JPS62166734A - Private power source changer - Google Patents

Private power source changer

Info

Publication number
JPS62166734A
JPS62166734A JP61004975A JP497586A JPS62166734A JP S62166734 A JPS62166734 A JP S62166734A JP 61004975 A JP61004975 A JP 61004975A JP 497586 A JP497586 A JP 497586A JP S62166734 A JPS62166734 A JP S62166734A
Authority
JP
Japan
Prior art keywords
power supply
power
healthy
breaker
bus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61004975A
Other languages
Japanese (ja)
Inventor
良雄 小林
安生 五嶋
薫 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61004975A priority Critical patent/JPS62166734A/en
Publication of JPS62166734A publication Critical patent/JPS62166734A/en
Pending legal-status Critical Current

Links

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、自動的かつ短時間に電源を切替え、安全かつ
安定に燃料供給を行なわせる液化ガス燃料基地の所内電
源切替装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an in-station power supply switching device for a liquefied gas fuel base that automatically switches the power supply in a short time and supplies fuel safely and stably. .

〔従来の技術〕[Conventional technology]

近年、電力需要は増大の一途をたどっており、それに伴
い、発電ユニットも大容量化している6さらに世界的な
エネルギー情勢を反映して、使用燃料も従来の石油から
液化天然ガス(LNG) 、液プロパンガス(LPG)
 、石炭あるいはCOM (石炭・石油混合燃料)など
へと多様化されつつある。これに伴い、これら発電ユニ
ットへの燃料受入基地も大規模なものが建設されるよう
になってきた。
In recent years, the demand for electricity has continued to increase, and power generation units have also increased in capacity.6Furthermore, reflecting the global energy situation, the fuel used has changed from conventional petroleum to liquefied natural gas (LNG), Liquid propane gas (LPG)
, coal or COM (coal/oil mixed fuel). Along with this, large-scale fuel receiving bases for these power generation units have also been constructed.

このうち、LNG、 LPGなどの液化ガス燃料基地に
おいては、受入だLNG、 LPG等の燃料を受入基地
自身で気化し、直接、発電プラントに供給している。
Among these, at liquefied gas fuel terminals such as LNG and LPG, the receiving terminal vaporizes the fuel such as LNG and LPG at the receiving terminal and supplies it directly to the power generation plant.

このため、受入基地側でトラブルが発生すると発電プラ
ントの停止にもつながることが考えられ。
For this reason, if a problem occurs at the receiving terminal, it may lead to the shutdown of the power plant.

基地の運用にあたっては時に高い信頼性が要求されてい
る。
High reliability is sometimes required when operating bases.

このため、一般に液化ガス燃料基地の所内電源構成は第
3図に示すように2つの系統からなる2系統受電力式が
採用されており、一方の系統において事故が発生した場
合や無警告で停電が起こった場合にも故障側電源を切離
し、母線連絡しゃ断器を投入しさえすれば自動的かつ短
時間に電源が切替えられる方法がとられている。自動的
がっ短時間に電源を切替える方法としては、系統におい
て故障が発生した場合に故障系をしゃ断し、短時間の間
に他の健全側電源に系統を切替える瞬時切替方式、健全
側電源電圧と故障側の残留電圧の位相差がある許容範囲
内(例えば位相差20°以内)になったとき、他の健全
側電源に切替える位相検出切替方式、故障側の残留電圧
が規定値、例えば30%以下になったことを低電圧検出
リレーが検出し、健全側電源に切替える低電圧切替方式
又は。
For this reason, the on-site power supply configuration of liquefied gas fuel bases generally adopts a two-system power receiving system consisting of two systems as shown in Figure 3, and if an accident occurs in one system or there is a power outage without warning, a power outage occurs. Even if this occurs, the power supply can be switched automatically and quickly by simply disconnecting the faulty power supply and turning on the busbar connection breaker. Methods for automatically switching the power supply in a short period of time include the instantaneous switching method, which shuts off the faulty system when a failure occurs in the system, and switches the system to another healthy power source in a short period of time, and the healthy side power supply voltage. The phase detection switching method switches to another healthy power supply when the phase difference between the residual voltage on the faulty side and the faulty side falls within a certain allowable range (e.g., phase difference within 20°), and the residual voltage on the faulty side is a specified value, e.g. 30°. A low voltage switching method in which a low voltage detection relay detects that the voltage has dropped below % and switches to the healthy power supply.

