JPS62167405A - Instrument for measuring magnetism of navigating body - Google Patents

Instrument for measuring magnetism of navigating body

Info

Publication number
JPS62167405A
JPS62167405A JP60286341A JP28634185A JPS62167405A JP S62167405 A JPS62167405 A JP S62167405A JP 60286341 A JP60286341 A JP 60286341A JP 28634185 A JP28634185 A JP 28634185A JP S62167405 A JPS62167405 A JP S62167405A
Authority
JP
Japan
Prior art keywords
magnetic
ship
line
coils
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60286341A
Other languages
Japanese (ja)
Inventor
Norio Tsujimura
辻村 紀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP60286341A priority Critical patent/JPS62167405A/en
Publication of JPS62167405A publication Critical patent/JPS62167405A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a magnetic distribution to be accurately measured even when the course of a ship deviates from predetermined position and bearing by providing the ship with coils to measure the position and bearing of the navigating body and correcting a magnetic distribution. CONSTITUTION:Magnetic detectors D1-D7 are arranged on a line on the sea bottom 1 at prescribed spaces. A measuring room 30 on the line on land is provided with a main instrument 10. Coils La and Lb are wound in a ship 2 to be measured and the ship 2 is visibly marked so that it can be confirmed at a monitoring point 31 when those coils reach the line. When the ship 2 navigates over the line on which the detectors D1-D7 are arranged, the detecting output of the detectors is stored in storage means at prescribed sampling period. Further, when the positions of the coils La and Lb pass the line, these coils are electrified. On the basis of the detecting output of the detectors D1-D7 obtained when the coils La and Lb are electrified and measured data obtained when the coils are not electrified, the magnetism of the hull of the ship 2 in a position where the coils pass the line can be calculated. Then, the actual passing position of the ship 2 and then the bearing and magnetic moment of the navigating body are calculated and correcting magnetic signals are obtained.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、船舶等の航過体の磁気測定装置、特に海底
に布設された複数の磁気検知器を用いた航過体磁気測定
装置に関する。
Detailed Description of the Invention (a) Industrial Application Field This invention relates to a magnetic measuring device for a passing object such as a ship, particularly a moving object magnetic measuring device using a plurality of magnetic detectors installed on the seabed. Regarding.

(ロ)従来の技術 船体や船舶に搭載する装置類を構成する磁性体の磁気分
布を測定するのに、従来、第6図に示すように、海底1
に複数個の磁気検知器D1、D2、・・・・・・、D7
を所定の間隔を置いて列線状に配設し、船体2が磁気検
知器D+、Dz、・・・・・・、D7が配設される列線
に直角に進行航過する際に、所定のサンプリング周期で
磁気検知器D1.D2、・・・・・・、D7の検知出力
を図示外の制御装置のメモリに取込み、記憶するように
している。
(b) Conventional technology In order to measure the magnetic distribution of magnetic materials constituting the hulls and equipment installed on ships, conventional techniques have been used to
multiple magnetic detectors D1, D2,..., D7.
are arranged in a row at predetermined intervals, and when the hull 2 passes at right angles to the row in which the magnetic detectors D+, Dz, . . . , D7 are arranged, At a predetermined sampling period, the magnetic detector D1. The detection outputs of D2, . . . , D7 are taken into a memory of a control device (not shown) and stored therein.

(ハ)発明が解決しようとする問題点 上記従来装置は、あくまでも船体2が磁気検知器り2、
D2、・・・・・・、D7が配設される列線に直角に進
入し、かつ所定の位置(例:磁気検知器D4の位置)を
通過することを前提として、磁気分布を測定するもので
ある。しかし、実際に航過する船舶は、必ずしも磁気検
知器の配設列線に直角に進入するものではないし、また
磁気検知器の配設列線を通過する船舶の位置も所定の位
置とならず、左右にすれることがしばしばあり、精密な
磁気分布の測定を妨げていた。
(c) Problems to be solved by the invention In the above conventional device, the hull 2 is the magnetic detector 2,
The magnetic distribution is measured on the premise that it enters the column line where D2, . It is something. However, ships that actually pass do not necessarily approach the array line of magnetic detectors at right angles, and the position of ships passing through the array line of magnetic detectors is not always at a predetermined position. , the magnetic field often shifted from side to side, which hindered precise measurement of magnetic distribution.

