JPS62167218A - Production of zirconium oxide powder obtained from rare earth element formed solid solution - Google Patents

Production of zirconium oxide powder obtained from rare earth element formed solid solution

Info

Publication number
JPS62167218A
JPS62167218A JP61008969A JP896986A JPS62167218A JP S62167218 A JPS62167218 A JP S62167218A JP 61008969 A JP61008969 A JP 61008969A JP 896986 A JP896986 A JP 896986A JP S62167218 A JPS62167218 A JP S62167218A
Authority
JP
Japan
Prior art keywords
rare earth
earth element
zirconium oxide
hours
zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61008969A
Other languages
Japanese (ja)
Inventor
Hiroshi Kurokawa
洋 黒川
Akira Kaneda
金田 朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP61008969A priority Critical patent/JPS62167218A/en
Publication of JPS62167218A publication Critical patent/JPS62167218A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To produce zirconium oxide powder wherein homogeneous and fine rare earth element is formed solid solution by subjecting zirconium-rare earth element coprecipitation hydroxide to hydrothermal treatment and crystallizing it partially and lowering hydrothermal crystallization temp. CONSTITUTION:The following hydrated zirconium oxide powder is aged in the saturated steam atmosphere of 5-20kg/cm<2> in a hydrated state whose circumference is stuck with either zirconium-rare earth element coprecipitation hydroxide coprecipitated with rare earth element and zirconium or hydrated gelatinous unstable hydroxide of rare earth element. This aged material is roasted at 300-1,000 deg.C to produce zirconium oxide powder wherein rare earth element solid solution is formed.

Description

【発明の詳細な説明】 り泉よL剋里分! 本発明は、希土類元素を固溶した酸化ジルコニウムの新
規な製法に関するものでおり、均質かつ微細な、焼結し
やすい、安定化ジルコニアまたは部分安定化ジルコニア
の原料として適した物性を有する希土類元素を固溶した
酸化ジルコニウム粉の!!!遣方法に関するものでおる
[Detailed Description of the Invention] Risen yo L Kuribu! The present invention relates to a new method for producing zirconium oxide containing a rare earth element as a solid solution, and uses a rare earth element that is homogeneous, fine, easy to sinter, and has physical properties suitable as a raw material for stabilized zirconia or partially stabilized zirconia. Solid-dissolved zirconium oxide powder! ! ! This is related to the delivery method.

従来の技術 従来、安定化ジルコニアセラミックス、あるいは部分安
定化ジルコニアセラミックスの原料として用いる希土類
元素を固溶した酸化ジルコニウム粉は、酸化ジルコニウ
ム、あるいは含水酸酸化物あるいは希土類酸化物などの
希土類原料を各微粉化、粉体どうし混合した後、電気炉
、ガス炉などの高温加熱装置の中で1000℃以上の温
度で長時間加熱し、両原料粉の接触面を通じて、希土類
元素をジルコニア原料粉中に拡散させる、固体−固体間
の高温拡散反応を利用したものであった。
Conventional technology Conventionally, zirconium oxide powder with a solid solution of rare earth elements used as a raw material for stabilized zirconia ceramics or partially stabilized zirconia ceramics is made by finely powdering rare earth raw materials such as zirconium oxide, hydrous acid oxides, or rare earth oxides. After mixing the powders, they are heated for a long time at a temperature of 1000℃ or higher in a high-temperature heating device such as an electric furnace or gas furnace, and the rare earth elements are diffused into the zirconia raw material powder through the contact surface of both raw material powders. It utilized a high-temperature diffusion reaction between solids and solids.

このような固+i反応方式で得られた希土類元素固溶酸
化ジルコニウム粉は、製造に時間がかかるのみならず、
製造時に酸化ジルコニウムの粒成長が起こり、−次粒子
径が大きくなる事、−次粒子間の凝集が大きくなる事、
などのため、これを用いて焼結体を製造するには本発明
の方法で得られるものを用いた場合に比べ数100度高
温に維持する必要があり、また、得られた焼結体の密度
も低く強度も弱い、などの欠点を有していた。
Rare earth element solid solution zirconium oxide powder obtained by such a solid + i reaction method not only takes time to manufacture, but also
During production, grain growth of zirconium oxide occurs, which increases the -order particle size and increases the aggregation between -order particles.
Therefore, in order to produce a sintered body using this, it is necessary to maintain the temperature several hundred degrees higher than when using the method of the present invention, and also, It had drawbacks such as low density and low strength.

近年、水溶性のジルコニウム塩と、水溶性の希土類元素
塩との混合水溶液に共通の沈澱剤を加え、ジルコニウム
化合物と希土類元素化合物とを同時に沈澱させ、微粉状
の混合粉体を作る事で、酸化ジルコニウム原料粉と希土
類酸化物原料粉との接触面積を大きくし、これを電気炉
、ガス炉などの高温加熱装置中で加熱する共沈法が一部
実用化されている。
In recent years, by adding a common precipitant to a mixed aqueous solution of a water-soluble zirconium salt and a water-soluble rare earth element salt, the zirconium compound and the rare earth element compound are simultaneously precipitated to create a fine powder mixture. Some coprecipitation methods have been put into practical use, in which the contact area between the zirconium oxide raw material powder and the rare earth oxide raw material powder is increased, and these are heated in a high-temperature heating device such as an electric furnace or a gas furnace.

この方法は前記の粉体混合法に比べ、希土類元素を固溶
させるのに必要な温度が数100度低く、すぐれた方法
と言えるが、希土類元素を酸化ジルコニウム中に固溶さ
せる手段として、加熱炉を使用した加熱拡散反応を利用
している事には変わりなく、このため、得られる粉体は
加熱時に生じる粒子間凝集が激しく、この凝集は該粉体
をボールミルなどで粉砕しても残り、また、金型内でこ
の粉体を加圧しても破砕されずに残る性質のものであっ
た。
Compared to the powder mixing method described above, this method requires a temperature several 100 degrees lower to dissolve rare earth elements into a solid solution, and can be said to be an excellent method. It still uses a heating diffusion reaction using a furnace, and as a result, the resulting powder has severe agglomeration between particles that occurs during heating, and this aggregation remains even if the powder is ground with a ball mill etc. Moreover, even if this powder was pressurized in a mold, it remained unbroken.

このため、この方法で作られる希土類元素を固溶した酸
化ジルコニウム粉を用いて密度の高い焼結体を作るのに
必要な焼結温度は、凝集粒子内゛に残っている空隙を焼
結体外へ移動させるのに必要な温度、実用的には140
0℃以上を必要としていたわけである。
For this reason, the sintering temperature required to make a high-density sintered body using zirconium oxide powder containing a solid solution of rare earth elements produced by this method is such that the voids remaining inside the aggregated particles are removed from the outside of the sintered body. The temperature required to move it to , practically 140
This required a temperature of 0°C or higher.

最近上記共沈法による希土類元素を固溶した酸化ジルコ
ニウム粉の粒子間凝集を少なくする方法として、希土類
元素としてイツトリウムを用いた混合沈澱物を、水中で
230 ’C以上に加、圧加熱処理する事が報告されて
いる。
Recently, as a method of reducing interparticle aggregation of zirconium oxide powder containing a rare earth element as a solid solution by the coprecipitation method, a mixed precipitate using yttrium as the rare earth element is heated to 230'C or higher in water and subjected to pressure heating treatment. things have been reported.

[水熱化学実験所報告VO1,3、NO12、P5(1
979) ] 本発明者等はここに報告されている方法で、安定化ジル
コニアセラミックス、または部分安定化ジルコニアセラ
ミックスの原料粉を、工業的規模で製造する検討を行な
ってきたが、この方法には次の様な問題点がある事が判
った。
[Hydrothermal Chemical Laboratory Report VO1, 3, NO12, P5 (1
979)] The present inventors have been investigating the production of raw material powder for stabilized zirconia ceramics or partially stabilized zirconia ceramics on an industrial scale using the method reported herein, but this method has It was found that there were the following problems.

すなわち、イツトリウムとジルコニウムの混合沈澱物を
230℃以上300’C以下の温度で加圧加熱処理して
得られるものは、凝集の激しい塊状物でおり、このまま
セラミックス原料粉として使用できるものではない。ざ
らに、該塊状物を機械的粉砕してセラミックス原料粉と
して使用した場合、焼結時に破壊し易いものとなる。
That is, what is obtained by pressurizing and heating a mixed precipitate of yttrium and zirconium at a temperature of 230° C. or higher and 300° C. or lower is a highly agglomerated lump that cannot be used as it is as a ceramic raw material powder. In other words, if the lumps are mechanically pulverized and used as ceramic raw material powder, they will easily break during sintering.

これは加圧加熱処理で非晶質の混合沈澱物を完全に酸化
物として結晶化させていないため、製品中に含水酸化物
が一部残っているためと考えられる。事実、得られた前
記塊状物を1300℃に加熱すると2〜10 wloの
重量減が観測される。
This is thought to be because the amorphous mixed precipitate was not completely crystallized as an oxide during the pressure and heat treatment, so some hydrous oxide remained in the product. In fact, when the resulting agglomerates are heated to 1300° C., a weight loss of 2 to 10 wlo is observed.

酸化物として結晶化を完全におこなわすために、ざらに
高圧高温下(300℃以上)で処理した場合には、上記
の加熱重量減は少なくなるが、製品の凝集度合はより強
まり、セラミンク原料粉としての実用性は無くなる結果
となる。
In order to completely crystallize the oxide, if the treatment is carried out under high pressure and high temperature (300°C or higher), the weight loss due to heating will be less, but the degree of aggregation of the product will become stronger, and the ceramic raw material As a result, it is no longer practical as a powder.