故障側の残留電圧がある規定値5例えば定格電圧値の3
0%以下に到達するまでの最適時間をあらかじめ計測し
ておき、限時リレーでその時間プラス余裕時間だけ待機
させ、その後健全側電源に切替える限時停電切替方式等
が採用されている。
Specified value 5 with residual voltage on the faulty side For example, rated voltage value 3
A timed power outage switching method is adopted in which the optimal time for the power to reach 0% or less is measured in advance, a timed relay is used to wait for that time plus a margin time, and then the power is switched to the healthy power source.

一方、液化ガス燃料基地の場合にはポンプ負荷等、慣性
モーメントGO,が小さい補機が多い為に、受電系統に
故障が発生した場合には、母線の残留電圧の変化、位相
の変化が従来の火力発電プラント等と比較し、非常に早
いスピードで変化するという特性がある。従って、ポン
プ、モータ等に損傷を与えることなく健全側電源に安全
に切替えるためには、瞬時切替方式及び位相確認による
位相検出切替方式は不可能であることがわかっている。
On the other hand, in the case of liquefied gas fuel bases, there are many auxiliary equipment such as pump loads with small moment of inertia GO, so if a failure occurs in the power receiving system, changes in the residual voltage of the bus bar and changes in phase will occur as usual. Compared to thermal power plants, etc., they have the characteristic of changing at an extremely rapid speed. Therefore, in order to safely switch to a healthy power source without damaging the pump, motor, etc., it has been found that the instantaneous switching method and the phase detection switching method using phase confirmation are impossible.

又、限時停電切替方式は低電圧切替方式に比べ、停電時
間が長くなること、残留電圧の特性は負荷構成や系統の
事故(故障)の様相によっては大幅に変化する為、常に
効果的な結果が得られるとは限らないため、あまり採用
の方向にはない。従って、液化ガス燃料基地の場合には
、低電圧切替方式による健全側電源への切替が主流をな
しているといっても過言ではない。
In addition, the timed power outage switching method requires longer power outages than the low voltage switching method, and the residual voltage characteristics vary significantly depending on the load configuration and the nature of the system accident (failure), so it is not always possible to obtain effective results. Since it is not always possible to obtain the following, it is not likely to be adopted. Therefore, it is no exaggeration to say that in the case of liquefied gas fuel bases, switching to a healthy power source using a low voltage switching method is the mainstream.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、液化ガス燃料基地等の場合には、前述の
通り燃料を受入基地自身で気化し、直接、発電プラント
等に供給している為、故障が起きた場合にも速やかに電
源を復旧することが求められている。述べるまでもなく
、速やかな電源復旧が行なわれなかった場合には、気化
器用海水ポンプ等が停止してしまい。燃料が気化できな
くなり。
However, in the case of liquefied gas fuel bases, etc., as mentioned above, the fuel is vaporized at the receiving base and directly supplied to the power generation plant, etc., so it is necessary to quickly restore power in the event of a failure. is required. Needless to say, if power is not restored promptly, seawater pumps for the vaporizer, etc. will stop working. The fuel cannot be vaporized.

燃料基地のトリップ、しいては、これら気化した燃料の
供給を受けている発電プラントまでがトリップしてしま
うという重大な事故に至ることもある。低電圧切替方式
が液ガス燃料基地の場合の電源切替方式の主流になって
いるとは言うものの。
This may lead to a serious accident in which the fuel station or even the power plant that is supplied with these vaporized fuels is tripped. Although it is said that the low voltage switching method is the mainstream power supply switching method in the case of liquid gas fuel bases.

この低電圧切替方式にも問題がある。すなわち。This low voltage switching method also has problems. Namely.

