JPS62166782A - Multioutput, multivoltage rectifying circuit - Google Patents

Multioutput, multivoltage rectifying circuit

Info

Publication number
JPS62166782A
JPS62166782A JP746286A JP746286A JPS62166782A JP S62166782 A JPS62166782 A JP S62166782A JP 746286 A JP746286 A JP 746286A JP 746286 A JP746286 A JP 746286A JP S62166782 A JPS62166782 A JP S62166782A
Authority
JP
Japan
Prior art keywords
voltage
capacitor
capacitors
output
input terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP746286A
Other languages
Japanese (ja)
Inventor
Yoshio Takamura
高村 芳雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP746286A priority Critical patent/JPS62166782A/en
Publication of JPS62166782A publication Critical patent/JPS62166782A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rectifiers (AREA)

Abstract

PURPOSE:To be able to take a desired voltage without recourse to the gradually increasing number of stages by providing a plurality of output ends by altering connection of a Cockcroft-Walton type voltage multiplying rectifying circuit. CONSTITUTION:A Cockcroft-Walton type voltage multiplying rectifying circuit having the gradually increasing number of 5 stages is altered and the third capacitor C3 viewed from the input end (a) side out of capacitors C1-C5 on the side to be connected to loads R1, R2 through diodes D1-D10 is separated from a node (g) near its input end (a) and connected to the input end (c) to which electric potential higher than that at the input end (a) is supplied. At the same time, the cathode node (h) of the diode D4 connected to said node (g) is connected to the second output end P2.

Description

【発明の詳細な説明】 [発明の技術分野] この発明はコツククロフト・ウオルトン形倍電圧整流回
路を改良して複数個の異なる電圧を取出せるようにした
多出力多倍圧整流回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a multi-output multi-voltage rectifier circuit which is an improved Kotscroft-Walton type voltage doubler rectifier circuit and is capable of taking out a plurality of different voltages.

[発明の技術的背景とその問題点] 従来より直流の高電圧を得る手段として、回路構成の簡
便なコッククロッ小・ウオルトン形の倍電圧整流回路が
よく用いられている。この回路は逓倍段数に応じた95
i数個のダイオードとコンデンサを組合わせ、交流電圧
の極性反転に応じて各コンデンサの充放電経路をダイオ
ードで順次切換えることにより、入力電圧の所定倍圧を
得るようにしたものである。ところで、上記整流回路は
各コンデンサの任意の出力端に出力端子を設けることに
より、この出力端子からそれぞれ異なる電圧を得ること
ができる。しかしながら、この整流回路は負荷電流によ
る電圧変動が過大であり、かつ各出力電流による電圧変
動の相互影響が大きいため、効果的に多出力を取出すこ
とは不可能であり、実際には所望の各逓倍電圧を得るこ
とができない。
[Technical Background of the Invention and its Problems] Conventionally, as a means for obtaining high DC voltage, a Cock-Clock-Walton type voltage doubler rectifier circuit, which has a simple circuit configuration, has been often used. This circuit has 95
A predetermined double voltage of the input voltage is obtained by combining several diodes and capacitors and sequentially switching the charging and discharging paths of each capacitor using the diodes in accordance with the polarity reversal of the alternating current voltage. By the way, in the rectifying circuit described above, by providing an output terminal at an arbitrary output terminal of each capacitor, different voltages can be obtained from the output terminals. However, in this rectifier circuit, the voltage fluctuation due to the load current is excessive, and the mutual influence of the voltage fluctuation due to each output current is large, so it is impossible to effectively output multiple outputs, and in reality, it is impossible to output multiple outputs. Unable to obtain multiplied voltage.

まして、所望の電圧を取出すことは不可能である。Furthermore, it is impossible to extract the desired voltage.

[発明の目的] この発明は上記のような問題を改善するためになされた
もので、複数個の出力端を設け、該出力端から取出され
る電圧を逓倍段数によらずに所望の電圧に設定すること
のできる多出力多倍圧整流回路を提供することを目的と
する。
[Object of the Invention] This invention was made to improve the above-mentioned problems, and it is possible to provide a plurality of output terminals and adjust the voltage taken out from the output terminals to a desired voltage without depending on the number of multiplication stages. The object of the present invention is to provide a multi-output multiplier rectifier circuit that can be set.