さらに、上記の加圧加熱処理で必要とされる温度は、2
30℃以上、結晶化を完全にするためには300℃以上
と報告されており、この条件の工業用生産装置を考える
と、蒸気圧が25kMcm2以上のオートクレーブの使
用が考えられ、生産設備費用、安全作業のための保安設
備、管理要員等、極めて繁雑な生産体制を必要とするわ
けである。
Furthermore, the temperature required for the above pressure and heat treatment is 2.
It is reported that the temperature is 30°C or higher, and 300°C or higher for complete crystallization. Considering industrial production equipment under this condition, the use of an autoclave with a vapor pressure of 25kmcm2 or higher is considered, which reduces production equipment costs, This requires an extremely complex production system, including security equipment and management personnel for safe work.

発明が解決しようとする問題点 本発明は従来技術の上記欠点を解決するために、混合沈
澱物を水熱処理して部分結晶化させること、また、水熱
結晶化温度を低下させて、従来、見られなかった、均質
、微細、かつ、焼結し易い、希土類元素を固溶した酸化
ジルコニウム粉を製造する実用的な方法を提供しようと
するものでおる。
Problems to be Solved by the Invention In order to solve the above-mentioned drawbacks of the prior art, the present invention involves hydrothermally treating a mixed precipitate to partially crystallize it, and lowering the hydrothermal crystallization temperature to overcome the conventional techniques. The present invention aims to provide a practical method for producing homogeneous, fine, and easily sintered zirconium oxide powder containing a rare earth element, which has never been seen before.

問題点を解決するための手段 上記問題点を解決するための本発明の構成は、希土類元
素とジルコニウムを共沈させたジルコニウム−希土類元
素共沈水酸化物、あるいは、希土類元素の含水ゲル状不
定形水酸化物を周囲に付着させた含水酸化ジルコニウム
粉を、含水状態で5 kg/Cm2以上20kMcm2
以下の飽和水蒸気雰囲気中で養生し、ついで、該養生物
を焙焼することによって、希土類元素を固溶した酸化ジ
ルコニウム粉を製造する方法でおる。
Means for Solving the Problems The structure of the present invention for solving the above problems is based on a zirconium-rare earth element co-precipitated hydroxide in which a rare earth element and zirconium are co-precipitated, or a hydrated gel-like amorphous form of a rare earth element. Hydrous zirconium oxide powder with hydroxide attached to the surrounding area is 5 kg/Cm2 or more and 20 kmMcm2 in a hydrated state.
The method is to produce zirconium oxide powder containing rare earth elements as a solid solution by curing in the following saturated steam atmosphere and then roasting the cured material.

以下に本発明の詳細を記す。The details of the present invention will be described below.

本発明で使用できる希土類元素とは、ランタン、セリウ
ム、プラセオジム、ネオジム、サマリウム、ユーロピウ
ム、ガドリニウム、テルビウム、ディスプロシウム、ホ
ルミウム、エルビウム、ツーリウム、イッテルビウム、
ルテチウムおよびイツトリウムである。
Rare earth elements that can be used in the present invention include lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium,
They are lutetium and yttrium.

希土類元素とジルコニウムを共沈させたジルコニウム−
希土類元素水酸化物とは、上記の希土類元素の内から選
ばれた1種または、2種以上の希土類元素の水溶性塩の
水溶液と、オキシ塩化ジルコニウム、硝酸ジルコニウム
等のジルコニウムの水溶性塩の水溶液とを混合し、これ
にアンモニア、苛性ソーダ等のアルカリを作用して得ら
れるものでおる。希土類元素と、ジルコニウムの水溶性
塩の混合水溶液とアルカリを反応させる方法は、特に限
定するものではなく、希土類元素とジルコニウムの水溶
性塩の水溶液中に、アルカリを添加する方法でもよいし
、逆にアルカリの水溶液に希土類元素とジルコニウムの
水溶性塩を添加する方法でもよい。
Zirconium co-precipitated with rare earth elements and zirconium
Rare earth element hydroxide is an aqueous solution of water-soluble salts of one or more rare earth elements selected from the above rare earth elements, and a water-soluble salt of zirconium such as zirconium oxychloride and zirconium nitrate. It is obtained by mixing an aqueous solution and acting on the mixture with an alkali such as ammonia or caustic soda. The method of reacting a mixed aqueous solution of a rare earth element and a water-soluble salt of zirconium with an alkali is not particularly limited; Alternatively, a water-soluble salt of a rare earth element and zirconium may be added to an aqueous alkali solution.

希土類元素の含水ゲル状不定形水酸化物とは、上記の希
土類元素の内から選ばれた1種または2種以上の希土類
元素の水溶性塩の水溶液と、アンモニア、苛性ソーダな
どのアルカリ水溶液を混合して得られる半透明なノリ状
の水分を多量に保持した非晶質物質であり、その化学構
造は充分解析されていないものである。上記の希土類元
素の水溶性塩の水溶液中にアルカリ水溶液を添加する場
合、添加速度を遅くすると希土類元素の非晶質塩基性塩
(Ln  (OH) y X−nHz 0SLn :希
土類元素、X:原料塩の陰イオン成分)も同時に生じる
が、この様な混合物であっても本発明の効果は変わらな
い。
Hydrous gel-like amorphous hydroxide of rare earth elements is a mixture of an aqueous solution of water-soluble salts of one or more rare earth elements selected from the rare earth elements listed above and an alkaline aqueous solution such as ammonia or caustic soda. It is an amorphous material that retains a large amount of water and has a translucent paste-like appearance, and its chemical structure has not been fully analyzed. When adding an alkaline aqueous solution to the aqueous solution of the water-soluble salt of the rare earth element mentioned above, if the addition rate is slowed down, the amorphous basic salt of the rare earth element (Ln (OH) y X-nHz 0SLn: rare earth element, X: raw material Although the anionic component of the salt is also produced at the same time, the effects of the present invention do not change even with such a mixture.

本発明で使用する含水酸化ジルコニウム粉とは、化学式
がZ r O2・n)−12Qで一般に表わされており
、X線回折を行なうと強度の大きな回折ピークを示さず
、非晶質に近い構造を有するが、水中に分散させるとノ
リ状に無定形分散をする事は無く、粒の形を維持したス
ラリー状分散をするもので、これは工業的に電子材料セ
ラミック(例えばチタン酸ジルコン酸鉛なと)の原料と
して大量に用いられている種類のものである。含水酸化
ジルコニウムと表現されるものの中に、ジルコニウムの
水溶性塩の水溶液と、アンモニア、苛性ソーダなどのア
ルカリ水溶液とを急激に混合し、晶析させた。半透明の
ノリ状の不定形物があるが、この物質は本発明に用いる
ことはできない。
The hydrous zirconium oxide powder used in the present invention is generally represented by the chemical formula ZrO2・n)-12Q, and when X-ray diffraction is performed, it does not show a strong diffraction peak and is almost amorphous. However, when dispersed in water, it does not form an amorphous dispersion in the form of a paste, but instead forms a slurry-like dispersion that maintains the particle shape. This is a type of material that is used in large quantities as a raw material for lead. An aqueous solution of a water-soluble salt of zirconium and an alkaline aqueous solution such as ammonia or caustic soda were rapidly mixed into what was described as hydrous zirconium oxide to cause crystallization. Although there is a translucent glue-like amorphous material, this material cannot be used in the present invention.

本発明を実施するに当り、希土類元素の含水ゲル状不定
形水酸化物を周囲に付着した含水酸かジルコニウム粉を
製造する方法は特に限定するものではないが、希土類元
素の含水ゲル状不定形水酸化物と、含水酸化ジルコニウ
ム粉とを必要があれば水を加えて機械的に混練してもよ
いし、含水酸化ジルコニウム粉を水中分散させて、該分
散液中に希土類元素の含水ゲル状不定形水酸化物を分散
混合した後、固形物を濾別してもよい。おるいは希土類
元素の水溶性塩を溶解した水中に、含水酸化ジルコニウ
ム粉を分散させ、しかる後に、該混合液中にアンモニア
水、苛性ソーダ水等のアルカリ水溶液を加え、希土類元
素の含水ゲル状不定形水酸化物を析出させつつ攪拌して
もよい。
In carrying out the present invention, the method for producing hydrous acid or zirconium powder having a hydrous gel-like amorphous hydroxide of a rare earth element attached to its surroundings is not particularly limited; The hydroxide and the hydrous zirconium oxide powder may be mechanically kneaded by adding water if necessary, or the hydrous zirconium oxide powder may be dispersed in water, and the rare earth element may be mixed in the form of a hydrous gel in the dispersion. After the amorphous hydroxide is dispersed and mixed, the solid matter may be filtered off. Ori disperses hydrous zirconium oxide powder in water in which a water-soluble salt of a rare earth element is dissolved, and then adds an alkaline aqueous solution such as aqueous ammonia or caustic soda water to the mixture to form a hydrous gel-like mixture containing a rare earth element. The mixture may be stirred while precipitating the regular hydroxide.

すなわち希土類元素の含水ゲル状不定形水酸化物はノリ
状物であり、他の物体に対するイ」着力が強いため機械
的混線でも、水中分散混合でも、攪拌を充分性なえば含
水酸化ジルコニウム粉の表面に均等に付着するわけであ
る。
In other words, the hydrated gel-like amorphous hydroxide of rare earth elements is a glue-like substance and has a strong adhesion force to other objects, so whether it is mechanical mixing or dispersion mixing in water, if stirring is sufficient, hydrated zirconium oxide powder It adheres evenly to the surface.