低電圧切替方式は前述の通り、系統に事故が起きた場合
に、故障側の残留電圧が規定値、例えば30%以下にな
ったことを低電圧検出リレーで検出し、健全側電源母線
と連絡している連絡しゃ断器を投入することによって電
源を復旧させようとするものであるが、母線連絡しゃ断
器投入時には事故系の母線に連なっている補機用の電動
機にはIP、U。
As mentioned above, in the case of a fault in the power grid, the low voltage switching method uses a low voltage detection relay to detect when the residual voltage on the faulty side has fallen below a specified value, for example 30%, and communicates with the healthy power supply bus. The system attempts to restore power by turning on the bus line breaker, but when the bus line line breaker is turned on, the IP and U motors for auxiliary equipment connected to the faulty bus line are activated.

前後の電圧が印加されることになり、母線連絡しゃ断器
で接続されている健全側電源の変圧器や所内母線等の系
統構成機器には大きなインラッシュ電流が流れ、場合に
よっては液化ガス燃料基地のシステムトリップに至るこ
ともある。そこで、液化ガス燃料基地の場合にはシステ
ムを運転継続するのに必要最少限の補機、例えば気化器
海水ポンプ用の電動機の他は事故系の解列と同時に強制
的に母線から解列させ、健全側の系統構成機器に過大な
インラッシュ電流が流れるのを防止することが必要であ
る。
Voltages will be applied before and after the bus, and a large inrush current will flow through the system components such as the transformer of the healthy power supply connected to the busbar connection breaker and the station busbar, and in some cases, the liquefied gas fuel base This may result in a system trip. Therefore, in the case of a liquefied gas fuel base, the minimum auxiliary equipment necessary to continue operating the system, such as the electric motor for the vaporizer seawater pump, is forcibly disconnected from the bus line at the same time as the accident system is disconnected. It is necessary to prevent excessive inrush current from flowing to the system components on the healthy side.

一方、液化ガス燃料基地の燃料気化用の海水ポンプ等は
可能な限り早い時間、すなわち回転数が落ち込まず流量
が止まらないうちに電源を復旧してやる必要があること
から、事故系の電源が無くなったことを低電圧検出リレ
ーで検出後は即、他の補機は選択的に負荷しゃ断を行な
うような構成とする必要がある。
On the other hand, power to the seawater pumps for fuel vaporization at the liquefied gas fuel base needed to be restored as soon as possible, that is, before the rotational speed dropped and the flow rate stopped, so power was lost due to the accident. Immediately after this is detected by the low voltage detection relay, other auxiliary equipment must be configured to selectively cut off the load.

本発明は上記の如き不具合に鑑み、電力系統の故障時に
も健全系電源に影響を与えることなく、速やかに故障系
を除去し、自動的かつ短時間に健全系電源に電源を切替
え、液ガス燃料基地が安定かつ安全に運転継続が可能な
所内電源切替装置を提供することを目的とする。
In view of the above-mentioned problems, the present invention has been developed to promptly remove the faulty system without affecting the healthy system power supply even in the event of a power system failure, automatically switch the power supply to the healthy system power supply in a short time, and to The purpose of the present invention is to provide an in-station power supply switching device that allows a fuel base to continue operating stably and safely.

〔問題点を解決するための手段〕[Means for solving problems]

電源を共通母線により受電し、所内においてこの電源を
2系列化し、片系列の電源が故障した場合に故障系負荷
の選択負荷しゃ断を行なうとともに母線連絡しゃ断器を
介して健全系の母線から電源の供給を受けるように構成
した所内電源切替装置において、選択負荷しゃ断のため
にタイマーを附加し、自動的かつ短時間に健全系電源に
母線を切替えることを特徴とする。
Power is received through a common bus, and this power supply is divided into two systems within the plant. When one system's power supply fails, the faulty load is selectively cut off, and the power is disconnected from the healthy bus via a busbar connection breaker. An in-station power supply switching device configured to receive power supply is characterized in that a timer is added for selective load cutoff, and the busbar is automatically and quickly switched to a healthy system power supply.

