JPS62167493A - Gamma camera - Google Patents

Gamma camera

Info

Publication number
JPS62167493A
JPS62167493A JP27023185A JP27023185A JPS62167493A JP S62167493 A JPS62167493 A JP S62167493A JP 27023185 A JP27023185 A JP 27023185A JP 27023185 A JP27023185 A JP 27023185A JP S62167493 A JPS62167493 A JP S62167493A
Authority
JP
Japan
Prior art keywords
region
output
pmt1
amplifier
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27023185A
Other languages
Japanese (ja)
Inventor
Haruo Kishi
貴志 治夫
Tokuyuki Shibahara
芝原 徳幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP27023185A priority Critical patent/JPS62167493A/en
Publication of JPS62167493A publication Critical patent/JPS62167493A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To avoid pileup and to enhance a counting rate, by dividing a total visual field into several fields and providing a change-over means for sending the output of the photoelectric converter means of one region to a position and energy operation means when the incident of radioactive rays to said one region is confirmed. CONSTITUTION:A gamma camera uses 19 PMTs (photomultiplier tubes)1 and the total visual field thereof is divided into seven regions A-G. The output of each PMT1 is sent to the presum amplifier 2 of each region and the output of PMT1 at every region is added. When one radioactive rays are incident to the visual field, output is generated from neighboring PMT1 to confirm the region having generated output by a comparator 3 and a control signal is generated from a control circuit 6 and only the analogue switch 5 of the judged region is closed and only an addition signal obtained by adding the output of PMT1 of said region is sent to a sum amplifier 7 and an added energy signal is outputted from the amplifier 7. At the same time, a control signal is outputted to an analogue switch 9 from the circuit 6 and the output of PMT1 of a selected specific region is sent to a sum amplifier 10 and subjected to weighing addition to output a position signal.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、アンガ一方式のガンマカメラに関する。[Detailed description of the invention] Industrial applications The present invention relates to a one-angle type gamma camera.

従来の技術 アンガ一方式のガンマカメラでは、シンチレータの背面
に多数のPMT (光電子増倍管)を並べておき、各P
MT出力をその位置に応じて重み付け加算することによ
って視野内に入った放射線によって生じるシンチレータ
内の発光位置を求めるとともに、全PMT出力を加算し
てエネルギ信号を得ている。
In the conventional one-gauge gamma camera, a large number of PMTs (photomultiplier tubes) are lined up on the back of the scintillator, and each PMT (photomultiplier tube) is
By weighting and adding the MT outputs according to their positions, the light emitting position within the scintillator caused by the radiation that has entered the field of view is determined, and the energy signal is obtained by adding all the PMT outputs.

発明が解決しようとする問題点 しかし、全視野につき、1つの位置演算回路、エネルギ
演算回路で信号処理を行なっているため、パイルアンプ
の問題により計数率を上げられない欠点がある。すなわ
ち、放射線入射イベントが時間的に離れている場合には
、第2図(イ)のように各信号が離れているのでそれぞ
れ処理することができるが、イベントが時間的に接近し
て起ると、第2図(ロ)のように信号が重なってしまい
、位置演算およびエネルギ演算を行なえなくなる。この
ようにイベントが接近した場合にパイルアップの問題が
生じ、このような場合は正常な信号処理ができないので
、いずれもイベントの処理も停止せざるを得す、そのた
め計数率を向上させられない。
Problems to be Solved by the Invention However, since signal processing is performed by one position calculation circuit and one energy calculation circuit for the entire field of view, there is a drawback that the counting rate cannot be increased due to the pile amplifier problem. In other words, if the radiation incident events are separated in time, each signal is separated and can be processed separately, as shown in Figure 2 (a), but if the events occur close in time, Then, the signals overlap as shown in FIG. 2(b), making it impossible to perform position calculation and energy calculation. Pile-up problems occur when events approach each other in this way, and in such a case, normal signal processing cannot be performed, so event processing has to be stopped in both cases, making it impossible to improve the counting rate. .

この発明は、パイルアップを起さないよう改善すること
で計数率を向上させたガンマカメラを提供することを目
的とする。
An object of the present invention is to provide a gamma camera that improves the counting rate by improving the prevention of pile-up.