本発明で言うところの含水状態とは、被水熱処理物中に
、被水熱処理物を構成している構造水と構造に関与しな
い自由水が存在している状態であり、実用的には、ジル
コニウム−希土類元素共沈水酸化物、あるいは、希土類
元素の含水ゲル状不定形水酸化物を付着した含水酸化ジ
ルコニウムを沈澱として作製したそのままのスラリーで
もよい。
In the present invention, the water-containing state is a state in which structured water that constitutes the hydrothermally treated material and free water that does not participate in the structure are present in the hydrothermally treated material, and in practical terms, It may be a zirconium-rare earth element co-precipitated hydroxide, or a slurry as it is prepared as a precipitate of hydrous zirconium oxide to which a hydrogel amorphous hydroxide of a rare earth element is attached.

また、該沈澱物をガラスフィルター、セントル等の通常
の濾過操作で濾別したケーキでもよいし、ざらに該ケー
キに水洗等の操作を加えたものでもよい。
Further, it may be a cake obtained by filtering the precipitate using a conventional filtration operation such as a glass filter or a centor, or it may be a cake obtained by roughly washing the cake with water or the like.

本発明で得られる希土類元素と固溶した酸化ジルコニウ
ムの希土類元素酸化物/酸化ジルコニウムの比率は、使
用する希土類元素の種類により多少異なるが、酸化物モ
ル%で、最高25〜30%程度である。本発明の実用的
な狙いが安定化ジルコニアセラミック、あるいは部分安
定化ジルコニアセラミックの原料粉を得ることであり、
この意味では上記モル%は、最高12〜15%程度の配
合でよいわけでおる。
The rare earth element oxide/zirconium oxide ratio of the rare earth element and zirconium oxide solid-dissolved with the rare earth element obtained in the present invention varies somewhat depending on the type of rare earth element used, but is approximately 25 to 30% at most in terms of oxide mole%. . The practical aim of the present invention is to obtain raw material powder for stabilized zirconia ceramic or partially stabilized zirconia ceramic,
In this sense, the above mole % may be blended at a maximum of about 12 to 15%.

本発明を実施するに必要な水蒸気養生条件は、20kM
cm2以下の飽和水蒸気雰囲気である事が必要であり、
特に好ましいのは水蒸気圧が5 kg/Cm2以上15
kMCm2の飽和水蒸気雰囲気である事である。すなわ
ち水蒸気圧が20k(1/ Cm 2以上の飽和水蒸気
雰囲気中に保持した場合、酸化ジルコニウムの結晶化と
、該酸化ジルコニウム中への希土類元素の固溶は完全な
ものになるが、得られる物は粒子どうしの凝集の強い塊
状物となりやすく、水蒸気圧が25ko/cm2以上の
場合は、機械的に強く粉砕しなければ粉体とならず、通
常のセラミック成形方法では成形できない、実用性の無
い物となるからである。また、水蒸気圧か5kM cm
 ’以下の飽和水蒸気を用いた場合、目的とする物を製
造する事できるが処理に長時間、具体的には40時間以
上を要し、実用的な条件とは言えない。
The steam curing conditions necessary to carry out the present invention are 20 km
It is necessary to have a saturated steam atmosphere of less than cm2,
Particularly preferred is a water vapor pressure of 5 kg/Cm2 or more15
It is a saturated water vapor atmosphere of kmCm2. That is, when kept in a saturated steam atmosphere with a steam pressure of 20 k (1/Cm2 or more), the crystallization of zirconium oxide and the solid solution of rare earth elements in the zirconium oxide are complete, but the resulting product If the water vapor pressure is 25 ko/cm2 or more, it will not turn into powder unless it is strongly mechanically pulverized, and cannot be formed using normal ceramic forming methods, making it impractical. This is because the water vapor pressure is 5 km cm.
If the following saturated steam is used, the desired product can be produced, but the treatment requires a long time, specifically 40 hours or more, which is not a practical condition.

本発明では、上記の高温高圧水蒸気養生をした後、養生
物を焙焼する。これは上記の条件の高温高圧水蒸気養生
を行なった場合、得られる養生物中に結晶化が充分に進
んでいない、含水物が多少残るので、これを完全に結晶
化するために行なうものである。すなわち、本発明の条
件下で高温高圧水蒸気養生したものを200℃で20時
間乾燥した物は、X線回折による解析では希土類元素が
固溶した酸化ジルコニウムであるが、該処理物を130
0’Cで加熱処理すると、重量減少が3〜a wt%観
測される。これは、固体表面に吸着した水分では無く未
反応含水酸化ジルコニウムの結晶水、あるいは構造水に
基づくものと考えられる。
In the present invention, after the above-mentioned high-temperature and high-pressure steam curing, the cured material is roasted. This is done in order to completely crystallize the resulting cured product, since when high-temperature, high-pressure steam curing is performed under the above conditions, crystallization has not progressed sufficiently and some water content remains. . That is, a product cured in high-temperature, high-pressure steam under the conditions of the present invention and dried at 200°C for 20 hours is zirconium oxide in which rare earth elements are solidly dissolved according to analysis by X-ray diffraction;
Upon heat treatment at 0'C, a weight loss of 3-a wt% is observed. This is thought to be due to crystal water of unreacted hydrated zirconium oxide or structural water rather than water adsorbed on the solid surface.

この未反応部分を完全に結晶化させる手段として、使用
する飽和水蒸気圧を高めると養生物の凝集度は高まり、
製品は塊状となり、セラミック原料粉としては非実用的
な物となるわけである。本発明者等は、この未反応含水
酸化ジルコニウムを完全に結晶化させるために加熱炉に
よる焙焼工程を加えたわけである。
As a means to completely crystallize this unreacted portion, increasing the saturated water vapor pressure used will increase the degree of aggregation of the curing agent.
The product becomes lumpy, making it impractical as a ceramic raw material powder. The present inventors added a roasting process using a heating furnace in order to completely crystallize this unreacted hydrous zirconium oxide.

本発明のごとく、高温高圧水蒸気養生を行ない大部分の
結晶化を行なった後、焙焼処理をして、残部分の結晶化
を行なった物と、焙焼処理だけを行なって結晶化を行な
った物とでは、−次粒子間、および二次粒子間の凝集の
状態が異なり、それぞれの方法で製造した希土類元素を
固溶した酸化ジルコニウム粉を金型内で加圧すると、加
圧成形体の密度が異なる。すなわち、本発明の物の方が
密度が大となる。これは、本発明の実施例に記した第8
図の(a)、(b)および第10図の加圧成形体空隙パ
ターン図からも判るように、本発明の方法で製造される
粉体の凝集が弱く、機械的な加圧を行う事で容易に解凝
、集する性格のものであるからである。
As in the present invention, after high-temperature, high-pressure steam curing is performed to crystallize most of the crystallization, the remaining portion is crystallized by roasting, and the other is crystallized by only roasting. The state of agglomeration between secondary particles and secondary particles differs between the two, and when zirconium oxide powder containing a solid solution of rare earth elements produced by each method is pressed in a mold, a press-molded product is formed. have different densities. That is, the material of the present invention has a higher density. This is the eighth example described in the embodiment of the present invention.
As can be seen from the figures (a) and (b) and the void pattern diagram of the press-molded product in Fig. 10, the agglomeration of the powder produced by the method of the present invention is weak, making it difficult to apply mechanical pressure. This is because it has the property of easily deagglomerating and condensing.

本発明を実施する場合の、高温高圧水蒸気養生物を焙焼
する温度は300℃以上が必要であり、好ましくは60
0℃以上、1000°C以下である事が好ましい。30
0℃以下では結晶化はおこらず、600 ’C以下の場
合には結晶化を充分に行なうために長時間、具体的には
6時間以上を要し、また、1000℃以上の焙焼は、焙
焼時に粉体間の焼結が一部観測され、実用的な条件とな
らないからである。
When carrying out the present invention, the temperature at which the high-temperature, high-pressure steam cured product is roasted must be 300°C or higher, preferably 60°C or higher.
The temperature is preferably 0°C or higher and 1000°C or lower. 30
At temperatures below 0°C, crystallization does not occur; at temperatures below 600'C, it takes a long time, specifically 6 hours or more, for sufficient crystallization; and when roasted at temperatures above 1000°C, This is because some sintering between powders is observed during roasting, which is not a practical condition.

実施例1 オキシ塩化ジルコニウム、硝酸ジルコニウムの各0.2
M/Jj濃度の水溶液4,6文と、硝酸イソ1〜リウム
の0.1M/文濃度(酸化イツトリウム換算)の水溶液
0.8文とを混合し、30分間攪拌し、該混合水溶液に
3M/R濃度のアンモニア水1.5文を一度に加え、ざ
らに30分間攪拌した後、G4のガラスフィルターにて
濾別した、濾別後、各ケーキのX線回折パターンを測定
したところ、いずれも、非晶質の回折パターンを示した
。ざらに各ケーキを、10に!l]/Cm2の飽和水蒸
気中で4時間養生した。得られたケーキのX線回折パタ
ーンを測定したところ、いずれも、立方晶−相の結晶構
造を有した。X線回折パターンの例として、オキシ塩化
ジルコニウムを原料とした場合のX線回折チャートを第
1図に示す。また、各ケーキの一部をとり、200℃、
20hr乾燥後、1300’C焙焼時の重量減少率を測
定したところ、各々8%、9%であった。
Example 1 0.2 each of zirconium oxychloride and zirconium nitrate
Mix 4.6 m of an aqueous solution with a concentration of M/Jj and 0.8 m of an aqueous solution of 1 to 3 m nitrate with a concentration of 0.1 M/m (in terms of yttrium oxide), stir for 30 minutes, and add 3 M to the mixed aqueous solution. 1.5 grams of ammonia water with a /R concentration was added at once, stirred roughly for 30 minutes, and then filtered through a G4 glass filter. also showed an amorphous diffraction pattern. Roughly each cake, 10! 1]/Cm2 for 4 hours. When the X-ray diffraction patterns of the obtained cakes were measured, they all had a cubic phase crystal structure. As an example of an X-ray diffraction pattern, FIG. 1 shows an X-ray diffraction chart when zirconium oxychloride is used as a raw material. Also, take a portion of each cake and heat it to 200℃.
After drying for 20 hours, the weight loss rates during roasting at 1300'C were measured and found to be 8% and 9%, respectively.