〔作 用〕[For production]

このため本発明においては、低電圧検出リレーの動作だ
けでは選択負荷しゃ断は実施せず、母線連絡しゃ断器が
投入されるよりも短い待機時間をもつタイマーを附加し
てやり、このタイマーの動作と低電圧検出リレーの動作
ではじめて選択負荷しゃ断を実施し、健全系電源には可
能な限り影響を与えることなく速やかに故障系を除去し
、自動的かつ短時間に健全系電源に電源を切替え、液化
ガス燃料基地が安定かつ安全に運転が継続できる構成と
している。
For this reason, in the present invention, the selective load is not cut off by the operation of the low voltage detection relay alone, but a timer is added which has a shorter standby time than when the busbar connection breaker is turned on, and the operation of this timer and the low voltage Selective load cutoff is performed only when the detection relay operates, quickly removes the faulty system without affecting the healthy power supply as much as possible, automatically switches the power supply to the healthy power supply in a short time, and removes the liquefied gas. The fuel base is configured so that it can continue to operate stably and safely.

〔実施例〕〔Example〕

第1図及び第2図を用いて本発明の一実施例を説明する
。第1図は、低電圧検出リレーに母線連絡しゃ断器の″
閉″動作よりも短い待機時間を持つタイマーを附加した
制御ブロック図であり、第2図は、第1図のブロック図
において実際に母線切替が実施された場合の時間的経過
に伴う電圧挙動と各種構成機器の動作特性を説明したも
のである。TBは本発明の一構成要素であるタイマーを
意味する。
An embodiment of the present invention will be described using FIGS. 1 and 2. Figure 1 shows the connection between the low voltage detection relay and the busbar breaker.
This is a control block diagram with a timer added that has a shorter standby time than the "closing" operation, and Figure 2 shows the voltage behavior over time when bus bar switching is actually performed in the block diagram of Figure 1. This is a description of the operating characteristics of various component devices. TB means a timer which is one component of the present invention.

第3図、第4図及び第5図を用いて、これら従来技術の
構成について説明する。第3図は液化ガス燃料基地の所
内電源構成図で、1は電源、2は共通母線、3はA系統
母線、4はB系統母線である。52BTはA系又はB系
統の事故のとき、それぞれの受電しゃ断器52AL又は
52BLを開にし、健全側の電源を受けられるようにし
た母線連絡しゃ断器である。11はA系統の共通母線し
ゃ断器、12はA系統の昇降用変圧器、21はB系統の
共通母線しゃ断器、22はB系統の昇降用変圧器である
。14及び24は液化ガス燃料基地の負荷であり、14
はA系統、24はB系統の負荷である。13及び23は
これらの負荷の始動、停止を行なうための負荷しゃ断器
であり、この負荷しゃ断器13及び23を介して負荷1
4及24は、それぞれA系統並びにB系統の母線3又は
4に接続されている。15及び25は母線3及び4の電
圧を変成するための変成器であり、27A及び27Bは
A系統及びB系統母線3,4の低電圧検出リレーである
。第4図は、−例としてA系統の変圧器12の上流側に
於て事故が起きた場合の、母線連絡しゃ器52BT及び
、母線切替に伴う選択負荷しゃ断の条件をブロック図で
説明したものである。又、第5図は、上述ブロック図に
於て、実際に母線切替が実施された場合の時間経過に伴
う電圧挙動と。
The configurations of these conventional techniques will be explained using FIGS. 3, 4, and 5. FIG. 3 is a diagram showing the internal power supply configuration of the liquefied gas fuel base, where 1 is the power supply, 2 is the common bus, 3 is the A system bus, and 4 is the B system bus. 52BT is a busbar communication breaker that opens the respective power receiving circuit breaker 52AL or 52BL in the event of an accident in the A system or the B system so that power can be received from the healthy side. 11 is a common bus breaker for the A system, 12 is a lifting transformer for the A system, 21 is a common bus breaker for the B system, and 22 is a lifting transformer for the B system. 14 and 24 are the loads of the liquefied gas fuel base;
is the load of the A system, and 24 is the load of the B system. 13 and 23 are load breakers for starting and stopping these loads.
4 and 24 are connected to the bus 3 or 4 of the A system and B system, respectively. 15 and 25 are transformers for transforming the voltages of the buses 3 and 4, and 27A and 27B are low voltage detection relays for the A system and B system buses 3 and 4. FIG. 4 is a block diagram explaining, as an example, the busbar connection breaker 52BT and the conditions for selective load cutoff associated with busbar switching in the event that an accident occurs on the upstream side of the transformer 12 of the A system. It is. Moreover, FIG. 5 shows the voltage behavior over time in the case where busbar switching is actually performed in the above-mentioned block diagram.