[発明の概要〕 すなわち、この発明に係る多出力多倍圧整流回路は、第
1の交流電圧が印加される第1の入力端と基準電位点に
接続される第2の入力端と前記第1の交流電圧より振幅
の大きい第2の交流電圧が印加される第3の入力端と複
数個のダイオードとこのダイオードの個数と同数のコン
デンサと複数個の出力端とを有し、前記複数個のダイオ
ードを整流の向きが同じにして直列接続してその一方端
を前記第2の入力端に接続し、前記直列接続された各ダ
イオードの一方端及び他方端を含む接続点に対し隣接す
る偶数番目の接続点間全てにそれぞれ前記複数個のコン
デンサのうち半分のコンデンサを並列接続し、前記偶数
番目の接続点のうち任意の接続点をそれぞれ前記複数個
の出力端と接続し、前記第2の入力端に接続されたダイ
オードの他端を前記残りの半分のコンデンサのうち1個
のコンデンサを介して前記第1の入力端に接続し、前記
出力端と接続される前記偶数番目のダイオード接続点の
次の奇数番目のダイオード接続点をそれぞれ前記残りの
コンデンサのうちコンデンサ1個を介して前記第3の入
力端に接続すると共に他の隣接する奇数番目の接続点間
全てに残りのコンデンサを接続してなることを特徴とす
るものである。
[Summary of the Invention] That is, the multi-output multivoltage rectifier circuit according to the present invention includes a first input terminal to which a first AC voltage is applied, a second input terminal connected to a reference potential point, and the first input terminal connected to a reference potential point. a third input terminal to which a second AC voltage having a larger amplitude than the first AC voltage is applied; a plurality of diodes; a capacitor of the same number as the diodes; and a plurality of output terminals; diodes with the same rectification direction are connected in series, one end of which is connected to the second input terminal, and an even number of diodes adjacent to the connection point including one end and the other end of each of the series-connected diodes is connected in series. Half of the capacitors among the plurality of capacitors are connected in parallel between all the connection points of the second connection point, and arbitrary connection points among the even number connection points are respectively connected to the plurality of output terminals. The other end of the diode connected to the input end of the diode is connected to the first input end through one of the remaining half capacitors, and the even-numbered diode connection is connected to the output end. Each of the odd-numbered diode connection points next to the point is connected to the third input terminal through one of the remaining capacitors, and the remaining capacitors are connected between all other adjacent odd-numbered connection points. It is characterized by being connected.

[発明の実施例コ 以下、図面を参照してこの発明の一実施例について説明
する。
[Embodiment of the Invention] An embodiment of the invention will be described below with reference to the drawings.

第1図はその構成を示すもので、図中Tはトランスであ
る。このトランスTの一次善線w1の両端には交流電源
Aが接続され、二次巻線w2の第1乃至第3の端子a、
b、cにはこの発明に基づく多出力多倍圧整流回路が接
続されている。すなわち、上記二次巻線W2の第2の端
子すは接地点Gに接続された基準電位点であり、また第
1の端子aは中間端子で第3の端子Cに発生する交流電
圧より低い振幅レベルの交流電圧が発生する。この端子
すには10個のダイオードD1〜DIOを直列接続した
ダイオード直列回路のダイオードD1のアノードが接続
される。ここで、このダイオード直列回路の各ダイオー
ド間接続点をそれぞれ0〜mとし、ダイオードDIOの
カソードを出力端nとすると、a−e間、e−g間、c
−i間、i−に間、k−m間、b−f間、f−h間、h
−j間、j−1間、ノーn間にはそれぞれ同容量のコン
デンサCl−Cl0が接続される。そして、上記接続点
n及びhはそれぞれ第1及び第2の出力端P1゜P2に
接続されており、Pl及び22間には負荷抵抗R1が接
続され、P2及び接地点0間には負荷抵抗R2が接続さ
れる。
FIG. 1 shows its configuration, and T in the figure is a transformer. An AC power supply A is connected to both ends of the first-order wire w1 of the transformer T, and the first to third terminals a of the secondary winding w2,
A multi-output multiplier rectifier circuit based on the present invention is connected to b and c. That is, the second terminal of the secondary winding W2 is a reference potential point connected to the ground point G, and the first terminal a is an intermediate terminal and is lower than the AC voltage generated at the third terminal C. An alternating current voltage with an amplitude level is generated. The anode of a diode D1 of a diode series circuit in which ten diodes D1 to DIO are connected in series is connected to this terminal. Here, if the connection points between the diodes of this diode series circuit are respectively 0 to m, and the cathode of the diode DIO is the output terminal n, then between a and e, between e and g, and between c
- between i, between i-, between k and m, between b and f, between f and h, h
Capacitors Cl and Cl0 of the same capacity are connected between -j, j-1, and NO-n, respectively. The connection points n and h are connected to the first and second output terminals P1 and P2, respectively, a load resistance R1 is connected between P1 and 22, and a load resistance is connected between P2 and the ground point 0. R2 is connected.