さらに、上記水蒸気雰囲気中で養生した各ケーキを75
0℃で2時間焙焼した。
Furthermore, each cake cured in the above steam atmosphere was
It was roasted at 0°C for 2 hours.

各焙焼物のイツトリアとジルコニアの組成比をケイ光X
線法で測定したところ、それぞれがY 20 ] / 
Z r O2のモル比で表わして、(0,08±0.0
01)/ (0,92±0.002)の範囲にあ   
□った。
The composition ratio of ittria and zirconia of each roasted product was determined by fluorescent X.
When measured using the line method, each Y 20 ] /
Expressed as the molar ratio of Z r O2, (0,08±0.0
01)/(0,92±0.002)
□It was.

また、各焙焼物のX線回折パターンを測定したところ、
いずれも立方晶−相の結晶構造を有し、酸化ジルコニウ
ム中へ固溶していない酸化イツトリウムの単独ピークは
存在せず、均一な固溶が達成されていることがわかった
In addition, when we measured the X-ray diffraction pattern of each roasted product,
All of them had a cubic-phase crystal structure, and there was no single peak of yttrium oxide that was not solidly dissolved in the zirconium oxide, indicating that a uniform solid solution had been achieved.

例として、オキシ塩化ジルコニウムを出発原料とした場
合のX線回折チャートを第2図に示す。
As an example, FIG. 2 shows an X-ray diffraction chart when zirconium oxychloride is used as a starting material.

さらに各焙焼物の1300℃焙焼時の重量減少率を測定
したところ、いずれも2%以下であった。
Furthermore, when the weight loss rate of each roasted product was measured during roasting at 1300°C, it was 2% or less in all cases.

また上記各焙焼物を直径20mm、厚さ2mmのペレッ
ト状に金型成形(−軸、圧力1.5tbcm2) L/
、1300℃、3時間、空気中で焼結したところ、いず
れも、理論密度の95%以上に緻密化した。
In addition, each of the above-mentioned roasted products was molded into pellets with a diameter of 20 mm and a thickness of 2 mm (-shaft, pressure 1.5 tbcm2) L/
When sintered in air at 1300° C. for 3 hours, all were densified to 95% or more of the theoretical density.

実施例2 オキシ塩化ジルコニウムの0.2M/1の水溶液4.6
文と、酢酸イツトリウム、塩化イソ1〜リウムの各0.
1M/交濃度(酸化イツトリウム換算)の水溶液0.8
1とを各々混合し、30分間攪拌した後、実施例1と同
様な方法で、共沈物の作成、飽和水蒸気中での養生およ
び焙焼をおこなった。得られた粉末は各々その組成、構
造、焼結性ともに、実施例1で得られた物と同等であっ
た。
Example 2 0.2M/1 aqueous solution of zirconium oxychloride 4.6
and 0.0% each of yttrium acetate and iso1-lium chloride.
1M/exchange concentration (yttrium oxide equivalent) aqueous solution 0.8
After stirring for 30 minutes, a coprecipitate was prepared, cured in saturated steam, and roasted in the same manner as in Example 1. The powders obtained were equivalent to those obtained in Example 1 in terms of composition, structure, and sinterability.

実施例3 オキシ塩化ジルコニウムの3M15I濃度の溶液3.0
67又と、硝酸イツトリウムの2M/9、濃度(酸化イ
ツトリウム換算)の水溶液0.4Mを混合し、30分間
攪拌し、該混合水溶液を3M15I濃度のアンモニア水
5文中に4時間かけて滴下した。滴下後、30分間攪拌
を続け、G4のガラスフィルターにて濾別した。
Example 3 Solution of 3M 15I concentration of zirconium oxychloride 3.0
A 0.4M aqueous solution of yttrium nitrate with a concentration of 2M/9 (in terms of yttrium oxide) was mixed with the mixture, stirred for 30 minutes, and the mixed aqueous solution was dropped over 4 hours into 5 volumes of aqueous ammonia with a concentration of 3M and 15I. After the dropwise addition, stirring was continued for 30 minutes, and the mixture was filtered using a G4 glass filter.

得られた沈澱を沈澱体積の10(8量の水で水洗した。The obtained precipitate was washed with water in an amount of 10 (8) of the precipitation volume.

水洗後のpHは9.3であった。該沈澱物を実施例1と
同様な方法で飽和水蒸気中での養生、および焙焼をおこ
なった。得られた粉末は、その組成、構造ともに実施例
1で得られた物と同等であった。また、実施例1と同様
に焼結性試験を行なったところ、理論密度の97%に緻
密化した。
The pH after washing with water was 9.3. The precipitate was cured in saturated steam and roasted in the same manner as in Example 1. The obtained powder was equivalent to that obtained in Example 1 in both its composition and structure. Further, when a sinterability test was conducted in the same manner as in Example 1, the material was densified to 97% of the theoretical density.

実施例4 オキシ塩化ジルコニウムの3M/9.濃度の溶液3.0
67文と、硝酸イツトリウムの2M/交濃度(酸化イツ
トリウム換算)の水溶液0.4文を混合し、30分間攪
拌し、該混合水溶液を90℃に保温した6M/M濃度の
苛性ソーダ溶液1052中に4時間かけて滴下した。滴
下後、30分間攪拌を続け、G4のガラスフィルターで
、濾別した。得られた沈澱を、沈澱体積の20倍の水で
水洗した。該沈澱物を、実施例1と同様な方法で飽和水
蒸気中での養生、および焙焼をおこなった。得られた粉
末はその組成、構造、焼結性ともに実施例1で得られた
物と同等であった。
Example 4 Zirconium oxychloride 3M/9. Solution of concentration 3.0
67 ml and 0.4 ml of an aqueous solution of 2M/exchange concentration (in terms of yttrium oxide) of yttrium nitrate were mixed, stirred for 30 minutes, and the mixed aqueous solution was placed in a 6M/M concentration caustic soda solution 1052 kept at 90°C. The mixture was added dropwise over 4 hours. After the dropwise addition, stirring was continued for 30 minutes, and the mixture was filtered through a G4 glass filter. The obtained precipitate was washed with water 20 times the volume of the precipitate. The precipitate was cured in saturated steam and roasted in the same manner as in Example 1. The obtained powder was equivalent to that obtained in Example 1 in terms of composition, structure, and sinterability.

実施例5 実施例3と同様にして作成したジルコニウム−イツトリ
ウム共洗物を、12等分して、以下の条件で各々飽和水
蒸気雰囲気中で養生した。
Example 5 The zirconium-yttrium co-washed product prepared in the same manner as in Example 3 was divided into 12 equal parts, and each part was cured in a saturated steam atmosphere under the following conditions.

イ)水蒸気圧2kg/cm2.4時間 口)  rt   4kMcm2、 〃ハ)  n  
 5kg/cm2、 〃二)710kg70m2.2時
間 ホ)水蒸気圧10kMcm2.4時間 へ) 〃    〃  、8時間 ト)  tt   16kg/cm’ 、2時間チ) 
〃    〃  、4時間 ワ) 〃    〃  、8時間 ヌ)  /l   20kMcm2.4時間ル)  /
I   25kMCm2、 〃ヲ)  n   30k
g/cm2、 II各蓄養生物一定量をとり、200’
Cl2O時間乾燥後、1300°C焙焼時の重量減少率
を測定した。
b) Water vapor pressure 2kg/cm2.4 hours) rt 4kMccm2, 〃c) n
5kg/cm2, 〃2) 710kg70m2.2 hours e) Water vapor pressure 10kmcm2.4 hours) 〃 〃 , 8 hours g) tt 16kg/cm', 2 hours h)
〃 〃 , 4 hours wa) 〃 〃 , 8 hours nu) /l 20kmcm2.4 hours ru) /
I 25kMCm2, 〃wo) n 30k
g/cm2, II Take a certain amount of each cultured organism, and
After drying for Cl2O hours, the weight loss rate during roasting at 1300°C was measured.

また、各養生物を750’C:で2時間焙焼した。Each culture was also roasted at 750'C for 2 hours.

焙焼後イ)〜ヌ)の条件のものは、凝集の弱い粉末とな
ったが、ル)、ヲ)の条件のものは、凝集の強い塊状物
となった。ざらに、各焙焼物を[ル)、ヲ)の条件のも
のについては乳鉢で30分間粉砕した後]、実施例1と
同様な方法で焼結した。焼結体密度及び、上記の200
’C乾燥後、焙焼後の粉末を1300’C焙焼した時の
重量減少率は、表1に示すような結果となった。
After roasting, the products under conditions a) to n) became powders with weak aggregation, but the products under conditions a) and wo) became highly agglomerated lumps. Roughly, each roasted product was ground in a mortar for 30 minutes for those under the conditions [l) and [wo]], and then sintered in the same manner as in Example 1. Sintered body density and the above 200
Table 1 shows the weight loss rate when the powder was roasted at 1300'C after drying and roasting.