この発明は、上記に迄み、船舶の進路が予定の位置・方
位からずれることがあっても、精度よく磁気分布を測定
し得る航過体磁気測定装置を提供することを目的として
いる。
SUMMARY OF THE INVENTION An object of the present invention is to provide a passing body magnetism measurement device that can accurately measure magnetic distribution even if the course of a ship deviates from the planned position and direction.

(ニ)問題点を解決するための手段及び作用この発明の
航過体磁気測定装置は、海底に所定の間隔で列線状に配
置される複数の磁気検知器(D、、D2、・・・・・・
、D?)と、これらの磁気検知器より、所定周期で磁気
信号を取込み、各磁気検知器毎に記憶する測定データ記
憶手段(14)と、航過体に設けられ、航過中に前記磁
気検知器の位置に達すると通電されるコイル(La、L
b)と、このコイル通電時の磁気検知器出力と非通電時
の測定データとに基づいてコイル通過位置のコイルのみ
による磁気を算出する手段(ST7〜5TIO)と、こ
の算出された磁気の前記列線に直角な方向成分の最大値
の位置を抽出する最大値位置抽出手段(STII)と、
抽出された最大値位置の最寄りの磁気検知器の前記列線
に直角な方向成分と平行方向成分出力とに基づいて航過
体の方位を算出する方位算出手段(ST12)と、前記
求められた方位・位置及び磁気信号より航過体の磁気モ
ーメントを算出する磁気モーメント算出手段(ST13
)と、求められた磁気モーメントより、本来航過体が通
過する位置での磁気信号を算出する手段(ST14)と
から構成されている。
(d) Means and operation for solving the problem The vehicle magnetism measurement device of the present invention includes a plurality of magnetic detectors (D, D2, . . .・・・・・・
,D? ), measurement data storage means (14) that captures magnetic signals from these magnetic detectors at a predetermined period and stores them for each magnetic detector; The coils (La, L
b), means (ST7 to 5TIO) for calculating the magnetism due only to the coil at the coil passing position based on the magnetic detector output when the coil is energized and the measurement data when the coil is not energized; maximum value position extraction means (STII) for extracting the position of the maximum value of the direction component perpendicular to the column line;
azimuth calculating means (ST12) for calculating the azimuth of the passing object based on the direction component perpendicular to the column line and the parallel direction component output of the magnetic detector closest to the extracted maximum value position; Magnetic moment calculation means (ST13
), and a means (ST14) for calculating a magnetic signal at the position where the vehicle would originally pass from the obtained magnetic moment.

この航過体磁気測定装置では、船舶が磁気検知器の配設
列線を航過する際に、従来と同様に、所定のサンプリン
グ周期で各磁気検知器の検知出力が記憶手段に記憶され
る。また、船舶に設けられるコイルの位置が配設列線を
通過する際に、コイルに通電される。そして、このコイ
ル通電時の磁気検知器出力と非通電時の測定データに基
づいて、コイル通過位置の船体磁気が算出される。そし
て、この船体磁気の列線に直角な方向成分(X成分)の
最大値の位置が抽出される。この最大値の位置が、実際
に船舶の通過した位置である。次に、この最大値位置に
最寄りの磁気検知器の出力の列線に直角な方向成分と、
列線に平行な方向成分とから、航過体の方位を求める。
In this passing body magnetism measurement device, when a ship passes through a row of magnetic detectors, the detection output of each magnetic detector is stored in a storage means at a predetermined sampling period, as in the conventional case. . Further, when the position of the coil provided on the ship passes through the arrangement line, the coil is energized. Then, based on the magnetic detector output when the coil is energized and the measurement data when it is not energized, the hull magnetism at the coil passing position is calculated. Then, the position of the maximum value of the directional component (X component) perpendicular to the column line of this hull magnetism is extracted. The position of this maximum value is the position where the ship actually passed. Next, the direction component perpendicular to the column line of the output of the magnetic detector closest to this maximum value position,
The direction of the vehicle is determined from the direction component parallel to the row line.

そして、求めた方位。And the direction you sought.