すなわち、この回路は通常の5段の逓倍段数を持つコツ
ククロフト・ウオルトン形倍電圧整流回路を改良し、ダ
イオードD1〜DIOを介して負荷R1,R2に接続さ
れる側のコンデンサC1〜C5のうち、入力端a側から
3番目のコンデンサC3をその入力端aに近い接続点g
から切離してこれを入力端aより高い電圧が供給される
入力端Cに接続し、同時にこの接続点gに接続されてい
るダイオードD4のカソード接続点りを第2の出力端P
2に接続するようにしたもので、上記以外は全く通常の
コツククロフト・ウオルトン形倍電圧整流回路である。
That is, this circuit is an improved Cottcroft-Walton type voltage doubler rectifier circuit having five multiplication stages. Among the capacitors C1 to C5 connected to the loads R1 and R2 via the diodes D1 to DIO, Connect the third capacitor C3 from the input terminal a side to the connection point g near the input terminal a.
and connect it to input terminal C, which is supplied with a higher voltage than input terminal a, and at the same time connect the cathode connection point of diode D4 connected to this connection point g to the second output terminal P.
2, and other than the above, it is a completely normal Kotscroft-Walton type voltage doubler rectifier circuit.

以上の構成において、以下その動作について説明する。The operation of the above configuration will be explained below.

まず、無負荷すなわち負荷抵抗R1,R2が共に無限大
であるとき、トランスTの二次巻iW2のa−b間には
電圧振幅EO1[V]の交番電圧が発生し、c−b間に
は電圧振幅EO2[V]の交番電圧が発生しているとす
る。今、トランスTの二次巻線w2の端子aの電位が接
地電位に対して−EO1[V]になった時点を考えると
、この場合ダrオードDiがオンするため、b→D1→
e −C1−*aの順に電流が流れる。したがってコン
デンサC1はe点が正側となる向きにEOl[V]に充
電される。次いで、a点が接地電位に対してEOl[V
]になったとすると、この場合ダイオードD2がオンす
るため、a −Cl→e→D2→f−CB−bの順に電
流が流れる。したがってコンデンサC6はi点が正側と
なる向きに、二次巻線W:のa−b間に生じている電圧
EO1[V]とコンデンサC1の充電電圧EOL[V]
を加算した2EO1[V]に充電される。ここで再びa
点が−EO1[V]になればダイオードD3がオンする
ため、b−CG Mf−’D3 →g−+C2→C1→
aの順に電流が流れる。したがってコンデンサC2は2
点が正側となる向きに、二次巻線w2のa−す間に生じ
ている電圧EO1[V]、コンデンサCGの充電電圧2
EO1[V]及びコンデンサCIの充電電圧−EOl[
Vコを加算した2EO1[Vコに充電される。さらに、
a点がEOl[V]になればダイオードD4がオンする
ため、a−I−C1→C2−g→D4−h−C7−CO
→bの順に電流が流れる。したがってコンデンサC7は
h点が正側となるように、b−a間電圧EO1[V]、
コンデンサC1の充電電圧01E [V] 、C2の充
電電圧2EO1[V]及びCGの充電電圧−2EO1[
V]を加算した2EO1[V]に充電される。次いで、
0点が−EO2[V]になればダイオードD5がオンす
るため、b−C6→C7→h−D5→i→C3−”cの
順に電流が流れる。したがってコンデンサC3はi点が
正側となる向きに、c−b間型圧EO2[V] 、コン
デンfc6.C7の各充電電圧2E01を加算したE 
02+ 4 E 01 [V]に充電される。次に、0
点がEO2[V]になればダイオードD6がオンするた
め、c →C3M i −”DO→j→C3−C7→C
6→bの順に電流が流れる。したがってコンデンサC8
は3点が正側となる向きにc−b間型圧EO2[V]、
コンデンサC3の充電電圧E 02+ 4 E O[[
V]及びコンデンサCG。
First, when there is no load, that is, when the load resistances R1 and R2 are both infinite, an alternating voltage with a voltage amplitude of EO1 [V] is generated between a and b of the secondary winding iW2 of the transformer T, and between c and b. Assume that an alternating voltage with a voltage amplitude EO2 [V] is generated. Now, considering the point in time when the potential of the terminal a of the secondary winding w2 of the transformer T becomes -EO1 [V] with respect to the ground potential, in this case the diode Di turns on, so b→D1→
The current flows in the order of e -C1-*a. Therefore, the capacitor C1 is charged to EOl[V] in a direction such that the point e is on the positive side. Then, point a becomes EOl[V
] In this case, since the diode D2 is turned on, a current flows in the order of a-Cl→e→D2→f-CB-b. Therefore, the capacitor C6 is connected to the voltage EO1 [V] occurring between a and b of the secondary winding W: and the charging voltage EOL [V] of the capacitor C1 in the direction where point i is on the positive side.
It is charged to 2EO1[V] which is the sum of . Here again a
When the point becomes -EO1 [V], diode D3 turns on, so b-CG Mf-'D3 →g-+C2→C1→
Current flows in the order of a. Therefore capacitor C2 is 2
In the direction where the point is on the positive side, the voltage EO1 [V] occurring between a and the secondary winding w2, and the charging voltage 2 of the capacitor CG.
EO1 [V] and charging voltage of capacitor CI - EOl [
2EO1 [V is charged by adding V. moreover,
When point a reaches EOl[V], diode D4 turns on, so a-I-C1→C2-g→D4-h-C7-CO
→ Current flows in the order of b. Therefore, the capacitor C7 has a b-a voltage EO1 [V], so that the h point is on the positive side.
Charging voltage of capacitor C1 01E [V], charging voltage of C2 2EO1 [V] and charging voltage of CG -2EO1[
V] is added to 2EO1[V]. Then,
When the 0 point becomes -EO2 [V], the diode D5 turns on, so current flows in the order of b-C6 → C7 → h-D5 → i → C3-"c. Therefore, the i point of capacitor C3 is on the positive side. In the direction of
It is charged to 02+ 4 E 01 [V]. Next, 0
When the point reaches EO2 [V], diode D6 turns on, so c →C3M i −”DO→j→C3-C7→C
Current flows in the order of 6→b. Therefore capacitor C8
is the mold pressure between c and b EO2 [V] in the direction where the three points are on the positive side,
Charging voltage of capacitor C3 E 02+ 4 E O[[
V] and capacitor CG.