問題点を解決するための手段 この発明によるガンマカメラは、全視野をそれぞれが重
なり合うよう複数の領域に分け、その各領域に入る光電
変換手段の出力の和をそれぞれ得る加算手段と、該加算
手段の出力により発光がどの領域で生じたかを判定する
手段と、発光が生じたと判定された領域の光電変換手段
出力のみを位置演算手段およびエネルギ演算手段に送る
切換え手段とを有する。
Means for Solving the Problems The gamma camera according to the present invention divides the entire field of view into a plurality of regions so as to overlap each other, and includes an adding means for obtaining the sum of the outputs of the photoelectric conversion means entering each region, and the adding means. and a switching means for sending only the output of the photoelectric conversion means in the area where it is determined that the light emission has occurred to the position calculation means and the energy calculation means.

作    用 全視野を複数の領域に分け、その1つの領域に放射線入
射があったと判定されたときに、その領域に属する光電
変換手段の出力を位置演算手段およびエネルギ演算手段
に送るように切換え手段を切換えているので、続いて他
の領域に放射線入射があった場合、そのイベントの信号
はこの切換手段を通過することができない。そのため、
パイルアップを避けることができ、計数率を向上させる
ことができる。
The switching means divides the entire field of view into a plurality of regions, and when it is determined that radiation is incident on one of the regions, the output of the photoelectric conversion means belonging to that region is sent to the position calculation means and the energy calculation means. Therefore, if radiation subsequently occurs in another area, the signal of that event cannot pass through this switching means. Therefore,
Pile-ups can be avoided and the counting rate can be improved.

実施例 第1図に示す実施例では、PMTlを19個用いており
、これを視野内に図示のように配列している。全視野を
図の点線で示すようにA、B、C,D、E、F、Gの7
つの領域に分ける。これらの領域は相互に重なり合う部
分を有し、それぞれ7個のPMTIをカバーし、領域A
は中央部、領域Bは左上部、領域Cは左部、領域りは左
下部、領域Eは右下部、領域Fは右部、領域Gは右上部
となっている。
Embodiment In the embodiment shown in FIG. 1, 19 PMTl's are used and arranged within the field of view as shown. A, B, C, D, E, F, G as indicated by the dotted lines in the whole field of view.
divided into two areas. These regions have mutually overlapping parts, each covering 7 PMTIs, and region A
is in the center, area B is in the upper left, area C is in the left, area is in the lower left, area E is in the lower right, area F is in the right, and area G is in the upper right.

これらの各PMTIの出力は、それぞれの領域毎に設け
られたプリサムアンプ2に送られ、各領域毎のPMTl
の出力の加算が行なわれる。1つの放射線が視野内に入
射してシンチレータ(図示しない)において発光が生じ
た場合、その発光位置近傍のPMTIより出力が生じる
。そこで、各領域毎の加算信号の大きさから、比較器3
により、どの領域で発光が生じたかの判定を行なうこと
ができる。この、どの領域で発光が生じたかの判定が行
なわれると、その結果にもとづき制御回路6が制御信号
を発生して、発光を生じたと判定された領域のアナログ
スイッチ5のみを閉じる。
The output of each of these PMTIs is sent to the presum amplifier 2 provided for each region, and the PMTl of each region is
The outputs of are added. When one radiation enters the field of view and a scintillator (not shown) emits light, an output is generated from the PMTI near the light emitting position. Therefore, from the magnitude of the added signal for each region, the comparator 3
Accordingly, it is possible to determine in which region light emission has occurred. When it is determined in which region the light emission has occurred, the control circuit 6 generates a control signal based on the result and closes only the analog switch 5 in the region where it has been determined that the light emission has occurred.

そのため、発光を生じたと判定された領域に屈するPM
Tlの出力を加算した加算信号のみが遅延回路4を経て
サムアンプ7に送られる。したがって、このサムアンプ
7から、発光を生じたと判定された領域に屈するPMT
Iの出力のみを加算して得たエネルギ信号が出力される
Therefore, PM that succumbs to the area determined to have generated light emission
Only the sum signal obtained by adding the outputs of Tl is sent to the sum amplifier 7 via the delay circuit 4. Therefore, from this sum amplifier 7, the PMT that succumbs to the area where it is determined that light emission has occurred
An energy signal obtained by adding only the outputs of I is output.