位置及び磁気信号から磁気モーメントを算出し、この磁
気モーメントから、通過が予定される方位及び位置での
補正された磁気信号を得る。
A magnetic moment is calculated from the position and the magnetic signal, and from this magnetic moment a corrected magnetic signal at the direction and position of the planned passage is obtained.

(ホ)実施例 以下、実施例により、この発明をさらに詳細に説明する
(E) Examples The present invention will be explained in more detail with reference to Examples below.

第2図は、この発明が実施される船体磁気測定装置のブ
ロック図である。同図において、磁気検知器り、、D2
、・・・・・・、D7は、第6図に示すものと全く同様
に、所定間隔で列線状に海底に配設される。そして、こ
れら磁気検知器D1、Dz・・・・・・、D7は、本体
装置10に接続され、本体装置10の受信部11、入出
力部12を経て、所定のサンプリング周期でCPU13
に取込まれ、記憶装置14に記憶されるようになってい
る。
FIG. 2 is a block diagram of a ship magnetism measuring device in which the present invention is implemented. In the same figure, the magnetic detector ri, D2
, . . . , D7 are arranged on the seabed in rows at predetermined intervals, just like the one shown in FIG. These magnetic detectors D1, Dz..., D7 are connected to the main device 10, and are sent to the CPU 13 at a predetermined sampling period via the receiving section 11 and input/output section 12 of the main device 10.
The data is taken in and stored in the storage device 14.

また、本体装置10には、この他、測定結果を表示する
ディスプレイ15、後述する「開始」「終了」 「ルー
プ信号」等の入力をなすための割込信号発生部16を備
えている。
In addition, the main device 10 includes a display 15 for displaying measurement results, and an interrupt signal generator 16 for inputting "start", "end", "loop signals", etc., which will be described later.

また、本体装置10と磁気検知器D1.D2、・・・・
・・、D7は、第3図に示す位置関係にあり、磁気検知
器り8、D2、・・・・・・、D、の配設される列線上
の陸地に設置される測定室30に、本体装置10が設け
られている。なお、被測定船舶2内には、コイルLa、
Lbが巻回されている。もっとも、このコイルLa、L
bは、磁気打消用に設けられるコイルを兼用でいる。そ
して、このコイルLa、Lbがそれぞれ磁気検知器D1
.D2、・・・・・・、D7の配設される列線上に達し
た時に、これを測定室30の監視点31より確認できる
ように、船舶2上に目視マークを付している。
In addition, the main unit 10 and the magnetic detector D1. D2...
..., D7 have the positional relationship shown in Fig. 3, and are located in the measurement chamber 30 installed on land on the line where the magnetic detectors 8, D2, ..., D, are arranged. , a main body device 10 is provided. Note that there are coils La,
Lb is wound. However, this coil La, L
b also serves as a coil provided for magnetic cancellation. These coils La and Lb are respectively magnetic detectors D1
.. A visual mark is placed on the ship 2 so that it can be confirmed from the monitoring point 31 in the measurement room 30 when it reaches the line where D2, . . . , D7 are arranged.

次に、上記実施例船体磁気測定装置のソフト溝成及び動
作を、第1図に示すフロー図により説明する。
Next, the soft groove formation and operation of the ship body magnetism measuring device according to the above embodiment will be explained with reference to the flowchart shown in FIG.

装置の電源が投入されると、先ず開始信号有か否か判定
される(ステップ5TI)。被測定船舶2が測定領域に
存在しない場合は、割込信号発生部16の「開始」ボタ
ンが押されず、従ってこの判定はNOとなり、待機して
いる。
When the device is powered on, it is first determined whether a start signal is present (step 5TI). If the vessel 2 to be measured does not exist in the measurement area, the "start" button of the interrupt signal generating section 16 is not pressed, and therefore the determination is NO and the vessel is on standby.

やがて、被測定船舶2が測定領域内に入り、測定者が被
測定船舶2の進入を確認して、割込信号発生部16の「
開始」ボタンを押すと、ステップSTIの判定がYES
となり、次に、各磁気検知器D1D2、・・・・・・、
D、の出力を読取り、記憶装置14に、第5図に示すよ
うに、各磁気検知器毎に記憶する(ステップST2.5
T3)。続いて、割込信号有か否か判定する(ステップ
5T4)。
Eventually, the ship under test 2 enters the measurement area, the measurer confirms the entrance of the ship under test 2, and the interrupt signal generator 16
When you press the "Start" button, the judgment of step STI is YES.
Then, each magnetic detector D1D2,...
The output of D is read and stored in the storage device 14 for each magnetic detector as shown in FIG. 5 (step ST2.5).
T3). Subsequently, it is determined whether or not there is an interrupt signal (step 5T4).

