP S62167560 A JPS62167560 A JP S62167560A
Authority
JP
Japan
Prior art keywords
tubular body
artificial blood
plasma
blood vessel
polyurethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61008437A
Other languages
Japanese (ja)
Other versions
JPH0691889B2 (en
Inventor
義和 近藤
康弘 小川
吉川 悦雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP61008437A priority Critical patent/JPH0691889B2/en
Publication of JPS62167560A publication Critical patent/JPS62167560A/en
Publication of JPH0691889B2 publication Critical patent/JPH0691889B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は人工血管に関する。さらに詳しくは内面が特に
すぐれた抗血栓性を有し、直径の小さい部位にも使用可
能な人工血管及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an artificial blood vessel. More specifically, the present invention relates to an artificial blood vessel whose inner surface has particularly excellent antithrombotic properties and which can be used even in areas with a small diameter, and a method for manufacturing the same.

(従来の技術) 人工血管に関する研究は今世紀の初頭よシ数多くなされ
てきてお)、その成果としてポリエステル繊維の管状織
編物及び延伸ポリテトラフルオロエチレンの多孔性チュ
ーブが実用化されている。
(Prior Art) Much research has been carried out on artificial blood vessels since the beginning of this century), and as a result, tubular woven and knitted fabrics of polyester fibers and porous tubes of expanded polytetrafluoroethylene have been put into practical use.

しかしこれらの実用段階にある人工血管はその適用部位
が内径6 mm以上の比較的太い動脈に限られておシ、
これ以下の小動脈や静脈用についてはまだ充分な臨床成
績をあげるに至っていない。その理由としては小動脈の
場合、小直径であるがゆえに凝血が生じた場合閉塞しや
すいこと、さらに小動脈や静脈では血流速度が遅いため
凝血の成長が速く、閉塞しやすいことがあげられる。ま
た、現在実用化されている人工血管はすべてのものが最
終的には生体による為内膜形成によシ抗血栓性を獲得し
、安定化されるものであるが、この場合内皮の過形成に
よる血管内腔の狭さくが発生し、これが原因となって閉
塞することがある。これには人工血管の構造、例えば新
生内皮の保持能力が低い場合に起こるとも考えられてい
る。
However, the application of these artificial blood vessels at the practical stage is limited to relatively large arteries with an inner diameter of 6 mm or more.
Sufficient clinical results have not yet been achieved for smaller arteries and veins. The reason for this is that small arteries have a small diameter, which makes them more likely to become occluded if blood clots form, and because blood flow is slow in small arteries and veins, blood clots grow quickly and become occluded. . In addition, all of the artificial blood vessels currently in practical use are ultimately made of living organisms, so they acquire antithrombotic properties and are stabilized by intimal formation, but in this case, endothelial hyperplasia This can cause narrowing of the vascular lumen, which can lead to occlusion. This is also thought to occur when the structure of the artificial blood vessel, for example, the ability to retain neoendothelium is low.

上記の様な問題点を克服し、性能のすぐれた人工血管を
島発しようとする試みが近年数多くなされている。なか
でも、人工血管の材料をエラストマーに求めたもの、時
にエラストマーのうちでもポリウレタンを用いたものが
数多く提案されている。それらは大別すればエラストマ
ーを繊維形態として用いるものと多孔体として使用する
ものとになる。
In recent years, many attempts have been made to overcome the above-mentioned problems and to develop artificial blood vessels with excellent performance. Among these, many proposals have been made that use elastomers as materials for artificial blood vessels, and in some cases, use polyurethane among elastomers. They can be roughly divided into those that use elastomers in the form of fibers and those that use them as porous bodies.

このうち繊維形態として用いるものとしては、ポリウレ
タンよシなる繊維形成重合体を含有する液体組成物を静
電気的に紡糸して繊維とし、かかる繊維を形付き成形具
上に捕集して得た導管補綴材及びその製法(特開昭52
−110977号公報)、上記成形共を改良した製法(
特開昭54−151675号公@)、該人工血管の力学
的特性を生体血管と同一としたもの及びその製法(特開
昭59−11864号公報)及び静電気紡糸によシ得ら
れるね(維構造物の一方の側と反対側で繊維形成重合体
組成物を変化させたもの及びその製造方法(特開昭60
−190947号公報)がある。
Among these, those used in the form of fibers include a conduit obtained by electrostatically spinning a liquid composition containing a fiber-forming polymer such as polyurethane into fibers and collecting the fibers on a shaped molding tool. Prosthetic material and its manufacturing method
-110977), a manufacturing method that improves the above molding method (
JP-A-54-151,675 @), artificial blood vessels whose mechanical properties are the same as those of living blood vessels, and their manufacturing method (JP-A-59-11,864), and electrostatic spinning (fibrous vessels). A structure in which the fiber-forming polymer composition is changed on one side and the opposite side, and its manufacturing method
-190947).

さらに別の方法としては心棒上に繊維材料を押し出しな
がら該心棒を回転させて巻きと91多孔性チユーブとす
る方法(特開昭58−157465号公報)、ポリマー
溶液をノズルを通してスプレーすることによシ単繊維と
し、これを心棒に巻きつけて管状人工血管とする方法(
特開昭59−181149号公報)がある。
Still another method is to roll the fibrous material onto a mandrel while rotating the mandrel to form a porous tube (Japanese Patent Application Laid-Open No. 157465/1982), or by spraying a polymer solution through a nozzle. A method of forming a single fiber into a tubular artificial blood vessel by winding it around a mandrel (
JP-A-59-181149).