表1 実施例6 オキシ塩化ジルコニウムの3M/M濃度の溶液3.06
79.と、硝酸ネオジム、硝酸ディスプロシウム、硝酸
ガドリニウムの各2M/1)閂度(酸化物換算)の水溶
液0.4Rを混合し、30分間攪拌し、該混合水溶液を
90’Cに保温した6M/U濃度の苛性ソーダ溶液10
9.中に4時間かけて滴下した。滴下後、30分間攪拌
を続け、G4のガラスフィルターで濾別した。
Table 1 Example 6 Solution of 3M/M concentration of zirconium oxychloride 3.06
79. and 0.4 R of each 2 M/1) aqueous solution of neodymium nitrate, dysprosium nitrate, and gadolinium nitrate, stirred for 30 minutes, and kept the mixed aqueous solution at 90'C. /U concentration of caustic soda solution 10
9. It was dripped into the inside over 4 hours. After the dropwise addition, stirring was continued for 30 minutes, and the mixture was filtered through a G4 glass filter.

得られた沈澱を、沈澱体積の10倍の水で水洗した後、
実施例1と同様な方法で飽和水蒸気中での養生、および
焙焼を行なった。得られた粉体を蛍光X線法により、N
d2C)+/ZrO2、D’/20x/ZrO2、 Q d 203 / Z r O2のモル比を測定した
ところ、全て(0,08±0.002)/ (0,92
±0.002)の範囲にあった。
After washing the obtained precipitate with water 10 times the volume of the precipitate,
Curing in saturated steam and roasting were performed in the same manner as in Example 1. The obtained powder was subjected to N
When the molar ratios of d2C)+/ZrO2, D'/20x/ZrO2, and Qd203/ZrO2 were measured, they were all (0,08±0.002)/(0,92
±0.002).

また、各焙焼物のX線回折パターンを測定したところ、
全て、立方晶−相の結晶構造を示した。例として、硝酸
ディスプロシウムを出発原料として作製した焙焼物のX
線回折チャートを第3図に示す。
In addition, when we measured the X-ray diffraction pattern of each roasted product,
All exhibited a cubic-phase crystal structure. As an example, roasted product X made using dysprosium nitrate as a starting material
A line diffraction chart is shown in FIG.

また、上記各焙焼物を実施例1と同様に成形し、130
0’Cで3時間焼結したところ、いずれも理論密度の9
6%以上に緻密化した。
In addition, each of the above-mentioned roasted products was molded in the same manner as in Example 1, and
When sintered at 0'C for 3 hours, both had a theoretical density of 9.
It was densified to 6% or more.

実施例8 A]]ゲル不定形水酸化イツトリウムの製造。Example 8 A] Production of gel amorphous yttrium hydroxide.

塩化イツトリウム、硝酸イツトリウム、酢酸イツトリウ
ムの各0.1M/9.濃度(酸化イツトリウム換算)の
水溶液8文中に3M/文濃度のアンモニア水0.9Mを
一度に加え、室温で30分間撹拌を行なった後、生じた
ゲル状物をそれぞれG3のガラスフィルターで濾取した
。各ゲル状物の一部を取出し、水洗を行ないそれぞれの
X線回折を測定したところ、各ゲル状物とも、第4図に
示したチャート通りであった。また、各ゲル状物の1部
を水洗した後常温で真空乾燥し、それぞれの赤外吸収ス
ペクトルを測定したところ、各ゲル状物とも第5図に示
したチャート通りであった。
Yttrium chloride, yttrium nitrate, yttrium acetate each 0.1M/9. Add 0.9 M of ammonia water with a concentration of 3 M/ml at once to 8 parts of aqueous solution with a concentration (in terms of yttrium oxide), stir at room temperature for 30 minutes, and filter each gel-like substance formed using a G3 glass filter. did. When a portion of each gel material was taken out, washed with water, and subjected to X-ray diffraction measurement, the results of each gel material were as shown in the chart shown in FIG. Further, a portion of each gel-like material was washed with water and then vacuum-dried at room temperature, and the infrared absorption spectra of each were measured, and the results were as shown in the chart shown in FIG. 5 for each gel-like material.

また、各ゲル状物の1部を水洗した後、希硫酸に溶解し
、該溶液中のアンモニアイオン、塩素イオン、硝酸イオ
ン、および酢酸イオンを常法により定量したが、各成分
とも各ゲル中には観測されなかった。
In addition, after washing a portion of each gel with water, it was dissolved in dilute sulfuric acid, and ammonia ions, chloride ions, nitrate ions, and acetate ions in the solution were determined by a conventional method. was not observed.

B]ゲル状氷水酸化イツトリウム含水酸化ジルコニウム
粉表面への付着。
B] Adhesion of gelled ice yttrium hydroxide to the surface of hydrated zirconium oxide powder.

前記の各ゲル状物をそれぞれ4文の水中へ加えて攪拌し
、ゲル状物を懸濁した液を作った。該懸濁液の攪拌をと
めて1昼夜放置したところ、各ゲル状物は少し沈降し、
その沈降体積はそれぞれほぼ3.5又であった。合液を
再度攪拌しつつ、含水酸化ジルコニウム粉を合液に9.
2モル(3,12kg>添加し、10分後に攪拌を停止
し、2時間放置した。合液とも容器の底に固形物が沈降
し、上部は透明な液でおった。底部の固形物沈降体積は
合液ともほぼ3文であった。
Each of the above-mentioned gel-like substances was added to four volumes of water and stirred to prepare a suspension of the gel-like substances. When stirring of the suspension was stopped and left for one day and night, each gel-like substance slightly settled,
The sedimentation volume was approximately 3.5 for each. 9. While stirring the mixture again, add the hydrous zirconium oxide powder to the mixture.
2 mol (3.12 kg>) was added, stirring was stopped after 10 minutes, and the mixture was allowed to stand for 2 hours. In both cases, solid matter settled at the bottom of the container, and the top was covered with a clear liquid. Solid matter settled at the bottom. The volume of both combined liquids was approximately 3 mon.

上記の合液を04のガラスフィルターで固形物分離を行
なった。
Solid matter was separated from the above mixture using a 04 glass filter.

C]飽和水蒸気雰囲気中での養生 前記の各ケーキを10kg/Cmlの飽和水蒸気雰囲気
中で4時間養生した。得られたケーキのX線回折パター
ンを測定したところ、いずれも立方晶−相の結晶構造を
有した。各ケーキの一部をとり200℃、20hr乾燥
後、1300℃焙焼時の重量減少率を測定したところ、
いずれも5〜10%の範囲にあった。X線回折パターン
の例として、硝酸イツトリウムを原料とした場合のX線
回折チャートを第6図に示す。
C] Curing in a saturated steam atmosphere Each of the above cakes was cured for 4 hours in a saturated steam atmosphere of 10 kg/Cml. When the X-ray diffraction patterns of the resulting cakes were measured, they all had a cubic-phase crystal structure. After drying a portion of each cake at 200°C for 20 hours, we measured the weight loss rate when roasting at 1300°C.
All were in the range of 5-10%. As an example of an X-ray diffraction pattern, FIG. 6 shows an X-ray diffraction chart when yttrium nitrate is used as a raw material.

D]結晶化のための焙焼 前記、飽和水蒸気雰囲気中で養生した各ケーキを750
’Cで2時間焙焼した。
D] Roasting for crystallization Each cake cured in a saturated steam atmosphere was heated to 750
Roasted at 'C for 2 hours.

各焙焼物のイツトリウムとジルコニアの組成比を、蛍光
X線法で測定したところ、それぞれがY 20 ] /
 Z r O2のモル比で表わして(0,08±0.0
01)/ (0,92±0.002)の範囲にあった。
When the composition ratio of yttrium and zirconia of each roasted product was measured by fluorescent X-ray method, each of them was found to be Y 20 ] /
Expressed as molar ratio of Z r O2 (0,08±0.0
01)/(0,92±0.002).

また、各焙焼物のX線回折パターンを測定したところ、
いずれも立方晶−相の結晶構造を有し、均一な固溶が達
成されていることがわかった。焙焼物のX線回折パター
ンの例として、硝酸イツトリウムを原料とした場合のX
線回折チャートを第7図に示す。
In addition, when we measured the X-ray diffraction pattern of each roasted product,
It was found that all of them had a cubic-phase crystal structure, and a uniform solid solution was achieved. As an example of the X-ray diffraction pattern of a roasted product, when yttrium nitrate is used as a raw material,
A line diffraction chart is shown in FIG.

さらに各焙焼物の1300 ’C焙焼時の重量減少率を
測定したところ、いずれも2%以下であった。
Furthermore, when the weight loss rate of each roasted product was measured during roasting at 1300'C, it was 2% or less in all cases.

また、上記各焙焼物を直径20mm、厚さ2 mmのペ
レット状に、金型成型(−軸、圧力1.5tb で焼結したところ、いずれも、理論密度の97%以上に
緻密化した。
In addition, when each of the above-mentioned roasted products was molded into pellets with a diameter of 20 mm and a thickness of 2 mm and sintered with a mold (-axis) at a pressure of 1.5 tb, each pellet was densified to 97% or more of the theoretical density.

実施例9 塩化イツトリウムのO,7M/U濃度の水溶液89.中
に、3M/R濃度の苛性ソーダ水を0.9M一度に加え
、実施例8と同様なゲル状物を作った。該ゲル状物の組
成および構造を実施例8と同様な方法で測定したところ
、実施例8で作ったゲル状不定形水酸化イツトリウムと
同じ物である事が判った。このゲル状物を用いて実施例
8と同様に含水酸化ジルコニウムへの付着、飽和水蒸気
雰囲気中での養生(10kg/cm” 、4時間)、及
び焙焼(750°C12時間〉を行なった。得られた粉
末はその組成、構造、焼結性ともに実施例8で作られた
物と同等であった。
Example 9 Aqueous solution of yttrium chloride in O, 7 M/U concentration 89. A gel-like material similar to that in Example 8 was prepared by adding 0.9 M of caustic soda water having a concentration of 3 M/R into the solution at once. The composition and structure of the gel-like material were measured in the same manner as in Example 8, and it was found that it was the same as the gel-like amorphous yttrium hydroxide produced in Example 8. Using this gel material, it was adhered to hydrous zirconium oxide in the same manner as in Example 8, cured in a saturated steam atmosphere (10 kg/cm'', 4 hours), and roasted (750° C., 12 hours). The resulting powder was equivalent to that produced in Example 8 in terms of composition, structure, and sinterability.