C7の各充電電圧−2EO1[V]を加算した2EO2
[V]に充電される。以下、同様にしてコンデンサC5
,C9及びC10はそれぞれm点、1点及びn点か正側
となる向きに2EO2[V]に充電される。
2EO2 which is the sum of each charging voltage of C7 -2EO1 [V]
Charged to [V]. Below, in the same way, capacitor C5
, C9 and C10 are charged to 2EO2 [V] in the direction of the positive side of the m point, 1 point and n point, respectively.

すなわち、上記第1及び第2の出力端P1゜22間の出
力電圧はコンデンサC8〜CIOの直列回路で規定され
、第2の出力端P2及び接地点G間の出力電圧はコンデ
ンサCB、C7の直列回路で規定される。したがってP
L−22間の無負荷出力電圧は6EO2[V] となり
、R2−0間の無負荷出力電圧は4EOL[V] とな
る。
That is, the output voltage between the first and second output terminals P1゜22 is defined by the series circuit of capacitors C8 to CIO, and the output voltage between the second output terminal P2 and ground point G is defined by the capacitors CB and C7. Specified in series circuit. Therefore P
The no-load output voltage between L-22 is 6EO2 [V], and the no-load output voltage between R2-0 is 4EOL [V].

ここでPI−22間は無負荷のままとし、R2−0間に
所定の負荷を接続したとする。つまり、負荷抵抗R1は
無限大の抵抗値をqし、負荷抵抗R2はR[Ω]なる抵
抗値を有するものとする。
Here, it is assumed that no load is left between PI-22 and a predetermined load is connected between R2-0. In other words, it is assumed that the load resistance R1 has an infinite resistance value q, and the load resistance R2 has a resistance value R[Ω].

そして、R2に流れる電流をI2  [A] 、R2−
0間の電圧をE2 [V]、この間に介在されるコンデ
ンサC1,C2,CB、C7の各容量をC[F]、この
区間の逓倍段数をI2とすれば、一般文献にあるコツク
クロフト・ウオルトン形倍電圧整流回路の公式を適用し
て次式を得ることができる。
Then, the current flowing through R2 is I2 [A], R2-
If the voltage between 0 and 0 is E2 [V], the capacitance of the capacitors C1, C2, CB, and C7 interposed between these is C[F], and the number of multiplication stages in this section is I2, then the Kotscroft-Walton By applying the formula for a type voltage doubler rectifier circuit, the following equation can be obtained.

但し、fは入力電源Aの動作周波数であり、I2はこの
実施例の場合n2−2である。このときのPi−22間
の電圧について調べると、まず0点が対地電圧−EO2
[V]の状態でコンデンサC3は前述したようにb−+
CG −C7−oh−R5−1−1−1−C3−h c
の順に流れる電流で充電されるが、その充電電圧はc−
b間型圧EO2[V] とコンデンサCG、C7の各充
電電圧との和、つまりR2−G間型圧E2  [V] 
との和であるEO2+E2  [Vコとなる。次いで0
点が+EO2[Vlになったとすれば、コンデンサC8
は同じく前述したように(−4C3−* i −* p
 Q −e j →C8−+ C7−h C6−+ l
)の順に流れる電流によって充電されるので、その充電
電圧はc−b間型圧EO2[VI、コンデンサC3の充
電電圧EO2+E2  [VI及びP2−0間電圧−R
2を加算した2EO2[VI となる。尚、コンデンサ
C4,C5,C9,CIOへの充電はこれも前述したよ
うにコンデンサC8の充電電圧が順次転送される形とな
るので、各コンデンサC4゜C5、C9、CIOの充電
電圧は全て2EO2[VIとなる。したがってPI−2
2間には無負荷時電圧が出力されていることがわかる。
However, f is the operating frequency of the input power source A, and I2 is n2-2 in this embodiment. When examining the voltage between Pi and 22 at this time, the 0 point is the ground voltage - EO2
In the state of [V], the capacitor C3 becomes b-+ as mentioned above.
CG -C7-oh-R5-1-1-1-C3-h c
The charging voltage is c-
The sum of the type pressure between B EO2 [V] and each charging voltage of capacitors CG and C7, that is, the type pressure between R2 and G E2 [V]
The sum is EO2+E2 [V]. then 0
If the point becomes +EO2[Vl, capacitor C8
As mentioned above, (-4C3-* i -* p
Q −e j →C8−+ C7−h C6−+ l
), the charging voltage is the voltage between c and b EO2 [VI, the charging voltage of capacitor C3 EO2 + E2 [the voltage between VI and P2-0 - R
2 is added to 2EO2[VI. Note that the charging of capacitors C4, C5, C9, and CIO is performed by sequentially transferring the charging voltage of capacitor C8 as described above, so that the charging voltage of each capacitor C4°C5, C9, and CIO is all 2EO2. [Becomes VI. Therefore PI-2
It can be seen that the no-load voltage is output between 2.