各種構成機器の動作特性を説明したものである。This explains the operating characteristics of various component devices.

第3図に示す様に電源1を共通母線2により受電し、所
内においてこの電源をA系統、B系統と2系列化して液
化ガス燃料基地の電源を構成し、安定した基地の運用を
しているしきにA系統の変圧器12もしくは、その上流
側で31G(3線地18)事故といった電源故障が起き
た場合について詳細に説明する。A系統の変圧器12も
しくはその上流側で3LGの様な故障が起こると、第5
図に示す如く、A系、B系の所内母線電圧3,4は、故
障発生(to)と同時に零に落ち、A系統の共通母線し
ゃ断器11が″開″するまでの間(t□まで)は故障継
続時間となり、所内母線電圧は零のまま回復しない。
As shown in Figure 3, a power source 1 is received through a common bus 2, and within the station, this power source is divided into two systems, A system and B system, to constitute the power source of the liquefied gas fuel base, and to ensure stable operation of the base. A case in which a power supply failure such as a 31G (three-wire ground 18) accident occurs at the A-system transformer 12 or its upstream side will be described in detail. If a failure like 3LG occurs in transformer 12 of system A or its upstream side, the 5th
As shown in the figure, the station bus voltages 3 and 4 of the A system and B system drop to zero at the same time as the failure occurs (to), and remain until the common bus breaker 11 of the A system opens (until t□). ) is the duration of the failure, and the station bus voltage remains at zero and does not recover.

一方5共通母線しゃ断器11がパ開″となり、故障がク
リアーされると、健全系であるB系統の母線電圧4は、
故障前の値にもどる。しかしながら、故障系であるA系
統は負荷の残留電圧により、ある値までは回復するが、
共通母線しゃ断器11がパ開″されたことにより電源が
無くなる為に、負荷の残留電圧は負荷の回転数変化とと
もに減衰していってしまう、又、A系統の低電圧検出リ
レー27Aは故障発生とともに動作をし、第4図に示す
如く。
On the other hand, when the 5 common bus breaker 11 is opened and the fault is cleared, the bus voltage 4 of the B system, which is a healthy system, is
Return to the value before the failure. However, the faulty system A recovers to a certain value due to the residual voltage of the load, but
When the common bus circuit breaker 11 is opened, the power is lost, and the residual voltage of the load attenuates as the load rotation speed changes.Also, the low voltage detection relay 27A of the A system malfunctions. As shown in FIG.

自系統であるA系統の負荷しゃ断器13を選択的にしゃ
断するとともに、共通母線しゃ断器開″の条件とのAN
D条件により、ある一定の時間をもたせタイマーTAに
よって、健全側よりの電源であるB系統より電源供給を
受けることになる。すなわち、共通母線しゃ断器11と
低電圧検出リレー27Aの動作により、負荷の選択しゃ
断をするとともに、タイマーT^を介して、母線連絡し
ゃ断器52BTを゛′閉″シて、健全系であるB系統か
ら電源を受けるわけである。選択負荷しゃ断が行なわれ
、母線連絡しゃ断器52BTが″閉″されると、故障系
であるA系統の母線3の電圧も、故障前の値に復帰する
The load breaker 13 of the A system, which is the own system, is selectively cut off, and the AN with the condition that the common bus breaker is opened is set.
According to condition D, power is supplied from the B system, which is the power source from the healthy side, after a certain period of time and the timer TA is activated. That is, by operating the common bus breaker 11 and the low voltage detection relay 27A, the load is selectively cut off, and the bus connection breaker 52BT is "closed" via the timer T^, so that B is in a healthy system. When the selective load cutoff is performed and the busbar communication breaker 52BT is "closed", the voltage of the busbar 3 of the A system, which is the faulty system, also returns to the value before the fault.