終了信号、ループ信号等の割込信号が入力されない限り
、この判定はNoとなり、ステップST2に戻り、以後
、割込信号が入るまでステップST2〜ST4の処理を
繰返し、時間間隔(サンプリング周期>TI毎に、各磁
気検知器D1、D2、・・・・・・、D7よりの測定デ
ータを記憶する。
Unless an interrupt signal such as an end signal or a loop signal is input, this determination will be No, and the process will return to step ST2. From then on, the processing of steps ST2 to ST4 will be repeated until an interrupt signal is input, and the time interval (sampling period > TI At each time, measurement data from each magnetic detector D1, D2, . . . , D7 is stored.

船舶2が進行し、測定室30の監視点31より見てコイ
ルLaが磁気検知器D1.D2、・・・・・・、D。
As the ship 2 moves forward, the coil La is detected by the magnetic detector D1. D2,...,D.

の配設列線上に到達したことが確認されると、これによ
り測定者は、割込信号発生部16の「ループ信号」ボタ
ンを押す。これに応答して、割込信号発生部16よりル
ープ信号が出力される。そのため、ステップST4の“
割込信号有か”の判定がYES、ステップST5の“終
了信号有か”の判定がNOとなり、続いて、1回目のル
ープ信号か否か判定される(ステ・ノブ5T6)。コイ
ルLaの場合には、この判定がYESとなる。そして、
この時の磁気検知器DI、D2、・・・・・・、D、の
各キ★知出力がH,I、H21、・・・・・・、H7I
として記憶される(ステップ5T7)。なお、「ループ
信号」ボタンが押されると、コイルLaに通電されるの
で、磁気信号H,I、 H2I、・・・・・・、H,I
は船体磁気とコイルLaによる磁気が合成されたもので
ある。
When it is confirmed that the measurement line has arrived at the arrangement line, the measurer presses the "loop signal" button of the interrupt signal generation section 16. In response to this, the interrupt signal generating section 16 outputs a loop signal. Therefore, in step ST4 “
The determination of ``Is there an interrupt signal?'' is YES, and the determination of ``Is there an end signal?'' of step ST5 is NO, and then it is determined whether it is the first loop signal (ST knob 5T6). In this case, this determination is YES.
At this time, each key output of the magnetic detectors DI, D2,..., D, is H, I, H21,..., H7I.
(Step 5T7). In addition, when the "loop signal" button is pressed, the coil La is energized, so the magnetic signals H, I, H2I, ......, H, I
is a combination of the hull magnetism and the magnetism caused by the coil La.

ステップST7に続いて、処理はステップST2に戻り
、再度、次の割込みが入るまで時間間隔T、で各磁気検
知器D1.D2、・・・・・・、D7の検知出力を読取
り、記憶する(ステップST2.5T3)。この場合、
もちろんコイルLaの通電は停止されている。
Following step ST7, the process returns to step ST2, where each magnetic detector D1 . The detection outputs of D2, . . . , D7 are read and stored (step ST2.5T3). in this case,
Of course, the current supply to the coil La is stopped.