ポリマーを多孔化するものについても付言すれば(特開
昭57−150954号公報、特開昭59−22505
8号公報、特開昭60−2254号公報等)があるが、
これらはいずれもポリマー溶液を出発とするものであシ
、多孔化方法は無機塩や他の水溶性物質等の造孔剤をポ
リマー溶液に混合し、付形後この無機塩を溶解除去する
ことにより多孔化したシ、ポリマーの良溶媒と貧溶媒の
置換によシ微孔を生じさせ、多孔化するものである。
I would also like to add about the polymers that make them porous (Japanese Patent Application Laid-Open No. 57-150954, Japanese Patent Application Laid-open No. 59-22505).
8, Japanese Patent Application Laid-open No. 60-2254, etc.),
All of these methods start from a polymer solution, and the porosity formation method involves mixing a pore-forming agent such as an inorganic salt or other water-soluble substance with the polymer solution, and then dissolving and removing the inorganic salt after shaping. By replacing the polymer with a good solvent and a poor solvent, micropores are generated and the polymer is made porous.

(発明が解決しようとする問題点) 上記提案の主たる目的は抗血栓性にすぐれた材料を用い
、かつ力学的特性を生体血管に近似させることによシ血
栓形成を防止し、さらには多孔性とすることにより新生
組織の侵入、保持を良くしようとするものである。
(Problems to be Solved by the Invention) The main purpose of the above proposal is to prevent thrombus formation by using a material with excellent antithrombotic properties and to approximate mechanical properties to biological blood vessels, and to prevent the formation of porous blood vessels. This is intended to improve the invasion and retention of new tissue.

しかしながら、上記提案はほとんどがポリマーを有機溶
液として用いるため、人工血管とする場合、溶媒の完全
除去が不可欠であること、そしてこの溶媒除去が困難で
あシ、工程が複雑になることが問題である。静電気紡糸
においては高電圧を必要とするので危険であり、又装置
が複雑となるという欠点を有する。さらに多孔化法につ
いて言えば、独立気泡を多く有するスポンジ状多孔体と
する方法は、血管としての力学的強度が低下するばかシ
でなく、管全体の力学的特性の均一化が困難であるとい
う間粕点を有している。また、全体を抗血栓性材料とし
た場合抗血栓性がすぐれていれば、管壁に連通孔が存在
する場合該連通孔からの漏血が問題になる。
However, most of the above proposals use the polymer as an organic solution, so when making an artificial blood vessel, it is essential to completely remove the solvent, and this solvent removal is difficult and the process becomes complicated. be. Electrostatic spinning requires high voltage, which is dangerous, and has the disadvantage that the equipment is complicated. Furthermore, regarding the porous method, it is said that the method of creating a sponge-like porous material with many closed cells not only reduces the mechanical strength of the blood vessel, but also makes it difficult to make the mechanical properties of the entire tube uniform. It has a kasu point. Furthermore, if the entire tube is made of an antithrombotic material and has excellent antithrombotic properties, if there are communicating holes in the tube wall, blood leakage from the communicating holes becomes a problem.

本発明の目的は上記の問題点を解決し、内面がすぐれた
抗血栓性を有し、かつ外面よシの組織侵入が容易で治ゆ
安定化にすぐれるとともに、力学的性質にもすぐれた小
口径人口血管に応用可能な人工血管を、−切溶媒を使用
しない完全なドライプロセスによシ、安価で効率的に製
造する方法を提供することにある。
The purpose of the present invention is to solve the above-mentioned problems, and has an inner surface with excellent antithrombotic properties, easy tissue penetration through the outer surface, excellent healing stability, and excellent mechanical properties. An object of the present invention is to provide a method for manufacturing an artificial blood vessel that can be applied to a small-diameter artificial blood vessel at low cost and efficiently by a completely dry process without using a cutting solvent.

(問題点を解決するための手段) 本発明の方法は、熱可堅性ポリウレタン弾性体を熔融紡
糸後、高速高温気体に随伴し細化して得られた実質的に
連続したフィラメントをシート状に積層して得られたポ
リウレタン弾性繊維不織布を芯枠に巻き付け、加熱成型
し多孔性の管状体とした後、該管状体の小なくとも内面
をフッ素化合物の低温ガスプラズマ処理を施す事を特徴
とする。
(Means for Solving the Problems) The method of the present invention involves melt-spinning a thermosetting polyurethane elastomer, then thinning it by entraining it in high-speed high-temperature gas, and forming substantially continuous filaments into a sheet. The polyurethane elastic fiber nonwoven fabric obtained by lamination is wrapped around a core frame, heated and molded to form a porous tubular body, and then at least the inner surface of the tubular body is subjected to low-temperature gas plasma treatment with a fluorine compound. do.

本発明方法に適用するポリウレタン弾性体は公知の熱可
塑性ポリウレタン弾性体であシ、分子量500〜600
0のポリオール、例えばジヒドロキシポリエーテル、ジ
ヒドロキシポリエステル、ジヒドロキシシリコーン、お
よびこれらのブロック共重合体等と、分子量500以下
の有機ジイソシアネート、例えばI) t p’−ジフ
ェニルメタンジイソシアネート、トリレンジイソシアネ
ート、ヘキサメチレンジイソシアネート等と、鎖伸長剤
、例えば水、ヒドラジン、ジアミン、グリコール等との
反応によシ得られるポリマーからなる。これらのポリマ
ーのうち特に良好なものは、ポリオールとしてポリテト
ラメチレングリコールまたはポリテトラメチレングリコ
ールとシリコーンのフロック共重合体を用いたポリマー
である。また有機ジインシアネートとしてはり + p
’−ジフェニルメタンジイソシアネートが好適である。
The polyurethane elastomer applied to the method of the present invention is a known thermoplastic polyurethane elastomer with a molecular weight of 500 to 600.
0 polyol, such as dihydroxy polyether, dihydroxy polyester, dihydroxy silicone, and block copolymers thereof, and an organic diisocyanate having a molecular weight of 500 or less, such as I) t p'-diphenylmethane diisocyanate, tolylene diisocyanate, hexamethylene diisocyanate, etc. and a chain extender such as water, hydrazine, diamine, glycol, etc. Particularly good among these polymers are those using polytetramethylene glycol or a flock copolymer of polytetramethylene glycol and silicone as the polyol. It is also used as an organic diincyanate.
'-Diphenylmethane diisocyanate is preferred.