実施例10 塩化イツトリウムの0.1M15I濃度(酸化イツトリ
ウム換算)の水溶液8文中に、実施例8で用いたのと同
じ含水酸化ジルコニウム粉を9.2モル(酸化ジルコニ
ウム換算、含水酸化ジルコニウム3.12kO)加え、
攪拌を行ない均一な懸濁液を作った。該懸濁液中に、3
M/1濃度のアンモニア水0.91を一度に加え、撹拌
を30分間続けた後、2時間放置した。
Example 10 9.2 moles of the same hydrated zirconium oxide powder used in Example 8 was added to 8 volumes of an aqueous solution of yttrium chloride with a concentration of 0.1 M 15I (in terms of yttrium oxide) (in terms of zirconium oxide, 3.12 kO of hydrated zirconium oxide). ) plus,
Stirring was performed to create a uniform suspension. In the suspension, 3
0.91 of M/1 concentration ammonia water was added at once, stirring was continued for 30 minutes, and then left for 2 hours.

容器の底には白色固体が沈澱しており、その沈降体積は
3文であった。上部は透明な液であり、該液中のイツト
リウム濃度を通常の方法で測定したところ、イツトリウ
ムは検出されなかった。
A white solid was precipitated at the bottom of the container, and the settled volume was 3 mon. The upper part was a transparent liquid, and when the concentration of yttrium in the liquid was measured using a conventional method, no yttrium was detected.

得られた沈澱を04のガラスフィルターで濾取し、実施
例8と同様の方法で、飽和水蒸気中での養生(10kM
cm2.4時間)、及び焙焼(750℃、2時間)を行
なった。得られた粉末は、その組成、構造、焼結性とも
に、実施例8で作られた物と同等であった。
The obtained precipitate was filtered through a No. 04 glass filter, and cured in saturated steam (10 kmM) in the same manner as in Example 8.
cm2.4 hours) and roasting (750°C, 2 hours). The obtained powder was equivalent to that made in Example 8 in terms of composition, structure, and sinterability.

実施例11 濃度が0.3M/文のアンモニア水9文と、実施例8で
用いたのと同じ含水酸化ジルコニウム粉9.2モル(3
,12k(J)とを混合し、攪拌をしながら0.2M 
/交濃度の塩化イツトリウム水溶液4文を添加し、10
分間後に攪拌を停止した。2時間放置後、上澄み液中の
イツトリウム濃度を測定したところ、イツトリウムは検
出されなかった。
Example 11 9 moles of ammonia water with a concentration of 0.3 M/liter and 9.2 moles (3 moles) of the same hydrous zirconium oxide powder used in Example 8.
, 12k(J) and 0.2M while stirring.
Add 4 liters of yttrium chloride aqueous solution at a concentration of 10
Stirring was stopped after a minute. After standing for 2 hours, the yttrium concentration in the supernatant was measured, and no yttrium was detected.

上記で得られた固形分を濾取した後、実施例1と同様に
飽和水蒸気中での養生(10kMcm’ 、4時間)、
及び焙焼(750’C12時間)を行なった。得られた
粉末の組成、構造、焼結性を実施例8と同様に測定した
ところ、実施例1で作られた物と同等の物である事が判
った。
After filtering the solid content obtained above, curing in saturated steam (10 kmcm', 4 hours) in the same manner as in Example 1,
and roasting (750'C, 12 hours). The composition, structure, and sinterability of the obtained powder were measured in the same manner as in Example 8, and it was found to be equivalent to that produced in Example 1.

実施例12 硝酸イツトリウムの0.1M/1濃度(酸化イツトリウ
ム換算)の水溶液3文中に、実施例8で用いたのと同じ
含水酸化ジルコニウム9.7モル(酸化ジルコニウム換
算、含水酸化ジルコニウム3.30kg>を加え攪拌を
行ない、均一な懸濁液を作った。該懸濁液中に、3M1
511度のアンモニア水0.451を一度に加え、攪拌
を30分間続けた後、G4のガラスフィルターを用いて
濾別した。得られたケーキを12等分し、以下の条件で
各々飽和水蒸気雰囲気中で養生した。
Example 12 In three portions of an aqueous solution of yttrium nitrate at a concentration of 0.1 M/1 (in terms of yttrium oxide), 9.7 moles of the same hydrous zirconium oxide as used in Example 8 (in terms of zirconium oxide, 3.30 kg of hydrous zirconium oxide) > was added and stirred to make a homogeneous suspension.Into the suspension, 3M1
0.451 ml of aqueous ammonia at 511 degrees Celsius was added at once, stirring was continued for 30 minutes, and the mixture was filtered using a G4 glass filter. The resulting cake was divided into 12 equal parts, each of which was cured in a saturated steam atmosphere under the following conditions.

イ〉水蒸気圧2kMcm’ 、4時間 口)  rt   4kg/cm2、 〃ハ)  u 
  5kMcm’、 〃 二)  tt   10kMcm2.2時間ホ) //
    〃  、4時間 へ)  tt     u   、3時間ト)  tt
   16kg/cm2.2時間ヂ)  II    
 II   、4時間ワ)  rt     rt  
 、3時間区)  tt   20kg/cm2.4時
間ル)  tt   25kMcm2、 //ヲ)  
rt   30kg/cm2、 ?ll蓄養生物一定m
をとり、200℃、20時間乾燥後、1300’C焙焼
時の重量減少率を測定した。
A〉Water vapor pressure 2kMcm', 4 hours) rt 4kg/cm2,〃C) u
5kMccm', 〃 2) tt 10kMccm2.2 hours e) //
〃, to 4 hours) tt u, to 3 hours) tt
16kg/cm2.2 hours) II
II, 4 hours) rt rt
, 3 hours) tt 20kg/cm2.4 hours) tt 25kMccm2, //wo)
rt 30kg/cm2, ? ll Cultivation organism constant m
After drying at 200°C for 20 hours, the weight loss rate during roasting at 1300'C was measured.

また、各養生物を750″Cで2時間焙焼した。Each culture was also roasted at 750″C for 2 hours.

焙焼後或いは乾燥後イ)〜ヌ)の条件のものは、凝集の
弱い粉末となったが、ル〉、ヲ)の条件のものは、凝集
の強い塊状物となった。
After roasting or drying, the powders under conditions a) to n) became weakly agglomerated powders, but those under conditions a) and wo) became highly agglomerated lumps.

ざらに、各焙焼物を[ル)、ヲ)の条件のものについて
は乳鉢で30分間粉砕した後]、直径20mm、厚さ2
 mmのペレット状に、金型成型(−軸、圧力1.5t
b 時間、空気中で焼結した。焼結体密度及び、上記の20
0℃乾燥後、焙焼後の粉末を1300’C焙焼した時の
重量減少率は、表2に示すような結果となった。
Roughly, after grinding each roasted product in a mortar for 30 minutes for those under the conditions [ru), wo)], diameter 20 mm, thickness 2
Mold molding into mm pellets (-axis, pressure 1.5t)
sintered in air for 1 h. Sintered body density and the above 20
After drying at 0°C, the roasted powder was roasted at 1300'C, and the weight loss rate was as shown in Table 2.

また二)、ホ)の条件で飽和水蒸気雰囲気下での養生、
750℃、2hr焙焼を行なった資料を、金型成型(−
軸、圧力1.5ton/cm2)した成形体の空隙パタ
ーンを水銀圧入式ポロシメーターにて測定した。結果を
第8図a)、b)に各々示す。
In addition, curing in a saturated steam atmosphere under the conditions of 2) and e),
Materials roasted at 750℃ for 2 hours are molded into molds (-
The void pattern of the molded body was measured using a mercury intrusion porosimeter. The results are shown in FIGS. 8a) and b), respectively.

表2 実施例13 硝酸ネオジム、硝酸ディプロジウム、硝酸ガドリニウム
の各0.1M/R濃度(酸化物換算)の水溶液3文中に
、実施例8で用いたのと同じ含水酸化ジルコニウム9.
7モル(酸化ジルコニウム換算、含水酸化ジルコニウム
3、30klll )を加え、撹拌を行ない、均一な懸
濁液を作った。該懸濁液中に、3MZxm度のアンモニ
ア水0.1H1を一度に加え、攪拌を30分間続けた後
、G4のガラスフィルターを用いて濾別した。得られた
各ケーキを、10kMCm2の飽和水蒸気雰囲気中で、
4時間養生した。得られた養生物を750℃で2時間焙
焼した後、蛍光X線法により、Nd20x/ZrO2、
D’l/203/ZrO2、G d 20 :l / 
Z r 02のモル比を測定したところ、全て(0,0
3±0.001)/ (0,97±0.002)の範囲
にあった。
Table 2 Example 13 The same hydrous zirconium oxide used in Example 8 was added to 3 aqueous solutions of neodymium nitrate, diplodium nitrate, and gadolinium nitrate each at a concentration of 0.1 M/R (in oxide terms).
7 mol (calculated as zirconium oxide, 3.30 klll of hydrous zirconium oxide) was added and stirred to form a uniform suspension. To the suspension, 0.1H1 of 3MZxm degree ammonia water was added at once, stirring was continued for 30 minutes, and then filtered using a G4 glass filter. Each cake obtained was heated in a saturated steam atmosphere of 10 kMCm2,
It was cured for 4 hours. After roasting the obtained cured material at 750°C for 2 hours, Nd20x/ZrO2,
D'l/203/ZrO2, G d 20 :l/
When the molar ratio of Z r 02 was measured, all (0,0
3±0.001)/(0.97±0.002).