他のアナログスイッチ5は、このサムアンプ7からのエ
ネルギ信号の出力が終るまで、開かれており、他の領域
で放射線入射イベントが起っても、その領域の加算信号
がサムアンプ7に送られることはない。そのため、パイ
ルアップが排除されており、計数率が向上する。
The other analog switches 5 are kept open until the output of the energy signal from the sum amplifier 7 is finished, so that even if a radiation incident event occurs in another region, the sum signal of that region is sent to the sum amplifier 7. There isn't. Therefore, pile-ups are eliminated and the counting rate is improved.

なお、遅延回路4は、比較器3および制御回路6での時
間遅れを補償するためのものである。
Note that the delay circuit 4 is for compensating for time delays in the comparator 3 and the control circuit 6.

そして、このとき同時に、制御回路6から位置信号演算
系のアナログスイッチ9への制御信号が出される。全て
のPMTlの出力は同様の理由で遅延回路8を経てこの
アナログスイッチ9に送られてきており、制御信号によ
り、発光を生じたと判定された領域に屈するPMTIの
出力のみが選ばれる。こうして選ばれた特定の領域のP
MTIの出力はサムアンプ10に送られて、その各PM
T1の位II¥に応じて重み付け加算され、位δ信号が
得られる。この位置信号演算系においても、アナログス
イッチ9により他の領域のPMTIの出力はサムアンプ
lOが位置信号を生じるまでの間、停止されてしまうの
で、パイルアップを排除することができる。
At the same time, a control signal is output from the control circuit 6 to the analog switch 9 of the position signal calculation system. For the same reason, the outputs of all the PMTIs are sent to this analog switch 9 via the delay circuit 8, and only the outputs of the PMTIs that fall within the region where it has been determined that light emission has occurred are selected by the control signal. P of the specific area selected in this way
The output of the MTI is sent to the sum amplifier 10, and each PM
A weighted addition is performed according to the digit II\ of T1, and a digit δ signal is obtained. In this position signal calculation system as well, the output of PMTI in other areas is stopped by the analog switch 9 until the sum amplifier IO generates a position signal, so that pile-up can be eliminated.

以上のモードは高計数率時に特に有効であるが、通常の
低計数率・高分解能のモードの場合には、制御回路6に
よりアナログスイッチ5.9を全て閉じるようにする。
The above mode is particularly effective when the counting rate is high, but in the case of a normal low counting rate/high resolution mode, the control circuit 6 closes all analog switches 5.9.

すると、領域毎に選ばれるということがなくて、全視野
でのPMTlの出力が通常と同様にエネルキ演算および
位置演算に用いられるようになる。
Then, the output of PMT1 in the entire field of view is not selected for each region, and is used for energy calculation and position calculation in the same way as usual.

発明の効果 この発明のガンマカメラによれば、パイルアップを減少
させ、計数率を向上させることができる。
Effects of the Invention According to the gamma camera of the present invention, pile-up can be reduced and the counting rate can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例のブロック図、第2図は波
形図である。 1・・・PMT         2・・・プリサムア
ンプ3・・・比較器        4.8・・・遅延
回路5.9・・・アナログスイッチ 6・・・制御回路
7.10・・・サムアンプ
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2 is a waveform diagram. 1...PMT 2...Presum amplifier 3...Comparator 4.8...Delay circuit 5.9...Analog switch 6...Control circuit 7.10...Sum amplifier

Claims (1)

【特許請求の範囲】[Claims] (1)シンチレータと、このシンチレータの背面に配列
される多数の光電変換手段と、該光電変換手段の出力を
その位置に応じて重み付け加算することによって視野内
に入った放射線によって生じるシンチレータ内の発光位
置を求める位置演算手段と、上記光電変換手段の出力を
全て加算してエネルギ信号を得るエネルギ演算手段とを
有するガンマカメラにおいて、全視野をそれぞれが重な
り合うよう複数の領域に分け、その各領域に入る光電変
換手段の出力の和をそれぞれ得る加算手段と、該加算手
段の出力により発光がどの領域で生じたかを判定する手
段と、発光が生じたと判定された領域の光電変換手段出
力のみを上記の位置演算手段およびエネルギ演算手段に
送る切換え手段とを有することを特徴とするガンマカメ
ラ。
(1) A scintillator, a large number of photoelectric conversion means arranged on the back side of the scintillator, and light emission inside the scintillator caused by radiation that enters the field of view by weighting and adding the outputs of the photoelectric conversion means according to their positions. In a gamma camera having a position calculation means for calculating a position and an energy calculation means for obtaining an energy signal by adding all the outputs of the photoelectric conversion means, the entire field of view is divided into a plurality of regions so that each region overlaps, and each region is Adding means for obtaining the sum of the outputs of the input photoelectric conversion means, means for determining in which region light emission has occurred based on the output of the addition means, and means for calculating only the output of the photoelectric conversion means of the region where it is determined that light emission has occurred. A gamma camera characterized in that it has a position calculation means and a switching means for sending data to the energy calculation means.
JP27023185A 1985-11-30 1985-11-30 Gamma camera Pending JPS62167493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27023185A JPS62167493A (en) 1985-11-30 1985-11-30 Gamma camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27023185A JPS62167493A (en) 1985-11-30 1985-11-30 Gamma camera