また、鎖伸長剤としてはグリコールが好適で、1,4−
ブタンジオールが特に好適である。
In addition, glycol is suitable as a chain extender, and 1,4-
Butanediol is particularly preferred.

本発明の方法に用いるポリウレタン不織布は、例えば次
の方法で製造することができる。前記の熱可塑性ポリウ
レタン弾性体を熔融し、例えば持公昭41−7888号
公報に記載された紡糸装置を用い、紡糸口金から吐出し
ノズルの両端から噴出する両温気体流によシフィラメン
トを細化せしめる。細化されたフィシ・メントは実質的
に泉束されることなく、例えば移動するコンベアネット
等の捕集装置上で気体流と分離され、該ネット上に積層
される。積層されたフィラメントは自己の有する熱によ
シ互いに接合される。捕集装置上に積層後冷却固化する
前または後にローラー等を用い加熱加圧して接合せしめ
てもよい。
The polyurethane nonwoven fabric used in the method of the present invention can be produced, for example, by the following method. The above-mentioned thermoplastic polyurethane elastic body is melted, and using a spinning apparatus described in, for example, Jiko Sho 41-7888, the filaments are thinned by hot gas flows discharged from a spinneret and ejected from both ends of a nozzle. urge The atomized fissures are separated from the gas stream on a collection device, such as a moving conveyor net, and stacked on the net without being substantially bundled. The laminated filaments are bonded to each other by their own heat. They may be bonded by heating and pressing using a roller or the like before or after being laminated on the collection device and cooled and solidified.

いずれの方法においても、不織布はポリウレタン弾性繊
維自体の接合よりなるものであり、溶剤、接着剤等は使
用しない。従って、不純物、溶出物等が極めて少ない不
織布を得る事が出来る。
In either method, the nonwoven fabric is made by bonding polyurethane elastic fibers themselves, and solvents, adhesives, etc. are not used. Therefore, a nonwoven fabric containing extremely few impurities, eluates, etc. can be obtained.

本発明方法において不織布を構成するポリウレタン弾性
繊維の平均直径は、ポリウレタンの吐出量、紡出速度、
引張シ速度等にょシ任意に選択することができるが、人
工血管用としては平均直径は30ミクロン以下が好まし
い。更に好ましくは20ミクロン以下である。繊維の直
径が大きくなると人工血管の内壁の粗度が大きくなシ血
栓が庄成しやすくなる。
In the method of the present invention, the average diameter of the polyurethane elastic fibers constituting the nonwoven fabric is determined by the amount of polyurethane discharged, the spinning speed,
Although the tensile speed etc. can be selected arbitrarily, the average diameter is preferably 30 microns or less for use in artificial blood vessels. More preferably, it is 20 microns or less. As the diameter of the fibers increases, a blood clot with a rougher inner wall of the artificial blood vessel is more likely to form.

このようにして得られたポリウレタン弾性eat la
不識布としては、日付10y/m2〜50 y/m”の
ものが好適である。目付が小さいと取扱いが困難となシ
、大きいと芯枠に捲きつけた端が段になシやすい。
The polyurethane elasticity thus obtained
It is preferable to use unrecognized cloth with a date of 10 y/m2 to 50 y/m. If the basis weight is small, it will be difficult to handle, and if it is large, the ends wound around the core frame will easily tear.

管状体を成型する際に使用する芯枠としては、加熱成型
後管状体を引き抜くために、ポリウレタン繊維との膠着
を生じ難い材質が望ましく、フッ素樹脂をコーティング
した鉄棒、フッ素樹脂丸棒などが好適に用いられる。尚
、加熱成型後芯枠を引き抜くことが可能なのはポリウレ
タン弾性繊維よシなる本願多孔性管状体が伸縮性を有す
るためであ)、伸縮性のない素材チューブでは殆ど不可
能である。
The core frame used when molding the tubular body is preferably made of a material that does not easily stick to polyurethane fibers in order to pull out the tubular body after heating and molding, and suitable materials include iron rods coated with fluororesin and fluororesin round bars. used for. The reason why it is possible to pull out the core frame after hot molding is because the porous tubular body of the present invention, which is made of polyurethane elastic fibers, has stretchability), which is almost impossible with non-stretchable material tubes.

成型に用いる加熱温度および時間はポリウレタン不織布
が、互に接合して一体化させるために70〜200℃が
好ましく1.+1寺に100・〜1300Cが好適であ
る。このようにして得られる多孔性管状体は、ポリウレ
タン弾性繊維の不織布が互に熱によシ強固に接合され一
体化したものであシ、管状体の内腔の直径及び肉厚は芯
枠と型枠の寸法によシ変えることが出゛来る。
The heating temperature and time used for molding are preferably 70 to 200°C in order to bond the polyurethane nonwoven fabrics together and integrate them.1. 100-1300C is suitable for +1 temple. The porous tubular body obtained in this way is made up of nonwoven fabrics of polyurethane elastic fibers that are firmly bonded to each other by heat and integrated, and the diameter and wall thickness of the inner cavity of the tubular body are the same as those of the core frame. It is possible to change the dimensions of the formwork.

人工血管という観点からすれば管状体の内腔の直径は2
〜40 mmであるが、本発明の特徴を発揮するには2
〜20 mm 、さらには8〜15mmであることが好
ましい。管状体の肉厚は0.1〜5mm 、好ましくは
0.2〜3 mmである。また本発明の人工血管の多孔
性は一定の肉厚の管状体に用いる不織布の量によって任
意に調整する事が出来る。
From the perspective of an artificial blood vessel, the diameter of the lumen of the tubular body is 2.
~40 mm, but in order to exhibit the features of the present invention,
~20 mm, more preferably 8 to 15 mm. The wall thickness of the tubular body is 0.1 to 5 mm, preferably 0.2 to 3 mm. Furthermore, the porosity of the artificial blood vessel of the present invention can be arbitrarily adjusted by adjusting the amount of nonwoven fabric used in the tubular body having a certain wall thickness.