次に、P2−0間は無負荷のままとし、PL−22間に
所定の負荷を接続したとする。つまり、負荷抵抗R2は
無限大の抵抗値を存し、負荷抵抗R1はR−[Ω]なる
抵抗値を有するものとする。
Next, it is assumed that a predetermined load is connected between PL-22 and no load is left between P2 and 0. In other words, the load resistance R2 has an infinite resistance value, and the load resistance R1 has a resistance value of R-[Ω].

そして、R1に流れる電流をIl  [A] 、PI 
−22間に介在されるコンデンサC4,C5,C8゜C
9,CIOの各容量をC[F]とし、入力条件を前述し
た場合と同じにし、一般文献にあるコツククロフト・ウ
オルトン形倍電圧整流回路の動作解析に従って説明する
。まず入力交流電圧の一周期間にコンデンサC10より
負荷抵抗R1に供給される電流■1によって生じる電圧
降下e [VIは次式に示すように表わされる。尚、q
は一周期間に電流■1を供給するための電荷量であり、
Tはその周期(−1/f)である。
Then, the current flowing through R1 is Il [A], PI
-22 capacitors C4, C5, C8°C
9. Let each capacitance of CIO be C[F], the input conditions be the same as in the case described above, and the description will be made according to an operation analysis of a Kotscroft-Walton type voltage doubler rectifier circuit in a general literature. First, the voltage drop e[VI caused by the current 1 supplied from the capacitor C10 to the load resistor R1 during one cycle of the input AC voltage is expressed as shown in the following equation. In addition, q
is the amount of charge to supply current ■1 during one period,
T is its period (-1/f).

このコンデンサCIOに生じる電荷低減は毎周期コンデ
ンサC5より補給される。したがってコンデンサC5の
一周期間に生じる電圧降下もe [VIとなる。次にコ
ンデンサC9は毎周期コンデンサC5の電荷供給と負荷
R1への電流供給を行なうので、このコンデンサC9の
電圧降下は2e[VIとなる。このコンデンサC9に電
荷を補給するのはコンデンサC4なので、コンデンサC
4の一周期期間の電圧降下は2e[VIである。同様に
コンデンサC8はC4への電荷供給と負荷R1への電流
供給を行なうため、3e[VIの電圧降下を生じる。そ
して、このコンデンサC8はコンデンサC3から電荷が
補給される。ここまでの動作は通常の逓倍段数3のコツ
ククロフト・ウオルトン形倍電圧整流回路の動作と全く
同じである。
This charge reduction generated in capacitor CIO is replenished by capacitor C5 every cycle. Therefore, the voltage drop occurring during one period of the capacitor C5 is also e[VI. Next, since the capacitor C9 supplies charge to the capacitor C5 and current to the load R1 every cycle, the voltage drop across the capacitor C9 becomes 2e[VI. Capacitor C4 supplies charge to capacitor C9, so capacitor C
The voltage drop during one cycle of 4 is 2e[VI. Similarly, since capacitor C8 supplies charge to C4 and current to load R1, a voltage drop of 3e[VI occurs. This capacitor C8 is replenished with charge from the capacitor C3. The operation up to this point is exactly the same as that of a normal Kotscroft-Walton type voltage doubler rectifier circuit having three multiplier stages.