Publications (1)

Publication Number Publication Date
JPS62167493A true JPS62167493A (en) 1987-07-23

Family

ID=17483377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27023185A Pending JPS62167493A (en) 1985-11-30 1985-11-30 Gamma camera

Country Status (1)

Country Link
JP (1) JPS62167493A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2755816A1 (en) * 1996-11-08 1998-05-15 Commissariat Energie Atomique METHOD AND DEVICE FOR PROCESSING SIGNALS OF A SET OF PHOTODETECTORS HAVING A CELLULAR ARCHITECTURE, AND APPLICATION TO GAMMA CAMERAS
FR2755815A1 (en) * 1996-11-08 1998-05-15 Commissariat Energie Atomique DEVICE AND METHOD FOR DETERMINING THE PRESENT POSITION OF AN EVENT IN RELATION TO A SET OF PHOTODETECTORS, AND APPLICATION TO GAMMA-CAMERAS
KR20000051947A (en) * 1999-01-28 2000-08-16 윤종용 Gamma camera system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2755816A1 (en) * 1996-11-08 1998-05-15 Commissariat Energie Atomique METHOD AND DEVICE FOR PROCESSING SIGNALS OF A SET OF PHOTODETECTORS HAVING A CELLULAR ARCHITECTURE, AND APPLICATION TO GAMMA CAMERAS
FR2755815A1 (en) * 1996-11-08 1998-05-15 Commissariat Energie Atomique DEVICE AND METHOD FOR DETERMINING THE PRESENT POSITION OF AN EVENT IN RELATION TO A SET OF PHOTODETECTORS, AND APPLICATION TO GAMMA-CAMERAS
WO1998021606A1 (en) * 1996-11-08 1998-05-22 Commissariat A L'energie Atomique Method and device for processing signals from a set of photodetectors with cellular architecture, and application to gamma-cameras
WO1998021607A1 (en) * 1996-11-08 1998-05-22 Commissariat A L'energie Atomique Device and method for determining the assumed position of a phenomenon relative to a set of photodetectors, and application to gamma-cameras
KR20000051947A (en) * 1999-01-28 2000-08-16 윤종용 Gamma camera system

Similar Documents

Publication Publication Date Title
GB1213478A (en) Indicating or detecting apparatus for nuclear radiation such as gamma rays
JPS62167493A (en) Gamma camera
US4398101A (en) Four input coincidence detector
JPH05180941A (en) Method and apparatus for position analysis and radioactivity nuclide camera apparatus
US4100413A (en) Radiation imaging apparatus with improved accuracy
ES8103641A1 (en) Positron emission transaxial tomography apparatus
GB1508444A (en) Data derandomizer and method of operation for radiation imaging detection systems
JPH07104072A (en) Ect device
JPH0544991B2 (en)
US4742230A (en) X-ray image detecting apparatus
JPS5892973A (en) Radiation detector for emission ct apparatus
US5929447A (en) Gamma camera collimator
JP2540863B2 (en) Ring type ECT device
JPS625194A (en) Radiation position detector
JPS62203078A (en) Radiation position detector
JPS61102579A (en) Detecting device for radiation source position
GB2074809A (en) Gamma camera having electronic correction of linearity errors
Woldemichael Design of floating-boundary multi-zone scintillation camera with pileup prevention and misplaced pileup suppression (MPS)
JP3046617B2 (en) Scintillation camera
JP2653047B2 (en) Radiation detector
JP2754696B2 (en) Gamma camera
SU1536995A1 (en) Compton telescope for registering gamm-guanta
JP2682380B2 (en) Positron CT system
JPS61275684A (en) Semiconductor radiation position detecting device
JP2629859B2 (en) PET device coincidence circuit