JPS62166093A - Low alloy steel wire having excellent drawability - Google Patents
Low alloy steel wire having excellent drawabilityInfo
- Publication number
- JPS62166093A JPS62166093A JP518686A JP518686A JPS62166093A JP S62166093 A JPS62166093 A JP S62166093A JP 518686 A JP518686 A JP 518686A JP 518686 A JP518686 A JP 518686A JP S62166093 A JPS62166093 A JP S62166093A
- Authority
- JP
- Japan
- Prior art keywords
- alloy steel
- low alloy
- wire
- steel wire
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000851 Alloy steel Inorganic materials 0.000 title claims abstract description 33
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 21
- 238000005096 rolling process Methods 0.000 abstract description 7
- 229910052799 carbon Inorganic materials 0.000 abstract description 6
- 238000010438 heat treatment Methods 0.000 abstract description 6
- 229910045601 alloy Inorganic materials 0.000 abstract description 4
- 239000000956 alloy Substances 0.000 abstract description 4
- 238000001816 cooling Methods 0.000 description 15
- 229910000831 Steel Inorganic materials 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000010959 steel Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 238000003466 welding Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 229910000859 α-Fe Inorganic materials 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000005491 wire drawing Methods 0.000 description 3
- 229910006639 Si—Mn Inorganic materials 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 238000004881 precipitation hardening Methods 0.000 description 2
- 238000010583 slow cooling Methods 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
Landscapes
- Metal Extraction Processes (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は51−Mn系、5i−)4n−Ti系低合金鋼
線材に関し、特に炭酸ガスアーク溶接棒用ワイヤなどに
使用される51−Mn系、51−Mn−Ti系低炭素w
4線材に関し、また上記線材の伸線加工性の改善に関す
る。Detailed Description of the Invention [Field of Industrial Application] The present invention relates to 51-Mn series, 5i-)4n-Ti series low alloy steel wire rods, particularly 51-Mn series used for wires for carbon dioxide arc welding rods. system, 51-Mn-Ti low carbon w
4 wire rod, and also relates to improving the wire drawability of the wire rod.
炭酸ガスアーク溶接棒用ワイヤなどに使用される従来の
低合金鋼線材の組成は、Cが0.03〜0.14重量%
(以下1%は重量%とする) 、Siが0.50〜1.
20%、Mnが1.0〜2.0%で、必要に応じて0.
01〜0゜25%のTi、 0.01〜0.05%のA
旦を含み、残部がFeおよび不可避的に含まれる不純物
からなるものである。The composition of conventional low-alloy steel wire rods used for carbon dioxide arc welding rods is 0.03 to 0.14% by weight of C.
(Hereinafter, 1% is defined as weight %), Si is 0.50 to 1.
20%, Mn is 1.0 to 2.0%, and if necessary 0.
01~0°25% Ti, 0.01~0.05% A
The remainder consists of Fe and unavoidably contained impurities.
上記のような従来の低合金鋼線材は、熱間圧延された後
、0.5〜15°C/secの冷却速度で冷却された場
合、i)島状マルテンサイト、アシュキラーフェライト
組織の発生、ii) Ti化合物の析出による強度レベ
ルの上昇とそのバラツキの増加、という組織的欠陥を有
し、伸線性の劣化、機械的性質の不均一などの聞届を生
じている。このため、従来は、通常の圧延ではそのまま
伸線して最終製品とすることはできず、伸線加工性、機
械的性質の均一性などを確保するために線材もしくは中
間仕上り線において軟化焼鈍処理が必要であった。When the conventional low-alloy steel wire rod as described above is cooled at a cooling rate of 0.5 to 15°C/sec after being hot rolled, i) the formation of island-like martensite and Ashkiller ferrite structures; , ii) It has structural defects such as an increase in the strength level and an increase in its dispersion due to the precipitation of Ti compounds, and there are reports of deterioration of wire drawability and non-uniformity of mechanical properties. For this reason, in the past, wire rods or intermediate finished wires were subjected to softening annealing in order to ensure wire drawing workability and uniformity of mechanical properties. was necessary.