多孔性は一般には孔径分布と気孔率で表わせるが、人工
血管の場合透水率で表現するのが一般的であシ、かつ実
際的でもある。特に、本発明の多孔性管状体のように繊
維の構造体よシなる場合には透水率で表わすのが好まし
い。透水率とは120mmHHの圧力下で人工血管の管
壁1 cm2当シ当分1に通過する水量(ml)をいう
。本発明においては、この透水率が3000m#/分以
下、好ましくは1500 trJ/分以下、さらに好ま
しくは500ml1分以下である。
Porosity can generally be expressed by pore size distribution and porosity, but in the case of artificial blood vessels, it is common and practical to express it by water permeability. In particular, when it is a fibrous structure like the porous tubular body of the present invention, it is preferable to express it in terms of water permeability. Water permeability refers to the amount of water (ml) that passes through 1 cm2 of the wall of an artificial blood vessel under a pressure of 120 mmHH. In the present invention, this water permeability is 3000 m#/min or less, preferably 1500 trJ/min or less, and more preferably 500 ml/min or less.

本発明の低温ガスプラズマは常法によ多発生させる事が
できる。高電圧は直流でも交流でも可能であるが、プラ
ズマ発生の容易さ、プラズマの安定性、処理効果の均一
性から18.56MHzの高周波の使用が好ましい。高
周波電圧印加用の電極は、プラズマ反応器の内部にある
内部電極方式及び外部に設けた外部電極方式があシ、又
、各々について容量結合型電極及び誘導結合型電極があ
るが、いずれも利用できる。
The low-temperature gas plasma of the present invention can be generated in a conventional manner. Although the high voltage can be either direct current or alternating current, it is preferable to use a high frequency of 18.56 MHz from the viewpoint of ease of plasma generation, plasma stability, and uniformity of processing effect. There are two types of electrodes for applying high-frequency voltage: an internal electrode type inside the plasma reactor, and an external electrode type installed outside the plasma reactor.Also, for each type, there are capacitively coupled electrodes and inductively coupled electrodes, but both can be used. can.

管状体の内面への低温ガスプラズマ処理は、管状体を真
空容器に入れ、管状体の内側にモノマーを導入し、プラ
ズマを発生させる事によって内面を選択的にプラズマ処
理できる。好ましくは、管状体の外側を管状体に密着す
る内径を有するプラスチック或いはガラス、セラミック
等の非金属性チューブで覆い、管状体の一方を真空に吸
引し、他方よ)モノマーを導入して管状体の内部のみに
モノマーのプラズマを発生させ、管状体の内面のみを選
択的にプラズマ処理する。更に好ましくは、上記方法に
おいて高周波電圧を印加する電極を管状体の長さ方向に
一定速度で移動させれば、よシ均一なプラズマ処理が可
能となる。
In low-temperature gas plasma treatment of the inner surface of a tubular body, the inner surface can be selectively plasma-treated by placing the tubular body in a vacuum container, introducing a monomer into the inside of the tubular body, and generating plasma. Preferably, the outside of the tubular body is covered with a non-metallic tube such as plastic, glass, or ceramic having an inner diameter that closely fits the tubular body, one side of the tubular body is evacuated, and monomer is introduced into the other (the other side) to form the tubular body. Monomer plasma is generated only inside the tubular body, and only the inner surface of the tubular body is selectively treated with plasma. More preferably, in the above method, if the electrode to which the high frequency voltage is applied is moved at a constant speed in the length direction of the tubular body, more uniform plasma treatment becomes possible.

フッ素化合物の低温ガスプラズマによる重合膜の形成及
び表面処理状態は真空度、出力、時間、モノマー流量等
のいわゆるプラズマパラメータに依存する。一般にモノ
マー流量の増加、真空瓜の低下、及び重合時間の増加に
よシ重合膜の形成量は増大する。
The formation of a polymer film of a fluorine compound by low-temperature gas plasma and the state of surface treatment depend on so-called plasma parameters such as the degree of vacuum, power, time, and monomer flow rate. Generally, the amount of polymerized film formed increases as the monomer flow rate increases, the vacuum level decreases, and the polymerization time increases.

フッ素化合物はガス状でプラズマ反応器中へ導入する。The fluorine compound is introduced into the plasma reactor in gaseous form.

高沸点の化合物については適当な加熱装置によシ加熱・
気化し導入する。導入するモノマーの量はプラズマの発
生状態、及O・生成物の性状に大きく影普するものであ
)、通常10−4〜10Torr s  好ましくは1
0−3〜10°To r rs更に好ましくは5×10
〜5 X 10  Torrである。
For compounds with high boiling points, heat them using an appropriate heating device.
Vaporize and introduce. The amount of monomer introduced greatly affects the state of plasma generation and the properties of O/products), and is usually 10-4 to 10 Torr s, preferably 1
0-3 to 10° Torrs, more preferably 5×10
˜5×10 Torr.

フッ素化合物の圧力が10 ’ Torrよシ小さい場
合は、プラズマの発生が十分でなく、不織布表面のプラ
ズマ重合膜の形成或いは表面改質は十分でない。又、1
0Torrを越えるとプラズマ発生が不安定であったシ
、又は重合物の性状が十分でないか、又は処理が不均一
になシ好ましくない。モノマーの導入と同時にモノマー
を活性化するガス、例えば窒素、アルゴン、ヘリウム等
のガスの併用も可能である。但し、モノマー及びこれら
のガスの圧力が10−4〜10 Torrの範囲となる
事が好ましい。
If the pressure of the fluorine compound is less than 10' Torr, plasma generation is not sufficient, and formation of a plasma polymerized film on the surface of the nonwoven fabric or surface modification is not sufficient. Also, 1
Exceeding 0 Torr is not preferable because plasma generation is unstable, the properties of the polymer are not sufficient, or the treatment is non-uniform. It is also possible to use a gas that activates the monomer simultaneously with the introduction of the monomer, such as nitrogen, argon, helium, or the like. However, it is preferable that the pressure of the monomer and these gases is in the range of 10-4 to 10 Torr.