また、各焙焼物のX線回折パターンを測定したところ、
全て正方晶−相の結晶構造を示した。例として硝酸ディ
スプロシウムを出発原料として作製した焙焼物のX線回
折チャートを第9図に示す。
In addition, when we measured the X-ray diffraction pattern of each roasted product,
All exhibited a tetragonal-phase crystal structure. As an example, FIG. 9 shows an X-ray diffraction chart of a roasted product prepared using dysprosium nitrate as a starting material.

ざらに、各焙焼物を、実施例8と同様に成形し、130
0℃で3時間焼結したところ、いずれも理論密度の97
%以上に緻密化した。
Roughly mold each roasted product in the same manner as in Example 8, and
When sintered at 0°C for 3 hours, the theoretical density was 97.
% or more.

実施例14 硝酸イツトリウム0.1M/交濃度(酸化イツトリウム
換算)の水溶液8又中に、実施例8に用いたのと、同じ
含水酸ジルコニウム9.2モル(酸化ジルコニウム換算
、含水酸化ジルコニウム3.12kg>を加え、攪拌を
行ない、均一な懸濁液を作った。該懸濁液中に3M/交
濃度のアンモニア水0.95.を一度に加え、攪拌を3
0分間続けた後、G4のガラスフィルターを用いて濾別
した。得られたケーキを、10kMCI2の飽和水蒸気
雰囲気中で、4時間養生した。得られた養生物を8分割
し、以下の条件で焙焼した。
Example 14 9.2 moles of the same hydrous zirconium oxide as used in Example 8 (in terms of zirconium oxide, 3.0 moles of hydrous zirconium oxide) was added to an aqueous solution of 0.1 M yttrium nitrate/concentration (in terms of yttrium oxide). 12 kg> was added and stirred to make a homogeneous suspension.To the suspension, 0.95.
After continuing for 0 minutes, it was filtered using a G4 glass filter. The resulting cake was cured for 4 hours in a saturated steam atmosphere of 10 kMCI2. The obtained cured product was divided into 8 parts and roasted under the following conditions.

イ)300℃、4時間 口)  500℃、 〃 ハ) 〃 、6時間 二〉 〃 、10時間 ホ)600℃、2時間 へ)800℃、 〃 ト) 1ooo℃、  〃 チ)1100’C,〃 上記焙焼物を1300℃で焙焼し、重量減少率を測定し
、実施例8と同様な方法で成形し、1300 ’Cで3
時間焼結を行なった。重量減少率及び、焼結体密度を表
3に示す。なお、ハ)のものについては、成形体5個中
4個が破壊した・     、3 実施例8と同様な方法でゲル状不定形水酸化イツトリウ
ムを作り、実施例1で用いたのと同じ含水酸化ジルコニ
ウム粉に、次の組成比になるよう実施例1と同様な方法
で付着した。
a) 300℃, 4 hours) 500℃, C) , 6 hours 2〉, 10 hours e) 600℃, 2 hours) 800℃, g) 1ooo℃, 〃 H) 1100'C, 〃 The above-mentioned roasted product was roasted at 1300°C, the weight loss rate was measured, and molded in the same manner as in Example 8.
Time sintering was performed. Table 3 shows the weight reduction rate and the sintered body density. Regarding c), 4 out of 5 molded bodies were broken. It was attached to zirconium oxide powder in the same manner as in Example 1 so that the following composition ratio was achieved.

(イ)Y203/ZrO2(モル比) =  3/97 (ロ)          =16/84〃 (ハ)         =32/68(ニ)    
 It     =40/60各試料を、飽和水蒸気雰
囲気中養生(10kg/Cm2.4時間)、焙焼(75
0℃、2時間)した。
(a) Y203/ZrO2 (molar ratio) = 3/97 (b) = 16/84 (c) = 32/68 (d)
It = 40/60 Each sample was cured in a saturated steam atmosphere (10 kg/Cm 2.4 hours) and roasted (75
0°C for 2 hours).

得られた各粉のX線回折を行なったところ、(イ)、(
ロ)、(ハ)のものは共に未固溶酸化イツトリウムはな
く、(イ)のものは、正方晶−相(ロ)、(ハ)のもの
は立方晶−相の結晶構造を有した。
When the obtained powders were subjected to X-ray diffraction, (a), (
In both cases (b) and (c), there was no undissolved yttrium oxide, and in (a) the crystal structure was a tetragonal phase (b), and in (c) the crystal structure was a cubic phase.

(ニ)のものについては固溶していない酸化イツトリウ
ムの単独ピークがみられた。
In the case of (d), a single peak of yttrium oxide, which was not dissolved in solid solution, was observed.

(ニ)の焙焼物を一定量採取し、これに一定量の酸化ビ
スマスを内部標準として加え混合した試料のX線回折チ
ャートを作り酸化イツトリウムの(222)面の回折ピ
ークの高さと、酸化ビスマスの(121)面の回折ピー
クの高さの比を測定する方法で、各試料中に存在する未
固溶酸化イツトリウムの量を概略測定したところ、未固
溶酸化イツトリウムが5 wt%あった。
A certain amount of the roasted product of (d) was collected, a certain amount of bismuth oxide was added as an internal standard, and an X-ray diffraction chart of the mixed sample was created and the height of the diffraction peak of the (222) plane of yttrium oxide and bismuth oxide were obtained. The amount of undissolved yttrium oxide present in each sample was approximately measured by a method of measuring the height ratio of the diffraction peaks of the (121) plane, and the amount of undissolved yttrium oxide was 5 wt%.

比較例1 オキシ塩化ジルコニウムの0.2M/9.s度の水溶液
4.85文と、硝酸イツトリウムの0.1M/交濃度(
1¥!2化イツトリウム換算)の水溶液0.31とを混
合し、30分間攪拌し、該混合水溶液に3M15I濃度
のアンモニア水1.5文を一度に加え、ざらに30分間
攪拌した後、G4のガラスフィルターにて濾別した。得
られたケーキは、半透明のノリ状のもので、X線 ・回
折パターンにおいて、ピークが認められないものであっ
た。上記ケーキを4分割し、以下の条件で各々飽和水蒸
気雰囲気中で養生した。
Comparative Example 1 Zirconium oxychloride 0.2M/9. s degree aqueous solution and 0.1 M/cross concentration of yttrium nitrate (
1 yen! (in terms of yttrium dioxide) and stirred for 30 minutes. To the mixed aqueous solution, 1.5 grams of ammonia water with a concentration of 3M15I was added at once, and after roughly stirring for 30 minutes, a G4 glass filter was mixed. It was filtered. The resulting cake was translucent and glue-like, and no peaks were observed in the X-ray diffraction pattern. The above cake was divided into four parts and each part was cured in a saturated steam atmosphere under the following conditions.

イ)水蒸気圧 20kg/cm2.4時間口)  n 
   30kg/cm2、 〃ハ)  //    3
5kMcm2、 〃二)水蒸気圧 40kMCm2.4
時間養生後、各養生物を200℃で、20時間乾燥した
。乾燥後金ての養生物が、凝集の極めて激しい塊状物と
なった。
b) Water vapor pressure 20kg/cm2.4 hours) n
30kg/cm2, 〃c) // 3
5kMCm2, 〃2) Water vapor pressure 40kMCm2.4
After curing for an hour, each cured product was dried at 200° C. for 20 hours. After drying, the nutrient solution formed into highly agglomerated lumps.

該乾燥物の乳鉢で30分間粉砕した後、実施例1と同様
に1300℃焙焼時の重量減少率、1300″C焼結時
の密度を測定したところ表4に示す様な結果となった。
After pulverizing the dried material in a mortar for 30 minutes, the weight loss rate when roasted at 1300°C and the density when sintered at 1300''C were measured in the same manner as in Example 1, and the results were as shown in Table 4. .

なお、口)のものについては成形体5個中4個が焼結時
に破壊した。
In addition, as for the molded products (1), 4 out of 5 molded products were broken during sintering.

表4 比較例2 硝酸イツトリウムの0.1M15I濃度(酸化イツトリ
ウム換算)の水溶液39.中に、実施例8で用いたのと
同じ含水酸化ジルコニウム9.7モル(酸化ジルコニウ
ム換算、含水酸化ジルコニウム3.30klj )を加
え攪拌を行ない、均一な懸濁液を作った。該懸濁液中に
、3M/又濃度のアンモニア水0.41を一度に加え、
攪拌を30分間続けた後、G4のガラスフィルターを用
いて濾別した。得られたケーキを750℃で2時間焙焼
し、実施例8と同様な方法で金型成形し、成形体中の空
隙パターンを実施例5と同様な方法で測定した。結果を
図10に示す。また、該成形体を1300 ’C及び1
400’Cにて3時間焼結し、密度を測定したところ、
各々理論密度の各々90%、98%に緻密化していた。
Table 4 Comparative Example 2 Aqueous solution of yttrium nitrate with 0.1M15I concentration (calculated as yttrium oxide) 39. 9.7 mol of hydrous zirconium oxide (3.30 klj of hydrous zirconium oxide, calculated as zirconium oxide), which was the same as that used in Example 8, was added thereto and stirred to form a uniform suspension. Into the suspension, add 0.41 ammonia water with a concentration of 3M/millimeter at a time,
After stirring for 30 minutes, the mixture was filtered using a G4 glass filter. The resulting cake was roasted at 750° C. for 2 hours, molded in the same manner as in Example 8, and the void pattern in the molded body was measured in the same manner as in Example 5. The results are shown in FIG. In addition, the molded body was heated at 1300'C and 1
After sintering at 400'C for 3 hours and measuring the density,
They were densified to 90% and 98% of their theoretical densities, respectively.