尚、第4図及び第5図並びに説明からも故障系(A系統
)の受電しゃ断器52ALについては説明していないが
、この様なシステムにおいては、母線共通しゃ断器11
の″開″と同時に、この受電しゃ断器52ALも″開″
′されるので省略している。
Although the power reception breaker 52AL of the failure system (A system) is not explained from FIGS. 4 and 5 and the explanation, in such a system, the bus common breaker 11
At the same time as "opening", this power receiving breaker 52AL is also "opening".
', so it is omitted.

しかしながら、故障がt6時に発生するとともに第5図
に示す如く、現システムに於ては健全系であるI3系統
も、故障がクリアされるまでの間(時間tよ)は電圧が
零となり、B系統母線に接続された低電圧検出リレー2
7Bが動作をし、健全系の母線4に接続された負荷まで
が即、選択的にしゃ断されてしまう。この様な状態にな
ると、液化ガス燃料基地の場合、大部分の負荷が、解列
されたことになってしまい、基地としての機能がマヒし
、基地のトリップ、しいては基地より気化したガスの供
給を受けている発電所までがトリップしてしまうという
危険性がある。
However, when the fault occurs at time t6, as shown in Figure 5, the voltage of the I3 system, which is a healthy system in the current system, becomes zero until the fault is cleared (at time t), and the B Low voltage detection relay 2 connected to the grid bus
7B operates, and even the loads connected to the healthy bus 4 are immediately and selectively cut off. In the case of a liquefied gas fuel base, most of the load will be disconnected, paralyzing the base's functions, causing the base to trip, and causing vaporized gas to be removed from the base. There is a risk that even the power plants that receive the supply will trip.

上述したごとく、A系統の変圧器12又は、その上流側
で故障が起き、共通母線しゃ断器11をパ開″にするま
では故障は継続する。しかしながら、共通母線しゃ断器
11を″開″とすると健全系であるB系統はもとの状態
に復帰する。しかしながら母線3の電圧は共通母線しゃ
断器11のパ開″及び受電しゃ断器52ALがパ開″に
なっても母線連絡しゃ断器52BTが動作完了するまで
は、もとの電圧には回復しない。一方、母線切替時は従
来技術でも説明した如く、全負荷を接続したままでは健
全系に大きなインラッシュ電流が流れ、機器に損傷を与
えるばかりではなく、プラントトリップに至る場合も考
えられる為、可能な限り負荷を選択し、故障系の解列と
同時に選択負荷しゃ断を実施しておく必要がある。そこ
で本発明に於ては、母線連絡しゃ断器52BTの動作が
完了するよりも時間的に短かく。
As mentioned above, the failure will continue until a failure occurs in the A-system transformer 12 or its upstream side and the common bus breaker 11 is opened.However, if the common bus breaker 11 is opened. Then, the B system, which is a healthy system, returns to its original state. However, even if the common bus breaker 11 is open and the receiving circuit breaker 52AL is open, the voltage on the bus 3 remains unchanged even if the bus breaker 52BT is open. The original voltage will not be restored until the operation is completed.On the other hand, as explained in the conventional technology when switching the bus, if the full load is left connected, a large inrush current will flow through the healthy system, damaging the equipment. In addition, it is possible that the plant may trip, so it is necessary to select the load as much as possible and perform selective load shedding at the same time as the failure system is disconnected.Therefore, in the present invention, the bus It is shorter in time than it takes for the operation of the communication breaker 52BT to be completed.