プラズマの出力は電極の単位面積当シ、通常高々3W/
Cm2、好ましくは高々2 W/ cm2、更に好まし
くは0.05〜I W/ cm2である。8W/cm2
以上では、プラズマ重合膜の架橋度が大きくなシ、皮膜
強度の低下や着色或いは基材である不織布の損傷がある
。プラズマ重合時間は長い程十分な重合膜の形成や表面
フツ素化処理が出来るが、反面重合膜の架橋密度の増大
やエツチング等による変性、劣化が生じる為、通常1〜
3600秒、好ましくは30〜1300秒である。
The output of the plasma is usually at most 3 W/unit area of the electrode.
Cm2, preferably at most 2 W/cm2, more preferably from 0.05 to I W/cm2. 8W/cm2
In the above case, the degree of crosslinking of the plasma polymerized film is large, the strength of the film is decreased, the film is colored, or the nonwoven fabric as the base material is damaged. The longer the plasma polymerization time, the better the formation of a polymer film and the surface fluorination treatment, but on the other hand, the increase in cross-linking density of the polymer film and the denaturation and deterioration caused by etching, etc.
3600 seconds, preferably 30 to 1300 seconds.

フッ素化合物の低温ガスプラズマ処理によシ、不織布の
表面或いは不織布を構成するポリウレタン繊維表面にフ
ッ素化合物のプラズマ重合膜の形成、或いはフッ素化表
面の形成がなされる。プラズマ重合膜は、不織布表面或
いはポリウレタン繊維表面に通常50^〜100^以上
形成されている。これは、表面の電子顕微鏡観察接触角
測定、IR’PE5CA等の分光学的測定よシ確認され
る。
By low-temperature gas plasma treatment of the fluorine compound, a plasma polymerized film of the fluorine compound or a fluorinated surface is formed on the surface of the nonwoven fabric or the polyurethane fibers constituting the nonwoven fabric. The plasma polymerized film is usually formed in a thickness of 50^ to 100^ or more on the surface of a nonwoven fabric or a polyurethane fiber. This is confirmed by surface electron microscopic contact angle measurements and spectroscopic measurements such as IR'PE5CA.

プラズマ重合・処理法の大きなりj徴は、50A〜10
0^といった超極薄膜でも均一に付与できる事である。
The major difference in plasma polymerization/treatment method is 50A to 10
Even ultra-thin films such as 0^ can be applied uniformly.

本発明に使用するフッ素化合物は分子内に炭素の骨格と
フッ素原子を有していればよく、特に限定されない。分
子中に、ベンゼン環或いはOH基、CO基等の官能基や
二重結合、三重結合等含むものは、接触角或いは着色等
の問題があシ良好なプラズマ重合膜を形成しにくい。又
、フッ素化合物中のフッ素含有率も高い方がよく、好ま
しくは50%以上である。
The fluorine compound used in the present invention is not particularly limited as long as it has a carbon skeleton and a fluorine atom in the molecule. Molecules containing functional groups such as benzene rings, OH groups, CO groups, double bonds, triple bonds, etc. have problems with contact angles, coloration, etc., and are difficult to form a good plasma polymerized film. Furthermore, the higher the fluorine content in the fluorine compound, the better, and preferably 50% or more.

フッ素系化合物のプラズマ重合膜の組成・構造は必ずし
も定かではないが、重合膜の溶剤溶解性がない事、水に
対する接触角が100°以上、好ましくは105°以上
である事(接触角が小さいと血栓が生成しやすく好まし
くない)、及びフッ素導入によシ特徴づけられるC−F
の吸収がIR或いはESCA等で認められる事が特徴と
してあげられる。
Although the composition and structure of plasma-polymerized films of fluorine-based compounds are not necessarily certain, it is important that the polymerized film has no solvent solubility and that the contact angle with water is 100° or more, preferably 105° or more (the contact angle is small). and C-F characterized by the introduction of fluorine
A characteristic feature is that the absorption of is observed by IR or ESCA.

プラズマ重合膜の厚さは、好ましくは50A以上、更に
好ましくは100にであればよい。電子顕微鏡観察によ
ると、高々10μmの厚さの均一な膜を形成しておシ、
本発明の不織布ではこれらの構成繊維の表面を薄い膜で
被っている事がわかる。
The thickness of the plasma polymerized film is preferably 50A or more, more preferably 100A. According to electron microscopy, it forms a uniform film with a thickness of at most 10 μm.
It can be seen that in the nonwoven fabric of the present invention, the surfaces of these constituent fibers are covered with a thin film.

本発明のフッ素化合物のプラズマ処理物が何故良好な抗
血栓を有するのかは不明であるが、推測すれば、フッ素
表面の為に表面エネルギーが小さく血小板の粘着性が小
さい事及びプラズマ重合・処理表面であシ、極めて均質
なかつ滑らかな表面である事等が原因として挙げられる
It is unclear why the plasma-treated product of the fluorine compound of the present invention has good antithrombotic properties, but it is speculated that the fluorine surface has low surface energy and low platelet stickiness, and that the plasma-polymerized and treated surface Possible causes include the extremely homogeneous and smooth surface.

本発明に衾ける抗血栓性の評価は1つは以下に述べる今
井−能勢の方法(人工臓器、2,95(’7B ) )
に準じて行なった。
One way to evaluate the antithrombotic properties of the present invention is the Imai-Nose method (Artificial Organs, 2,95 ('7B)) described below.
This was done in accordance with.