ところが、このコンデンサC3から08への電荷供給が
行われる場合の動作を考えると、電流路にコンデンサC
B、C7が介在するため、その電荷はC6,C7にも供
給される。したがって03から08へ3eの電圧変化に
相当する電荷が供給されれば、b−j間に生じる電圧変
化は9eとなる。逆に言えば、b−j間に9eなる電圧
降下が生じていなければコンデンサC8が必要とする電
荷量の供給ができないことになる。しかしながら、コン
デンサC6,C7は無負荷となるので、ここに電圧降下
は生じ得ない。したがってこの9eなる電圧降下は全て
コンデンサC8において生じなければならない。このた
め、コンデンサC8は負荷R1及びコンデンサC4への
電荷供給終了時には9eの電圧降下を生じ、コンデンサ
C3からの電荷補給完了時には6eの電圧降下を生じた
状態となる。すなわち、コンデンサC8は通常のコツク
クロフト・ウオルトン形整流回路の場合に比べて6eだ
け余分に電圧降下を生じることになる。
However, when considering the operation when charge is supplied from capacitor C3 to 08, capacitor C is added to the current path.
Since B and C7 are present, the charge is also supplied to C6 and C7. Therefore, if a charge corresponding to a voltage change of 3e is supplied from 03 to 08, the voltage change occurring between bj will be 9e. Conversely, unless a voltage drop of 9e occurs between b and j, the capacitor C8 will not be able to supply the required amount of charge. However, since capacitors C6 and C7 are unloaded, no voltage drop can occur here. Therefore, all of this 9e voltage drop must occur across capacitor C8. Therefore, the capacitor C8 has a voltage drop of 9e when the charge supply to the load R1 and the capacitor C4 is completed, and a voltage drop of 6e when the charge supply from the capacitor C3 is completed. That is, the capacitor C8 causes an additional voltage drop of 6e compared to the case of a normal Kotscroft-Walton type rectifier circuit.

また、コンデンサC4,C5,C9,CIOへの電荷は
コンデンサC8から転送されるので、全て6eだけ電圧
降下が増加することになる。したがって、負荷R1への
出力電圧は18eだけ電圧降下が増大したことになる。
Further, since the charges to capacitors C4, C5, C9, and CIO are transferred from capacitor C8, the voltage drop in all of them increases by 6e. Therefore, the voltage drop in the output voltage to the load R1 has increased by 18e.

この18eなる電圧降下は負荷R2に係る逓倍段数とR
1に係る逓倍段数の二乗の積にeを乗じた値である。こ
のため、Pi−22間の出力電圧Elは次式のように表
わすことができる。但し、この区間での逓倍段数を01
で示す。この実施例の場合、n1=3である。
This voltage drop of 18e is determined by the number of multiplication stages related to load R2 and R
It is the value obtained by multiplying the product of the square of the number of multiplication stages related to 1 by e. Therefore, the output voltage El between Pi and 22 can be expressed as in the following equation. However, if the number of multiplication steps in this section is 01
Indicated by In this example, n1=3.

Cr    ・・・(3) 尚、(1)式、(2)式共に、その式が出力をほぼ正確
に算出し得ることが実験及び電算機シミュレーションに
よって確められている。
Cr (3) It has been confirmed through experiments and computer simulations that both equations (1) and (2) can calculate the output almost accurately.

次に、R1−R−[Ω]、R2−ooの条件でのP2−
0間の電圧について考えると、0点が+E02となった
ときC→C3→i→DB−j→C8−C7−CB→bの
順に電流が流れるため、1個のコンデンサについて3e
だけ電圧変化が生じる。
Next, P2- under the conditions of R1-R-[Ω] and R2-oo
Considering the voltage between 0 and 0, when the 0 point becomes +E02, the current flows in the order of C → C3 → i → DB-j → C8-C7-CB → b, so 3e for one capacitor
voltage change occurs.

したがってコンデンサC6,’C7はそれぞれ3eだけ
逆充電されるので、P2−0間の電圧は6eだけ無負荷
時電圧より上昇する。次いでa点が−Eとなれば、b−
4CB→C7→h→D5→1−4C3−aの順に、上記
同様1個のコンデンサについて3eたけ電圧変化が生じ
る。したがってコンデンサC3,Chi、C7のいずれ
も無負荷時電圧に復帰することになる。これらの考察は
いずれも実験及び電算機シミュレーションによって確認
されている。以上のことから、P2−0間が無負荷であ
れば、Pi−P2間に負荷R1が接続されても電圧リッ
プル的影響は受けるものの、P2−G間電圧はほぼ無負
荷時電圧に保たれることがわかる。
Therefore, since capacitors C6 and 'C7 are each reversely charged by 3e, the voltage between P2-0 rises by 6e from the no-load voltage. Then, if point a becomes -E, b-
Similarly to the above, a voltage change of 3e occurs for one capacitor in the order of 4CB→C7→h→D5→1-4C3-a. Therefore, all of the capacitors C3, Chi, and C7 return to their no-load voltages. All of these considerations have been confirmed by experiments and computer simulations. From the above, if there is no load between P2 and 0, even if load R1 is connected between Pi and P2, there will be a voltage ripple effect, but the voltage between P2 and G will be maintained at almost the no-load voltage. I know that it will happen.