しかも、事故系クリア時間よりも時間的に長いタイマー
TBを附加している。すなりち、事故発生1aでは電圧
が零となる為、低電圧検出リレー27A。
Furthermore, a timer TB is added which is longer than the accident clearing time. In this case, the voltage becomes zero when the accident occurs 1a, so the low voltage detection relay 27A is activated.

27Bは両方とも動作をしてしまうが、事故系をクリア
ー(解列)すると健全系であるB系列にある低電圧検出
リレーは自動的にもとの不動作状態に復帰する。そこで
、上述の様なタイマーTBを附加してやると、第2図に
示すごとく、故障系は選択負荷しゃ断を母線連絡しゃ断
器の投入が完了するt2までに実施終えるが、健全系で
あるB系統は選択負荷しゃ断を実施しないですむ。従っ
て1片系列とは言うものの基地の運用は継持できるわけ
である。
Both 27B operate, but when the fault system is cleared (disconnected), the low voltage detection relay in the B series, which is a healthy system, automatically returns to its original non-operational state. Therefore, by adding the timer TB as described above, as shown in Fig. 2, the faulty system will complete selective load shedding by t2, when the busbar connection breaker is completed, but the healthy system B will There is no need to perform selective load shedding. Therefore, although it is a single branch, the operation of the base can be continued.

従来技術の説明並びに発明の一実施例ではA系統側の故
障について説明したが、二重化された別の系列(B系統
)の変圧器事故等でも同様である。
In the explanation of the prior art and the embodiment of the invention, a failure on the A system side has been described, but the same applies to a transformer failure in another duplexed system (B system).

又、母線連絡しゃ断器の投入条件してタイマーTAが挿
入されているが、これは電圧が再復帰してこないことの
確認であり、第6図に示す様に低電圧検出リレーの後に
TAなる待機時間を持つタイマーを介して母線連絡しゃ
断器に投入指令を出す回路においても、本発明の様に、
低電圧検出リレーの動作に、T8なる待機時間をもつタ
イマーを附加してやれば同じ効果が期待できることは言
うまでもない。
In addition, a timer TA is inserted as a condition for turning on the busbar connection breaker, but this is to confirm that the voltage does not return again, and as shown in Figure 6, the TA is inserted after the low voltage detection relay. Even in a circuit that issues a power-on command to a busbar communication breaker via a timer with a standby time, as in the present invention,
It goes without saying that the same effect can be expected by adding a timer with a standby time of T8 to the operation of the low voltage detection relay.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、二重化された交流
電源の片系列に3LG (3線地絡)の様な重大事故が
発生しても、健全系統電源には可能な限り影響を与える
ことなく、自動的かつ短時間に故障系を健全系電源に切
替えることが可能となり、液化ガス燃料基地のプラント
トリップといった重大事故まで未然にふせぐ所内電源切
替装置を提供できる。
As explained above, according to the present invention, even if a serious accident such as a 3LG (3-wire ground fault) occurs in one line of a duplicated AC power supply, it will not affect the healthy system power supply as much as possible. This makes it possible to automatically and quickly switch from a faulty system to a healthy system power supply without any problems, and it is possible to provide an in-station power supply switching device that prevents serious accidents such as plant trips at liquefied gas fuel bases.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の一実施例を説明する為の構
成図およびタイムチャート、第3図は液化ガス燃料基地
の所内電源構成を示す図、第4図及び第5図は従来方式
による低電圧母線切替方式を説明するための構成図およ
びタイムチャート、第6図は従来方式を説明するための
構成図である。 1・・・電源       2・・・共通母線3.4・
・・A、B系統変圧器 11.21・・・A、B系統共通母線しゃ断器12,2
2・・・A、B系統変圧器 52AL、52BL・・・受電しゃ断器52BT・・・
母線連絡しゃ断器 i:+、z3・・・負荷しゃ断器 14.24・・・負
荷27A 、 27B・・・A、B系統低電圧検出リレ
ーTA、TB・・・タイマー 代理人 弁理士 則 近 憲 佑 同  三俣弘文 第1図 第4図 第6図
1 and 2 are configuration diagrams and time charts for explaining one embodiment of the present invention, FIG. 3 is a diagram showing the internal power supply configuration of a liquefied gas fuel base, and FIGS. 4 and 5 are conventional FIG. 6 is a block diagram and a time chart for explaining the low voltage bus switching method according to the method, and FIG. 6 is a block diagram for explaining the conventional method. 1...Power supply 2...Common busbar 3.4.
...A, B system transformer 11.21...A, B system common bus breaker 12, 2
2...A, B system transformers 52AL, 52BL...Power receiving circuit breaker 52BT...
Busbar connection breaker i: +, z3...Load breaker 14.24...Load 27A, 27B...A, B system low voltage detection relay TA, TB...Timer agent Nori Chika, patent attorney Yudo Hirofumi Mitsumata Figure 1 Figure 4 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 電源を共通母線により受電し、所内においてこの電源を
2系列化し、片系列の電源が故障した場合に故障系負荷
の選択負荷しゃ断を行なうとともに母線連絡しゃ断器を
介して健全系の母線から電源の供給を受けるように構成
した所内電源切替装置において、選択負荷しゃ断のため
にタイマーを附加し、自動的かつ短時間に健全系電源に
母線を切替えることを特徴とする所内電源切替装置。
Power is received through a common bus, and this power supply is divided into two systems within the plant. When one system's power supply fails, the faulty load is selectively cut off, and the power is disconnected from the healthy bus via a busbar connection breaker. An in-station power supply switching device configured to receive power supply, characterized in that a timer is added for selective load cutoff, and the busbar is automatically and quickly switched to a healthy power source.
JP61004975A 1986-01-16 1986-01-16 Private power source changer Pending JPS62166734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61004975A JPS62166734A (en) 1986-01-16 1986-01-16 Private power source changer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61004975A JPS62166734A (en) 1986-01-16 1986-01-16 Private power source changer