時計皿に試料を密着させて乗せ、87℃の恒温槽につけ
る。この上に0.26 mljの犬の8.18%クエン
酸ナトリウム添加血(犬は雑種成犬を使用)をとシ、さ
らに0.1Mの塩化カルシウム0.025m1を加え、
手で少しゆすって血液と混ぜ合わせた後、水分の蒸発を
補うため試料の周辺に少量の水を入れガラス板で時計皿
を覆う。適当な時間間隔で水を加えて凝血反応を停止さ
せる。スパチユラで凝血物をとシ、水中に5分間放置し
た後、約8mlの87%ホルマリンの入った試験管に移
して5分間放置する。その後、秤量までは蒸留水中に貯
える。固定した凝血物はF紙にはさんで余分の水分を吸
い取った後秤量する。血栓生成率はガラス面での最終生
成凝血物の重量を100%として算出する。発明者らは
、特に15分後の血栓生成率に着目して評価を行った。
Place the sample tightly on the watch glass and place it in a constant temperature bath at 87°C. On top of this, add 0.26 ml of 8.18% sodium citrate-added dog blood (an adult mongrel dog was used), and then add 0.025 ml of 0.1M calcium chloride.
After shaking the sample a little by hand to mix it with the blood, pour a small amount of water around the sample to compensate for evaporation and cover the watch glass with a glass plate. Water is added at appropriate time intervals to stop the clotting reaction. Remove the clot with a spatula, leave in water for 5 minutes, then transfer to a test tube containing approximately 8 ml of 87% formalin and leave for 5 minutes. It is then stored in distilled water until weighed. The fixed blood clot is sandwiched between F paper to absorb excess moisture, and then weighed. The thrombus production rate is calculated based on the weight of the final clot formed on the glass surface as 100%. The inventors conducted an evaluation focusing particularly on the thrombus formation rate after 15 minutes.

抗血栓性の評価の第2として血小板の粘着及び形態の観
察を行った。
As a second evaluation of antithrombotic properties, platelet adhesion and morphology were observed.

生理食塩水でリンスした試料上に雑種成犬の新鮮血よシ
調製したPRPを滴下する。1公役PRPを除去し、生
理食塩水で洗浄した後、グルタルアルデヒドにて室温固
定、さらにアルコール脱水、臨界点乾燥を行った後、走
査型電子顕微鏡によシ付着血小板数を観測すると同時に
付着血小板の形態変化を観察した。形態変化は次の8つ
に分類した。
PRP prepared from fresh blood of an adult mongrel dog is dropped onto the sample rinsed with physiological saline. 1 After removing PRP and washing with physiological saline, fixing at room temperature with glutaraldehyde, dehydrating with alcohol, and drying at critical point, the number of attached platelets was observed using a scanning electron microscope. The morphological changes of platelets were observed. Morphological changes were classified into the following eight categories.

I型:正常の円盤形から球状化して3〜4本の偽足を出
したもの、材料表面への粘着が比較的弱いもの、 ■型:数本以上の偽足を伸ばして偽足の長さの半分まで
薄い泡体を広げたもので強く粘着したもの、■型:偽足
の長さの半分以上に薄い泡体を広げたものから、はぼ完
全に泡体を拡張して類円形を呈し、完全に粘着したもの
Type I: The normal disc shape has become spherical and has 3 to 4 pseudopods, and the adhesion to the material surface is relatively weak. Type I: The pseudopods have a long length with several or more pseudopods extended. Type: Thin foam spread over half of the length of the pseudopod and strongly adherent; Type: Thin foam spread over half the length of the pseudopod; and completely sticky.

(実施例) 以下、実施例を示し、本発明を更に詳細に説明する。(Example) EXAMPLES Hereinafter, the present invention will be explained in more detail by showing examples.

実施例1 脱水した水酸基価102のポリテトラメチレングリコー
ル5825部(以下、部はすべて重坂部を意味する。)
と1,4−ブタンジオール220部とをジャケット付の
ニーダ−に仕込み、攪拌しながら充分に溶解した後、8
5℃の温度に保ち、これにp+p−ジフェニルメタンジ
イソシアネート1985部を加えて反応させた。
Example 1 5825 parts of dehydrated polytetramethylene glycol having a hydroxyl value of 102 (hereinafter, all parts mean heavy slope parts).
and 220 parts of 1,4-butanediol were placed in a jacketed kneader and thoroughly dissolved with stirring, then 8 parts of 1,4-butanediol were added.
The temperature was maintained at 5° C., and 1985 parts of p+p-diphenylmethane diisocyanate was added thereto for reaction.

攪拌を続けると約30分で粉末状のポリウレタンが得ら
れ、これを押出機によシペレット状に成形しジメチルホ
ルムアミド中25℃で測定した濃度1y/100mA!
の相対粘度が2.25のポリウレタン弾性体を得た。
When stirring was continued, powdered polyurethane was obtained in about 30 minutes, which was molded into pellets using an extruder and had a concentration of 1y/100mA as measured at 25°C in dimethylformamide!
A polyurethane elastomer having a relative viscosity of 2.25 was obtained.