さらに、(1)式、(3)式を比較するとPL−P2間
の負荷電流による電圧降下はやや大になることがわかる
が、この間に係る入力電圧(c−b間電圧)を高めに設
定すれば、負荷電流による電圧降下を補うこともできる
Furthermore, when comparing equations (1) and (3), it can be seen that the voltage drop due to the load current between PL and P2 is somewhat large, but the input voltage (voltage between c and b) related to this period is set high. By doing so, it is possible to compensate for the voltage drop caused by the load current.

第2図に他の実施例を示す。但゛7、第2図において第
1図と同一部分には同一符号を付して示し、その説明を
省略する。すなわち、この多出力多倍圧整流回路は第1
図に示した回路のコンデンサC2を接続点eから切離し
てトランスTの二次巻線W2のC端子に接続し、接続点
fを第3の出力端P3に接続し、P2−23間に負荷抵
抗R2を接続し、P3−0間に負荷抵抗R3を接続した
ものである。この場合も上記実施例と「様に、(1)式
乃至(3)式が成立し、PL−P2間、P2−23間に
関してはR2−1と置換えればよく、P2−23間、P
3−0間に関してはnl =n2−1としてそれぞれ(
1)〜(3)式を適用すればよい。
FIG. 2 shows another embodiment. However, in FIG. 2, the same parts as in FIG. 1 are denoted by the same reference numerals, and the explanation thereof will be omitted. In other words, this multi-output multi-voltage rectifier circuit
The capacitor C2 of the circuit shown in the figure is disconnected from the connection point e and connected to the C terminal of the secondary winding W2 of the transformer T, the connection point f is connected to the third output terminal P3, and a load is applied between P2 and 23. A resistor R2 is connected, and a load resistor R3 is connected between P3-0. In this case as well, as in the above embodiment, equations (1) to (3) hold true, and between PL and P2 and between P2 and 23, it is sufficient to replace them with R2-1, and between P2 and 23, and between P
For between 3-0, nl = n2-1 and (
Equations 1) to (3) may be applied.

したがって、上記のように構成した多出力多倍圧整流回
路を用いれば、複数個の出力端設けても各出力電圧をそ
れぞれ独立に任意の逓倍電圧に設定することができ、し
かも入力端から遠い方の出力端間(図面の実施例ではP
i−P2間またはP2−23間)の負荷電流による電圧
降下も入力端子で補うこともでき、さらに入力電圧を多
用化できるので、出力電圧を逓倍段数による統治を越え
て自由に設定することも可能となる。
Therefore, if a multi-output multi-voltage rectifier circuit configured as described above is used, even if multiple output terminals are provided, each output voltage can be independently set to an arbitrary multiplied voltage, and furthermore, even if multiple output terminals are provided, each output voltage can be set to an arbitrary multiplied voltage. between the output terminals (in the embodiment shown in the drawings, P
It is also possible to compensate for the voltage drop caused by the load current (between i and P2 or between P2 and 23) using the input terminal, and since the input voltage can be used multiple times, the output voltage can be set freely beyond the control of the number of multiplication stages. It becomes possible.

[発明の効果] 以上詳述したようにこの発明によれば、通常のコツクク
ロフト・ウオルトン形倍電圧整流回路にわずかな構成上
の変更を加えるたけで、複数個の出力端から取出される
電圧を逓倍段数によらずに所望の電圧に設定することの
できる多出力多倍圧整流回路を提供することができる。
[Effects of the Invention] As detailed above, according to the present invention, the voltages taken out from a plurality of output terminals can be adjusted by making a slight change in the configuration of an ordinary Kotscroft-Walton voltage doubler rectifier circuit. It is possible to provide a multi-output multiplier rectifier circuit that can set a desired voltage regardless of the number of multiplication stages.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る多出力多倍圧整流回路の一実施
例を示す回路t+’?成図、第2図はこの発明に係る他
の実施例を示す回路構成図である。 A・・・交流電源、T・・・トランス、Wl・・・−次
巻線、W2・・・二次巻線、D1〜DIO・・・ダイオ
ード、01〜CIO・・・コンデンサ、R1−R3・・
・負荷抵抗。
FIG. 1 shows a circuit t+'? which shows an embodiment of the multi-output multiplier rectifier circuit according to the present invention. FIG. 2 is a circuit configuration diagram showing another embodiment of the present invention. A...AC power supply, T...transformer, Wl...-secondary winding, W2...secondary winding, D1~DIO...diode, 01~CIO...capacitor, R1-R3・・・
·Load resistance.