船舶2がさらに進行し、コイルLbが磁気検知器り5、
D2、・・・・・・、D、の配設列線上に到達したこと
が確認され、測定者が再び割込信号発生部16の「ルー
プ信号」ボタンを押すと、やはり割込信号発生部16よ
りループ信号が出力される。そのため、ステップST4
の判定YES、ステップST5の判定NOとなり、続い
て1回目のループ信号か否か判定される(ステップ5T
6)。コイルLbによるループ信号は2回目のループ信
号なので、この判定はNOとなる。そして、この時の磁
気検知器D1.D2、・・・・・・、D、の各検知出力
がH,!’、H21’、・・・・・・、H7I’  と
して記憶される(ステップ5T8)。この場合にもコイ
ルLbに通電されるので、磁気信号H,l’、H2I’
、・・・・・・、H7ビは船体磁気とコイルLbに磁気
が合成されたものである。
The ship 2 moves further, and the coil Lb becomes a magnetic detector 5.
When it is confirmed that the line D2, . A loop signal is output from 16. Therefore, step ST4
YES in step ST5, NO in step ST5, and then it is determined whether or not it is the first loop signal (step 5T).
6). Since the loop signal from the coil Lb is the second loop signal, this determination is NO. At this time, the magnetic detector D1. Each detection output of D2,...,D, is H,! ', H21', . . . , H7I' (step 5T8). In this case as well, the coil Lb is energized, so the magnetic signals H, l', H2I'
. . . H7 Bi is a combination of hull magnetism and coil Lb magnetism.

ステップST8に続いて、処理はステップST2に戻り
、次に割込みが入るまで、やはり時間間隔T、で各磁気
検知器り3、D2、・・・・・・、D、の検知出力を読
取り、記憶する(ステップST2.5T3)。この場合
も、もちろんコイルLbの通電は停止される。
Following step ST8, the process returns to step ST2, and until the next interrupt occurs, the detection outputs of each magnetic detector 3, D2, . . . , D are read at time intervals T, Store (step ST2.5T3). Also in this case, of course, the energization of the coil Lb is stopped.

さらに船舶2が進行し、測定領域外に出ると、これをf
l’fl LWした測定者が、割込信号発生部16の「
終了」ボタンを押す。これにより、割込信号発生部16
から終了信号が出力される。そのため、ステップST4
の判定YES、ステップST5の判定YESとなり、次
にステップST9に移り、次の演算を行う。
When the ship 2 moves further and goes out of the measurement area, the f
l'fl The operator who performed the LW inputs the interrupt signal generator 16's
Press the “Finish” button. As a result, the interrupt signal generator 16
A termination signal is output from. Therefore, step ST4
The determination in step ST5 is YES, and the process then moves to step ST9, where the next calculation is performed.

Hn (I+1)+Hn (1−1) =Hn’ ・・・(1) (1)式は、コイルLaが磁気検知器の配設列線上に到
達する前後の、各磁気検知器D1.D2、・・・・・・
、D7(n = 1〜7 )の磁気出力の平均値Hn’
、(21式は、コイルLbが同配設列線上に到達する前
後の、各磁気検知器D1、D2、・・・・・・、D7の
磁気出力の平均値Hm’であり、もしコイルLa、Lb
にそれぞれ通電しなかった場合に得られるであろう船体
磁気に相当する。
Hn (I+1)+Hn (1-1) = Hn' (1) Equation (1) is based on the relationship between each magnetic detector D1. D2...
, the average value Hn' of the magnetic output of D7 (n = 1 to 7)
, (Equation 21 is the average value Hm' of the magnetic output of each magnetic detector D1, D2, ..., D7 before and after the coil Lb reaches the same arrangement line, and if the coil La ,Lb
corresponds to the hull magnetism that would be obtained if no current was applied to each.

続いて、ステップ5TIOに移り、次の演算を行う。Subsequently, the process moves to step 5TIO, and the next calculation is performed.

Hn I−Hn’  =Hn”  ・・・(3)Hnl
’−Hm’  =Hm”  −・・(4)(3)式は、
コイルLaに通電時の磁気信号Hnlから通電しない時
に得られるであろう船体磁気Hn”を滅じた値、つまり
コイルLaによる磁気出力Hn+ ゛を、また(4)式
は、コイルLb通電時の磁気信号HnI”から通電しな
い時に得られるであろう船体磁気Hm”を減じた値、つ
まりコイルLbによる磁気出力Hm’”を求めるための
式である。
Hn I-Hn' = Hn" ... (3) Hnl
'-Hm' = Hm" -... (4) Equation (3) is
From the magnetic signal Hnl when the coil La is energized, the value obtained by eliminating the hull magnetism Hn'' that would be obtained when the coil La is not energized, that is, the magnetic output Hn+ ゛ by the coil La, is calculated from the magnetic signal Hnl when the coil La is energized. This is a formula for determining the value obtained by subtracting the hull magnetism Hm'' that would be obtained when no current is applied from the magnetic signal HnI'', that is, the magnetic output Hm''' from the coil Lb.