Publications (1)

Publication Number Publication Date
JPS62166734A true JPS62166734A (en) 1987-07-23

Family

ID=11598597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61004975A Pending JPS62166734A (en) 1986-01-16 1986-01-16 Private power source changer

Country Status (1)

Country Link
JP (1) JPS62166734A (en)

Similar Documents

Publication Publication Date Title
WO2021022949A1 (en) Looped network controller and control method
CN218243096U (en) Power supply control loop of high-temperature reactor emergency bus and power system
CN213754084U (en) Dual-power supply system adopting power supplies with different grounding modes
JPS62166734A (en) Private power source changer
JPS62166735A (en) Private power source changer
CN206727427U (en) Medium voltage switchgear equipment
JP3122553B2 (en) Power line switching equipment for three-phase distribution lines
CN110661176A (en) Emergency power supply device for nuclear power plant
JP3817921B2 (en) Grid interconnection device
CN219999093U (en) Main and standby power supply automatic conversion control device for dust removal system and dust removal system
JPS6173520A (en) Private power source switching device
CN111682512B (en) Circuit breaker body three-phase inconsistent protection misoperation prevention loop and system
JPS62163527A (en) Private power source changer
CN214590762U (en) Power supply control device for vehicle-mounted water purifying equipment
CN113726000B (en) Power supply device and power supply method thereof
CN216751305U (en) Control circuit of oil pump and control power supply of high-pressure cooling machine of data center
CN207184151U (en) Computer line backup auto-activating device with anti-tripping function
CN106856298A (en) Medium voltage switchgear equipment
JP2779045B2 (en) In-plant power switching method
Wu et al. Active boosting protection technology for distribution networks with single-phase ground faults without power outage
Xiong et al. Study on protection logic of last circuit breaker in ultra high voltage converter station
CN115940384A (en) Spare power automatic switching control circuit of power supply
JPS5818866B2 (en) Denryokukeito no Jikohakiyuuboshisouchi
JPH0510512Y2 (en)
CN201149986Y (en) New type neutral line-cutting protector