Claims (1)

【特許請求の範囲】[Claims] 第1の交流電圧が印加される第1の入力端と基準電位点
に接続される第2の入力端と前記第1の交流電圧より振
幅の大きい第2の交流電圧が印加される第3の入力端と
複数個のダイオードとこのダイオードの個数と同数のコ
ンデンサと複数個の出力端とを有し、前記複数個のダイ
オードを整流の向きが同じにして直列接続してその一方
端を前記第2の入力端に接続し、前記直列接続された各
ダイオードの一方端及び他方端を含む接続点に対し隣接
する偶数番目の接続点間全てにそれぞれ前記複数個のコ
ンデンサのうち半分のコンデンサを並列接続し、前記偶
数番目の接続点のうち任意の接続点をそれぞれ前記複数
個の出力端と接続し、前記第2の入力端に接続されたダ
イオードの他端を前記残りの半分のコンデンサのうち1
個のコンデンサを介して前記第1の入力端に接続し、前
記出力端と接続される前記偶数番目のダイオード接続点
の次の奇数番目のダイオード接続点をそれぞれ前記残り
のコンデンサのうちコンデンサ1個を介して前記第3の
入力端に接続すると共に他の隣接する奇数番目の接続点
間全てに残りのコンデンサを接続してなることを特徴と
する多出力多倍圧整流回路。
A first input terminal to which a first AC voltage is applied, a second input terminal connected to a reference potential point, and a third input terminal to which a second AC voltage having a larger amplitude than the first AC voltage is applied. It has an input terminal, a plurality of diodes, the same number of capacitors as the diodes, and a plurality of output terminals, the plurality of diodes are connected in series with the same rectification direction, and one end is connected to the half of the plurality of capacitors are connected in parallel between all the even-numbered connection points adjacent to the connection points including one end and the other end of each of the series-connected diodes. any of the even-numbered connection points are connected to the plurality of output terminals, and the other end of the diode connected to the second input terminal is connected to one of the remaining half capacitors. 1
of the remaining capacitors, and the odd-numbered diode connection point next to the even-numbered diode connection point connected to the output terminal is connected to the first input terminal through one capacitor of the remaining capacitors. A multi-output multivoltage rectifier circuit, characterized in that the remaining capacitors are connected to the third input terminal via the third input terminal, and the remaining capacitors are connected between all other adjacent odd-numbered connection points.
JP746286A 1986-01-17 1986-01-17 Multioutput, multivoltage rectifying circuit Pending JPS62166782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP746286A JPS62166782A (en) 1986-01-17 1986-01-17 Multioutput, multivoltage rectifying circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP746286A JPS62166782A (en) 1986-01-17 1986-01-17 Multioutput, multivoltage rectifying circuit

Publications (1)

Publication Number Publication Date
JPS62166782A true JPS62166782A (en) 1987-07-23

Family

ID=11666480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP746286A Pending JPS62166782A (en) 1986-01-17 1986-01-17 Multioutput, multivoltage rectifying circuit

Country Status (1)

Country Link
JP (1) JPS62166782A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5191517A (en) * 1990-08-17 1993-03-02 Schlumberger Technology Corporation Electrostatic particle accelerator having linear axial and radial fields
US5523939A (en) * 1990-08-17 1996-06-04 Schlumberger Technology Corporation Borehole logging tool including a particle accelerator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5191517A (en) * 1990-08-17 1993-03-02 Schlumberger Technology Corporation Electrostatic particle accelerator having linear axial and radial fields
US5325284A (en) * 1990-08-17 1994-06-28 Schlumberger Technology Corporation Electrostatic particle accelerator having linear axial and radial fields
US5523939A (en) * 1990-08-17 1996-06-04 Schlumberger Technology Corporation Borehole logging tool including a particle accelerator

Similar Documents

Publication Publication Date Title
US11022992B2 (en) Voltage regulator
US20180069484A1 (en) Power supply unit and static eliminator
EP3910778A1 (en) Dual output configurable polarity universal buck-boost topology and switching sequence
JP2014007942A (en) Bidirectional power transmission apparatus
US8742832B2 (en) Multi-step charge pump and method for producing multi-step charge pumping
KR20220069057A (en) Suppression of rebalancing currents in switched capacitor networks
JP6526507B2 (en) Step-down circuit and step-down charging circuit using the same
US4675795A (en) Step-up rectifier circuit
JPS62166782A (en) Multioutput, multivoltage rectifying circuit
JP2011050209A (en) Electric double-layer capacitor power supply using intermediate tap in switched capacitor system
JPS62166783A (en) Multioutput, multivoltage rectifying circuit
JP4837023B2 (en) DC / DC power converter
JP6337659B2 (en) 5-level power converter
JP2011050208A (en) Output voltage adjusting device utilizing intermediate tap of switched capacitor system
JP7291592B2 (en) Converter device and its output control method
CN110620504B (en) Power management integrated circuit
JPS6185070A (en) Multioutput double voltage rectifier
JPH0746844A (en) Power supply
RU2690839C1 (en) Reducing capacitor voltage converter
JPH03226265A (en) Electrostatic voltage converting circuit
JP6651910B2 (en) Converter system for solar cells
JPS59149772A (en) Multioutput multiplex rectifying circuit
JPS60131074A (en) Multiple voltage rectifier circuit
JP3230441B2 (en) Multiple voltage rectifier circuit
JPS62147954A (en) Step-up circuit