このようにして得たポリウレタン弾性体のペレットを原
料とし、1列に配列した直径0.8mmのノズルの両側
に加熱気体の噴射用スリットを有する溶融ブロー紡糸装
置を用い溶融温度288℃、ノズル当シ毎分o、 i 
5 yの割合でポリマーを吐出し、200℃に加熱した
空気を8.5 kg/cm2  の圧力でスリットから
噴射して細化した。細化したフィラメントをノズル下方
25cmに設置し九30メッシェの金網からなるコンベ
ア上で捕集し、ローラーではさんで引取シネ織布を得た
。この不織布はポリウレタン弾性繊維のモノフィラメン
トが開繊されて積層しておシ、フィラメント間の交絡点
は互に融着によ多接合されていた。この不織布の物件値
は次のごとくであった。
Using the polyurethane elastic pellets obtained in this way as a raw material, a melt blow spinning device having slits for jetting heated gas on both sides of nozzles with a diameter of 0.8 mm arranged in a row was used to spin the polyurethane elastic material at a melting temperature of 288°C. o, i per minute
The polymer was discharged at a rate of 5 y, and air heated to 200° C. was injected from the slit at a pressure of 8.5 kg/cm 2 to atomize the polymer. The thinned filament was placed 25 cm below the nozzle, collected on a conveyor made of a 930-mesh wire mesh, and sandwiched between rollers to obtain a taken-off shin woven fabric. This nonwoven fabric was made up of opened and laminated monofilaments of polyurethane elastic fibers, and the intertwining points between the filaments were joined together by fusion. The property value of this nonwoven fabric was as follows.

目     付           1 5 9’/
m2引張強力     0.12 kg/am破断伸度
     520% 剛軟度   10mm フィラメント直径 5ミクロン 次いで、この不織布を直径5 mmのフッ素樹脂でコー
ティングした芯枠に捲き付りた後、内径7mmの円筒状
の型枠に入れ150℃で30分聞加熱成型した。芯枠を
引き抜いてポリウレタンの多孔性の管状体を得た。この
管状体は不織布が互に強固に接合され、一体化した構造
であった。
Weight 1 5 9'/
m2 Tensile strength: 0.12 kg/am Breaking elongation: 520% Bending resistance: 10 mm Filament diameter: 5 microns Next, this nonwoven fabric was wrapped around a core frame coated with fluororesin with a diameter of 5 mm, and then rolled into a cylindrical shape with an inner diameter of 7 mm. It was placed in a mold and heated and molded at 150°C for 30 minutes. The core frame was pulled out to obtain a porous polyurethane tubular body. This tubular body had an integrated structure in which nonwoven fabrics were firmly bonded to each other.

続いて管状体の内向にCF4モノマーのガスを流し、外
側に内面よシ若干圧力が高くなるようアルゴンガスを流
した。アルゴンガスの圧力は1mbarとした。18.
56MHz の高周波を30Wの出力で5分電印加し、
筒状体の内面をフッ素化合物の低温ガスプラズマ処理を
行った。内面の水に対する接触角は117.6°であシ
良好な撓水性を示した。
Subsequently, CF4 monomer gas was flowed inward of the tubular body, and argon gas was flowed to the outside so that the pressure was slightly higher than that of the inner surface. The pressure of argon gas was 1 mbar. 18.
Apply a high frequency of 56MHz with an output of 30W for 5 minutes,
The inner surface of the cylindrical body was treated with a low-temperature gas plasma using a fluorine compound. The contact angle of the inner surface with water was 117.6°, indicating good water repellency.

この管状体の透水率を測定したところ830m11分で
あった。さらに、本明細書中に述べた方法で抗血栓性の
評価を行った結果を第1表に示す。第1表よシ内面の抗
血栓性が非常にすぐれておシ、人工血管として最適であ
ることがわかった。
The water permeability of this tubular body was measured and was 830 m11 min. Furthermore, Table 1 shows the results of evaluating antithrombotic properties using the method described in this specification. As shown in Table 1, the antithrombotic properties of the inner surface of the membrane were very good, making it ideal for use as an artificial blood vessel.

また、材料の力学的特性もプラズマ処理前後で変化しな
かった。
Furthermore, the mechanical properties of the material did not change before and after plasma treatment.

第  1  表 血栓生成率はガラス面を100とした場合の15分後の
血栓生成率である。
Table 1 Thrombus formation rate is the thrombus formation rate after 15 minutes when the glass surface is taken as 100.

(発明の効果) 本発明におけるポリウレタン弾性繊維は相互に接合され
た多孔性の管状体であるため、ポリウレタンの弾性を始
めとする生医学材料としての良好な特性を利用できると
ともに、生体組織の侵入に有利であシかつ生体絵風を保
持し易いという利点を有する。さらに、少なくとも血液
接触面がフッ素化合物の低温プラズマ処理によシ高い抗
血栓を与えられているため、内面の高い抗血栓性を併せ
もち、小口径の人工血管としても使用できるという特長
を有する。又、力学的に良好なポリウレタン弾性繊維上
へフッ素化合物プラズマ重合膜を形成させる為に、材料
の力学的メリットを生かし、かつ材料の表面物性のみを
抗血栓性に変化させたものであシ、従来の材料にみられ
た成形性の悪さ、力学的強度の低さ、耐久性の低さ、又
抗血栓性の変化等の欠点を太き(改良したものである。
(Effects of the Invention) Since the polyurethane elastic fibers of the present invention are porous tubular bodies bonded to each other, it is possible to utilize the good properties of polyurethane as a biomedical material, including its elasticity, and to prevent the infiltration of living tissues. It has the advantage that it is advantageous in that it is easy to maintain the living image style. Furthermore, since at least the blood-contacting surface is given high antithrombotic properties by low-temperature plasma treatment with a fluorine compound, the inner surface also has high antithrombotic properties, and it has the feature that it can be used as a small-diameter artificial blood vessel. In addition, in order to form a fluorine compound plasma polymerized film on mechanically good elastic polyurethane fibers, we have taken advantage of the mechanical advantages of the material and changed only the surface properties of the material to antithrombotic properties. It is a material that improves on the drawbacks of conventional materials, such as poor moldability, low mechanical strength, low durability, and changes in antithrombotic properties.