次に、上記(3)(4)式で求めたH n ” (H+
 ” 、Hz ”、・・・・・・、H7”)、Hm ”
 (H1” ) Hz ” 、”’ ”’、H7”)の
X成分(配設側線に直角方向の成分)について、それぞ
れ最大値の位置を抽出する。そして、その位置の平均値
を求める。今、仮に船舶2が磁気検知器D4上を直角に
通過する場合を想定すると、コイルにより生じるX成分
の分布は、第4図に示すように、磁気検知器D4の点が
最大値となる。
Next, H n ” (H+
",Hz",...,H7"),Hm"
For the X component (component in the direction perpendicular to the installation side line) of (H1") Hz", "'"',H7"), extract the position of the maximum value. Then, find the average value of that position. Now Assuming that the ship 2 passes over the magnetic detector D4 at right angles, the distribution of the X component generated by the coil has a maximum value at the point of the magnetic detector D4, as shown in FIG.

つまり、最大値の点が船舶の通過した位置となる。In other words, the point with the maximum value is the position through which the ship has passed.

船舶2が配設列線に直角ではなく、角度θをもって進入
して来た場合は、最大値の生じる位置が異なる点となる
ので、その平均を取るようにしている。
If the ship 2 approaches the arrangement line at an angle θ rather than perpendicular to the arrangement line, the positions where the maximum value occurs will be at different points, so the average is taken.

ステップ5TIIに続いて、求めた位置に最も近い磁気
検知器を抽出する。そして、その磁気検知器の配設列線
の直角方向の成分(X成分)の磁気出力をHx、配設列
線の平行方向の成分(X成分)の磁気出力をHyとして
、 より、船舶2の方位角θを算出する。コイルLa、Lb
について、θa1θbを求めるので、これを平均して、
方位角θを求める(ステップ5T12)。
Following step 5TII, the magnetic detector closest to the determined position is extracted. Then, the magnetic output of the component (X component) in the direction perpendicular to the array line of the magnetic detector is Hx, and the magnetic output of the component (X component) in the parallel direction to the array line of the magnetic detector is Hy. Calculate the azimuth angle θ. Coil La, Lb
Since θa1θb is calculated for
The azimuth angle θ is determined (step 5T12).

以上の処理で、被測定船舶の方位・位置・磁気信号が求
められたので、これらの関数として、磁気モーメントを
最小二乗法により算出する(ステップ5T13)。ぞし
て、この磁気モーメントにより、船舶2が本来の方位・
位置を通過した場合に生じる磁気信号を補正算出する(
ステップ5T14)。
With the above processing, the bearing, position, and magnetic signal of the ship to be measured have been obtained, and as a function of these, the magnetic moment is calculated by the method of least squares (step 5T13). Therefore, due to this magnetic moment, the ship 2 is oriented in its original direction.
Calculate and correct the magnetic signal generated when passing the position (
Step 5T14).

ここで、ステップ5T13、ステップ5T14の処理に
ついて、第7図を参照して若干付脱する。
Here, the processing of steps 5T13 and 5T14 will be slightly modified with reference to FIG.

今、ある1つの磁気検知器りに注目し、ある時点におけ
る船体2との関係において、第7図<a)に示す距離X
、Yが既知であるとすると、となる、但し、第7図(b
lに示すようにHxXHy。
Now, focusing on one magnetic detector, in relation to the hull 2 at a certain point in time, the distance X shown in Fig. 7<a)
, Y is known, then, however, in Fig. 7 (b
HxXHy as shown in l.

Hzは磁気検知器の軸成分、Hx’、Hy’、Hz’は
船首尾方向における磁界である。
Hz is the axial component of the magnetic detector, and Hx', Hy', and Hz' are the magnetic fields in the bow and stern direction.

しかるに、磁界■1は、 H=F (Mx、 My、Mz、X、Y、Z)−−・(
61で表される。
However, the magnetic field ■1 is H=F (Mx, My, Mz, X, Y, Z) -- (
61.