比較例3 硝酸イツトリウムの0.1M/交濃度(酸化イツトリウ
ム換算)の水溶液3文中に、実施例8で用いたものと同
じ含水醸化ジルコニウム9.7モル(酸化ジルコニウム
換算、含水酸化ジルコニウム3.30k(It )を加
え、攪拌を行ない、均一な懸濁液を作った。該懸濁液中
に、3M/R濃度のアンモニア水0.4Rを一度に加え
、攪拌を30分間続けた後、G4のガラスフィルターを
用いて濾別した。得られたケーキを150’C14時間
乾燥し、10kg/am2の飽和水蒸気雰囲気下で4時
間養生した後、750℃で2時間焙焼した。
Comparative Example 3 In three portions of an aqueous solution of 0.1 M/exchange concentration (in terms of yttrium oxide) of yttrium nitrate, 9.7 moles of hydrous fermented zirconium (in terms of zirconium oxide), the same as that used in Example 8, was added (in terms of zirconium oxide). 30k (It) was added and stirred to make a homogeneous suspension.To the suspension, 0.4R of ammonia water with a concentration of 3M/R was added at once, and stirring was continued for 30 minutes. It was filtered using a G4 glass filter.The resulting cake was dried at 150'C for 14 hours, cured for 4 hours in a saturated steam atmosphere of 10 kg/am2, and then roasted at 750°C for 2 hours.

焙焼物を実施例8と同様に直径20mm、厚さ2mmの
ペレット状に金型成形し、1300℃で3時間、空気中
で焼結した。焼結体の密度は理論密度の94%であった
The roasted product was molded into pellets with a diameter of 20 mm and a thickness of 2 mm in the same manner as in Example 8, and sintered in air at 1300° C. for 3 hours. The density of the sintered body was 94% of the theoretical density.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1において、オキシ塩化ジルコニウムを
原料とした場合の養生物のX線回折チャート、 第2図は実施例1において、オキシ塩化ジルコニウムを
原料とした場合の750℃焙焼物のX線回折チャート、 第3図は、実施例6において、硝酸ディスプロシウムを
原料とした場合の750℃焙焼物のX線回折チャート、 第4図は、ゲル状不定形水酸化イツトリウムのX線回折
チャート、 第5図は、常温真空乾燥後のゲル状°不定形水酸化イツ
トリウムの赤外吸収スペクトル、第6図は、実施例8に
おいて、硝酸イツトリウムを原料とした場合の養生物の
X線回折チャート、 第7図は、実施例8において、硝酸イツトリウムを原料
とした場合の750℃焙焼物のX線回折チャート、 第8図(a)は、実施例12において二)の条件で作成
した粉体を金型成形(−軸、1.5ton/cm2) 
L/たときの成形体の空隙パターン、 第8図(b)は、実施例12においてホ)の条件で作成
した粉体を金型成形(−軸1.5ton/cm2) L
/たときの成形体の空隙パターン、 第9図は実施例13において、硝酸ディスプロシウムを
出発原料とした場合の焙焼物のX線回折チャート、 第10図は、比較例2において750℃焙焼物を金型成
形(−軸、圧力1.5ton/cm’ ) L/たとき
の成形体の空隙パターンである。 特許出願人 旭化成工業株式会社 代理人 弁理士 小 松 秀 岳 代理人 弁理士 旭     宏 オ6図 25     3D3540     45(2θ) オフ図 25JOJS      40     45(2θ) 界ズ¥穂 緊廻令F二 g  g  g  さ 3 f−も七反
Figure 1 is the X-ray diffraction chart of the cured product in Example 1 when zirconium oxychloride was used as the raw material. Figure 2 is the X-ray diffraction chart of the cured product in Example 1 when zirconium oxychloride was used as the raw material Ray diffraction chart. Figure 3 is an X-ray diffraction chart of the product roasted at 750°C when dysprosium nitrate was used as a raw material in Example 6. Figure 4 is an X-ray diffraction chart of gelled amorphous yttrium hydroxide. Chart, Figure 5 is the infrared absorption spectrum of gel-like amorphous yttrium hydroxide after vacuum drying at room temperature, Figure 6 is the X-ray diffraction of the cured product in Example 8 when yttrium nitrate was used as the raw material. Chart, Figure 7 is an X-ray diffraction chart of the roasted product at 750°C when yttrium nitrate was used as the raw material in Example 8, Figure 8(a) is the powder prepared under the conditions of 2) in Example 12. Molding the body with a mold (-axis, 1.5 ton/cm2)
Figure 8(b) shows the void pattern of the molded body when L/L.
Figure 9 is an X-ray diffraction chart of the roasted product obtained by using dysprosium nitrate as the starting material in Example 13. This is the void pattern of the molded product when the pottery is molded with a mold (-axis, pressure 1.5 ton/cm') L/L. Patent Applicant Asahi Kasei Industries Co., Ltd. Agent Patent Attorney Hide Komatsu Agent Patent Attorney Hiroo Asahi 6 Figure 25 3D3540 45 (2θ) Off Figure 25 JOJS 40 45 (2θ) Worlds¥Ho Tense Rei F2g g g Sa 3 f- also seven tans

Claims (1)

【特許請求の範囲】  希土類元素とジルコニウムを共沈させたジ ルコニウム−希土類元素共沈水酸化物、あるいは希土類
元素の含水ゲル状不定形水酸化物を周囲に付着させた含
水酸化ジルコニウム粉を含水状態で、5kg/cm^2
以上、20kg/cm^2以下の飽和水蒸気雰囲気中で
養生し、ついで該養生物を焙焼する事を特徴とする、希
土類元素を固溶した酸化ジルコニウム粉の製造方法。
[Claims] A zirconium-rare earth element co-precipitated hydroxide in which a rare earth element and zirconium are co-precipitated, or a hydrated zirconium oxide powder with a hydrous gel-like amorphous hydroxide of a rare earth element attached to its surroundings, in a hydrated state. ,5kg/cm^2
As described above, the method for producing zirconium oxide powder containing rare earth elements as a solid solution is characterized by curing in a saturated steam atmosphere of 20 kg/cm^2 or less, and then roasting the cured material.
JP61008969A 1986-01-21 1986-01-21 Production of zirconium oxide powder obtained from rare earth element formed solid solution Pending JPS62167218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61008969A JPS62167218A (en) 1986-01-21 1986-01-21 Production of zirconium oxide powder obtained from rare earth element formed solid solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61008969A JPS62167218A (en) 1986-01-21 1986-01-21 Production of zirconium oxide powder obtained from rare earth element formed solid solution

Publications (1)

Publication Number Publication Date
JPS62167218A true JPS62167218A (en) 1987-07-23

Family

ID=11707510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61008969A Pending JPS62167218A (en) 1986-01-21 1986-01-21 Production of zirconium oxide powder obtained from rare earth element formed solid solution

Country Status (1)

Country Link
JP (1) JPS62167218A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114644521A (en) * 2022-04-22 2022-06-21 烟台核晶陶瓷新材料有限公司 Preparation method of colored zirconia ceramic powder for false tooth

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114644521A (en) * 2022-04-22 2022-06-21 烟台核晶陶瓷新材料有限公司 Preparation method of colored zirconia ceramic powder for false tooth

Similar Documents

Publication Publication Date Title
Hennings et al. Hydrothermal preparation of barium titanate from barium-titanium acetate gel precursors
KR100427005B1 (en) Spheroidally Agglomerated Basic Cobalt(II) Carbonate and Spheroidally Agglomerated Cobalt(II) Hydroxide, Process for Their Production and Their Use
JPS62230610A (en) Production of zirconium sol and gel and production of zirconia using said sol and gel
AU609280B2 (en) Process for preparing submicronic powders of zirconium oxide stabilized with yttrium oxide
JPH06305726A (en) Production of powdery oxide of rare earth element
JPS62167218A (en) Production of zirconium oxide powder obtained from rare earth element formed solid solution
JPS60176968A (en) Manufacture of sno2-zro2-tio2 dielectric
JPH0238527B2 (en)
JPH06191846A (en) Indium oxide powder, its production and production of ito sintered compact
JPS60166226A (en) Preparation of zirconium oxide powder containing rare earth element as solid solution
JPH06171943A (en) Production of zirconium oxide powder
JPS6016819A (en) Production of zirconium oxide powder containing yttrium as solid solution
JPH0712922B2 (en) Method of forming inorganic hydroxide precipitate
JPH06171944A (en) Production of zirconium oxide powder
KR101324130B1 (en) Indium tin oxide powder and manufacturing method of producing the same
JP2001270714A (en) Method for producing yag fine powder
SU1114617A1 (en) Method for producing oxide powders
JPS63222014A (en) Production of oxide fine powder of perovskite type
CN1328211C (en) Nanometer ferrite powder preparation method
JP3681550B2 (en) Rare earth oxide and method for producing the same
JPH01294528A (en) Production of oxide of perovskite type of abo3 type
JP3358217B2 (en) Method for producing zirconium oxide powder
JPS62128924A (en) Production of zirconium oxide series fine powder
JPS59227725A (en) Preparation of powder of zirconium oxide having yttrium as solid solution
JPS61215218A (en) Production of functional oxide powder