又、本発明方法は溶剤を一切用いない完全なドライプロ
セスであるため、溶剤の残存による人体への障害を考慮
する必要がなく、全く安全であシ、さらに特殊な材料、
プロセス、条件をとらない為に極めて安価に製造できる
等、大きなメリットがある。更に直線状の人工血管以外
にテーパ一つきのもの、枝分れのあるものなどもそれぞ
れに合った成形具を使用すれば容易に製造できる。
In addition, since the method of the present invention is a completely dry process that does not use any solvent, there is no need to consider the danger of residual solvent to the human body, and it is completely safe.
It has great advantages, such as being able to be manufactured at an extremely low cost since it does not require any processes or conditions. Furthermore, in addition to straight artificial blood vessels, one with a single taper, one with branches, etc. can be easily manufactured by using molding tools suitable for each type of artificial blood vessel.

〃   カネボウ會繊株式公社Kanebo Kaisen Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] (1)熱可塑性ポリウレタン弾性体を熔融紡糸後、高速
高温気体に随伴し細化して得られた実質的に連続したフ
ィラメントをシート状に積層して得られたポリウレタン
弾性繊維不織布を芯棒に巻き付け、加熱成型し多孔性の
管状体とした後、該管状体の少なくとも内面をフッ素化
合物の低温ガスプラズマ処理を施す事を特徴とする人工
血管の製造方法。
(1) After melt-spinning a thermoplastic polyurethane elastomer, it is entrained in high-speed high-temperature gas to be thinned, and the resulting substantially continuous filaments are laminated into a sheet shape. A polyurethane elastic fiber nonwoven fabric is then wrapped around a core rod. A method for producing an artificial blood vessel, which comprises heating and molding the tubular body to form a porous tubular body, and then subjecting at least the inner surface of the tubular body to a low-temperature gas plasma treatment using a fluorine compound.
(2)加熱成型の温度が70−200℃である特許請求
の範囲第1項記載の製造方法。
(2) The manufacturing method according to claim 1, wherein the heating molding temperature is 70-200°C.
(3)ポリウレタン弾性繊維の平均直径が30ミクロン
以下である特許請求の範囲第1項記載の製造方法。
(3) The manufacturing method according to claim 1, wherein the polyurethane elastic fibers have an average diameter of 30 microns or less.
(4)内面の水に対する接触角が100°以上である特
許請求の範囲第1項記載の製造方法。
(4) The manufacturing method according to claim 1, wherein the inner surface has a contact angle with water of 100° or more.
JP61008437A 1986-01-17 1986-01-17 Manufacturing method of artificial blood vessel Expired - Lifetime JPH0691889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61008437A JPH0691889B2 (en) 1986-01-17 1986-01-17 Manufacturing method of artificial blood vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61008437A JPH0691889B2 (en) 1986-01-17 1986-01-17 Manufacturing method of artificial blood vessel

Publications (2)

Publication Number Publication Date
JPS62167560A true JPS62167560A (en) 1987-07-23
JPH0691889B2 JPH0691889B2 (en) 1994-11-16

Family

ID=11693101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61008437A Expired - Lifetime JPH0691889B2 (en) 1986-01-17 1986-01-17 Manufacturing method of artificial blood vessel

Country Status (1)

Country Link
JP (1) JPH0691889B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0857038A (en) * 1993-06-07 1996-03-05 Agency Of Ind Science & Technol Plastic tube, anti-thrombogenic medical material, medical tool, manufacture and manufacturing device thereof, and plasma processor
WO2006132066A1 (en) * 2005-06-08 2006-12-14 Konica Minolta Medical & Graphic, Inc. Medical capsule endoscope

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0857038A (en) * 1993-06-07 1996-03-05 Agency Of Ind Science & Technol Plastic tube, anti-thrombogenic medical material, medical tool, manufacture and manufacturing device thereof, and plasma processor
WO2006132066A1 (en) * 2005-06-08 2006-12-14 Konica Minolta Medical & Graphic, Inc. Medical capsule endoscope

Also Published As

Publication number Publication date
JPH0691889B2 (en) 1994-11-16

Similar Documents

Publication Publication Date Title
US4878908A (en) Fibrillar product
EP0011437B1 (en) A process for setting a product comprising electrostatically spun fibres, and products prepared according to this process
Magaz et al. Porous, aligned, and biomimetic fibers of regenerated silk fibroin produced by solution blow spinning
CN101214393B (en) Nano fibrous tissue engineering blood vessel and preparation thereof
US3878284A (en) Processes for making shaped articles such as filaments or films from solutions of polyglycolic acid
EP1618856B1 (en) Composite of support substrate and collagen, and process for producing support substrate and composite
AU772047B2 (en) Multi-channel bioresorbable nerve regeneration conduit and process for preparing the same
JPS63543B2 (en)
Mirbagheri et al. Evaluation of mechanical properties and medical applications of polycaprolactone small diameter artificial blood vessels
CN108295310A (en) A kind of conductivity type tissue engineering bracket and its preparation method and application
CA1103867A (en) Vascular prosthesis produced from electrostatically spun fibres
Maleknia et al. Electrospinning of gelatin nanofiber for biomedical application
JPS6389165A (en) Electrostatically spun product and its production
Tao Effects of Molecular weight and Solution Concentration on Electrospinning of PVA
JPS62167560A (en) Production of artificial blood vessel
US5462704A (en) Method for preparing a porous polyurethane vascular graft prosthesis
JPS62183758A (en) Production of artificial blood vessel
JPS62183757A (en) Artificial blood vessel and its production
JPS62192171A (en) Production of artificial blood vessel
JPS62186864A (en) Production of artificial blood vessel
Hakamada et al. Electrospun poly (γ-benzyl-L-glutamate) and its alkali-treated meshes: Their water wettability and cell-adhesion potential
Wang et al. Poly (L-lactide-co-ε-caprolactone) Nanofiber Morphology Control and Influence of Properties
JPS62161358A (en) Artificial blood vessel and its production
JPS62186863A (en) Artificial blood vessel and its production
JPS58157465A (en) Formation of porous tube product