上記(6)式に対し、(5)弐の値を任意の点数あては
めて、最小二乗法により磁気モーメントMx、My、M
zを求める。そして、求めた磁気モーメンI−Mx、M
y、Mzと任意の位置(X、Y)より、各位置における
磁界値を(6)式より算出する。つまり、本来船舶が通
過する位置での磁界値を算出する。
To the above equation (6), apply the value of (5) 2 to an arbitrary number of points, and use the least squares method to calculate the magnetic moments Mx, My, M
Find z. Then, the magnetic moment I-Mx, M
From y, Mz and an arbitrary position (X, Y), the magnetic field value at each position is calculated using equation (6). In other words, the magnetic field value at the position where the ship originally passes is calculated.

(へ)発明の効果 この発明によれば、船舶にコイルを設けること、例えば
消磁用のコイルを利用することにより、船舶等航過体の
方位及び位置を測定できるので、この方位及び位置に基
づき、磁気分布の補正が可能であるから、精度の良い磁
気分布測定をなすことができる。しかも、航路測定に測
距儀等を船に装備する必要がなく、安価に達成できる。
(f) Effects of the Invention According to this invention, by providing a coil on a ship, for example by using a demagnetizing coil, the direction and position of a passing object such as a ship can be measured, and based on this direction and position. Since it is possible to correct the magnetic distribution, it is possible to measure the magnetic distribution with high accuracy. Furthermore, there is no need to equip the ship with a rangefinder or the like to measure the route, and this can be achieved at low cost.

【図面の簡単な説明】 第1図は、この発明が実施される船舶磁気測定装置のソ
フト構成及び動作を説明するためのフロー図、第2図は
、同船舶磁気測定装置のブロック図、第3図は、同装置
の磁気検知器と測定室の位置関係を示す図、第4図は、
コイルによる磁気検知器配設列線方向の、同方向に直角
な成分の分布を示す図、第5図は、記憶装置のデータ記
憶内容を例示する図、第6図fa) (blは、磁気検
知器の配置を示す平面図及び側面図、第7図(a) (
b)は、第1図のフロー図における磁気モーメント算出
及び磁気信号補正処理を説明するための説明図である。 D、・D2・・・・・・D、;磁気検知器、13 : 
CPU、  14:記憶装置、16:割込信号発生部。 特許出願人      株式会社島津製作所代理人  
  弁理士 中 村 茂 信第1図 第6ダ 第3図 茅7肥
[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 is a flow diagram for explaining the software configuration and operation of a ship magnetism measurement device in which the present invention is implemented, and Fig. 2 is a block diagram of the ship magnetism measurement device. Figure 3 shows the positional relationship between the magnetic detector and the measurement chamber of the device, and Figure 4 shows the
FIG. 5 is a diagram showing the distribution of components perpendicular to the direction of the array line of magnetic detectors arranged by the coil. FIG. 5 is a diagram illustrating the data storage contents of the storage device. FIG. Plan view and side view showing the arrangement of the detector, Fig. 7(a) (
b) is an explanatory diagram for explaining magnetic moment calculation and magnetic signal correction processing in the flowchart of FIG. 1; D,・D2...D,;Magnetic detector, 13:
CPU, 14: Storage device, 16: Interrupt signal generation section. Patent applicant: Shimadzu Corporation Agent
Patent Attorney Shigeru Nakamura Figure 1 Figure 6 Da Figure 3 Kaya 7 Hi

Claims (1)

【特許請求の範囲】[Claims] (1)海底に所定の間隔で列線状に配置される複数の磁
気検知器と、これらの磁気検知器より所定周期で磁気信
号を取込み、各磁気検知器毎に記憶する測定データ記憶
手段と、航過体に設けられ、航過中に前記磁気検知器の
位置に達すると通電されるコイルと、このコイル通電時
の磁気検知器出力と非通電時の測定データとに基づいて
コイル通過位置のコイルのみによる磁気を算出する手段
と、この算出された磁気の前記列線に直角な方向成分の
最大値の位置を抽出する最大位置抽出手段と、抽出され
た最大値位置の最寄りの磁気検知器の前記列線に直角な
方向成分出力と平行方向成分出力とに基づいて航過体の
方位を算出する方位算出手段と、前記求められた方位・
位置及び磁気信号より、航過体の磁気モーメントを算出
する磁気モーメント算出手段と、求められた磁気モーメ
ントより、本来航過体が通過する位置での磁気信号を算
出する手段とからなる航過体磁気測定装置。
(1) A plurality of magnetic detectors arranged in a line at predetermined intervals on the seabed, and a measurement data storage means that captures magnetic signals from these magnetic detectors at a predetermined period and stores them for each magnetic detector. , a coil that is provided on the vehicle and is energized when it reaches the position of the magnetic detector during the vehicle, and a coil passing position based on the magnetic detector output when the coil is energized and the measurement data when it is not energized. means for calculating the magnetism due only to the coil; maximum position extracting means for extracting the position of the maximum value of the direction component perpendicular to the column line of the calculated magnetism; and a magnetic detection unit nearest to the extracted maximum value position. azimuth calculating means for calculating the azimuth of the passing vehicle based on the directional component output perpendicular to the column line and the parallel directional component output of the device;
A vehicle consisting of a magnetic moment calculation means for calculating the magnetic moment of the vehicle based on the position and magnetic signal, and a means for calculating a magnetic signal at the position where the vehicle originally passes from the calculated magnetic moment. Magnetic measuring device.
JP60286341A 1985-12-19 1985-12-19 Instrument for measuring magnetism of navigating body Pending JPS62167405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60286341A JPS62167405A (en) 1985-12-19 1985-12-19 Instrument for measuring magnetism of navigating body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60286341A JPS62167405A (en) 1985-12-19 1985-12-19 Instrument for measuring magnetism of navigating body

Publications (1)

Publication Number Publication Date
JPS62167405A true JPS62167405A (en) 1987-07-23

Family

ID=17703130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60286341A Pending JPS62167405A (en) 1985-12-19 1985-12-19 Instrument for measuring magnetism of navigating body

Country Status (1)

Country Link
JP (1) JPS62167405A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04134201A (en) * 1990-09-27 1992-05-08 Tech Res & Dev Inst Of Japan Def Agency Magnetic detecting device with locating function
CN108873086A (en) * 2018-06-05 2018-11-23 哈尔滨工程大学 A method of using geomagnetic total field gradient array to locating magnetic objects

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04134201A (en) * 1990-09-27 1992-05-08 Tech Res & Dev Inst Of Japan Def Agency Magnetic detecting device with locating function
CN108873086A (en) * 2018-06-05 2018-11-23 哈尔滨工程大学 A method of using geomagnetic total field gradient array to locating magnetic objects

Similar Documents

Publication Publication Date Title
US3868565A (en) Object tracking and orientation determination means, system and process
EP0576187A1 (en) Tracker employing a rotating electromagnetic field
JP2000116790A (en) Detection of metallic interference
CN103218607A (en) Cooperative target designing and locating method for unmanned aerial vehicle autonomous landing
JPS55126875A (en) Method and device for automatically detecting position of ship by data from radar
CN104614554B (en) Ship base wind speed wind direction sensor fiducial error reviews one&#39;s lessons by oneself correction method
CN110702064B (en) Unmanned aircraft attitude information acquisition method and system based on magnetic induction
JPS62167405A (en) Instrument for measuring magnetism of navigating body
Feezor et al. Autonomous underwater vehicle homing/docking via electromagnetic guidance
EP3860908A1 (en) System and method for assisting docking of a vessel
JPH07128104A (en) Flow measuring device
US4103279A (en) Diver navigation system
EP0242391B1 (en) A magnetic self-ranging system for use in the degaussing of ships
US3980983A (en) Measurement and presentation of acoustic target length and aspect
JPS6159210A (en) Real course calculating method
JP2007072535A (en) Magnetic measurement system
US4812759A (en) Method for measuring and correcting the induced magnetization in a nautical vessel
US5740986A (en) Method of determining the position of roll of a rolling flying object
JPS62140017A (en) Present position recognition apparatus for vehicle
JPS6071910A (en) Coordinate detector for ship
RU2142143C1 (en) Method of reduction of results of measurement of magnetic field by line bed to coordinate system of object
JP4737061B2 (en) Lateral magnetic field adjustment system
JPS59180700A (en) Coordinate detector for ship
US3160878A (en) Steering indicator for range-bearing navigation system
JPH06340299A (en) Relative position detector for spacecraft