また、最近、制御圧延、制御冷却(徐冷)技術を応用し
て材質の均一化を図ろうとする二三の試みがある(例え
ば、アール・アンド・デー神戸製鋼技報、第35巻、第
2号(1985年4月)、第52頁〜第54頁)、また
一部の試みとして鋼片の低温圧延、熱間圧延材の徐冷法
の採用などにより伸線加工性の改善、材質の均一化を図
ったものが報告されているが、伸線加工性のうえで必須
である。島状マルテンサイト含有率(面精率で示す、以
下同様とする)を2.0%以下に抑えることは完全には
達成されておらず、また熱間圧延の負荷を大きくし生産
性を大きく阻害する点などがあり、焼鈍処理の省略まで
に至っていないのが実情である。Recently, there have been several attempts to make the material uniform by applying controlled rolling and controlled cooling (slow cooling) technologies (for example, R&D Kobe Steel Technical Report, Vol. 35, Vol. No. 2 (April 1985, pp. 52-54), and some attempts have been made to improve wire drawability and make the material uniform by low-temperature rolling of steel slabs and slow cooling of hot-rolled materials. Although there have been reports of cases in which this method has been improved, it is essential in terms of wire drawability. It has not been completely achieved to suppress the island martensite content (indicated by surface accuracy, the same shall apply hereinafter) to 2.0% or less, and it is necessary to increase the load of hot rolling and increase productivity. The reality is that the annealing process has not yet been omitted due to some obstacles.
〔発明が解決しようとする問題点〕
本発明は、上記従来技術の問題点を解消し、熱処理なし
に細径まで伸線し得る低合金鋼線材の提供を目的とする
ものである。[Problems to be Solved by the Invention] It is an object of the present invention to solve the problems of the prior art described above and to provide a low alloy steel wire rod that can be drawn to a small diameter without heat treatment.
上記目的を達成するため1本発明の伸線加工性の優れた
低合金鋼線材は、i ) 0.50 〜1.20%のS
iおよび1,00〜2.00%のMnを含有し且つC量
が0.02%以下で残部が実質的にFeであり、島状マ
ルテンサイトの含有率を1.0%以下として、あるいは
、ii) 0.5Q 〜1.20%のSi、1,00
〜2.00%ノMn8よび0.01〜0.25%のTi
を含有し且つC量が0.01%以下、N量が0.005
%以下で残部が実質的にFeであり、島状マルテンサイ
トの含有率を1.0%以下とするものである。In order to achieve the above objects, the low alloy steel wire rod of the present invention with excellent wire drawability is: i) 0.50 to 1.20% S
i and 1,00 to 2.00% of Mn, and the amount of C is 0.02% or less and the remainder is substantially Fe, and the content of island martensite is 1.0% or less, or , ii) 0.5Q ~ 1.20% Si, 1,00
~2.00% Mn8 and 0.01-0.25% Ti
and the amount of C is 0.01% or less and the amount of N is 0.005
% or less, the remainder is substantially Fe, and the content of island martensite is 1.0% or less.
本発明の低合金鋼線材は、組成を極低炭素化し、島状マ
ルテンサイト含有率を伸線加工性の良好な1%以下にコ
ントロールした組織とすることによって、熱処理なしに
細径まで伸線することを可能にしている。伸線性を良好
とするためには、島状マルテンサイトの含有率を1.0
%以下にすることが必要なのである。通常の圧延時の冷
却速度でも島状マルテンサイトの含有率を1.0%以下
に抑えるためには、線材中のC量を前記の値以下にする
ことが必要である。The low-alloy steel wire rod of the present invention has an ultra-low carbon composition and a structure in which the content of island martensite is controlled to 1% or less, which has good wire drawability, so that it can be drawn to a small diameter without heat treatment. making it possible to do so. In order to improve wire drawability, the content of island martensite should be 1.0.
It is necessary to keep it below %. In order to suppress the content of island martensite to 1.0% or less even at a cooling rate during normal rolling, it is necessary to reduce the amount of C in the wire to the above-mentioned value or less.
島状マルテンサイトの面積率が増加すれば、そのマルテ
ンサイトを起点としてカッピー断線の生じる確率が高く
なり、伸線加工性を著しく低下せしめる0組成を極低炭
素化すると、マルテンサイトの硬さが下り、またその含
有率も低下し、マルテンサイトの含有率が1%以下であ
れば伸線限界も1.hmφ以下となって優れた伸線性が
得られる。If the area ratio of island-shaped martensite increases, the probability of cuppy wire breakage occurring from the martensite increases, and if the zero composition, which significantly reduces wire drawability, is made to have an extremely low carbon content, the hardness of martensite increases. The martensite content also decreases, and if the martensite content is 1% or less, the wire drawing limit is 1. hmφ or less, and excellent wire drawability can be obtained.
本発明の低合金鋼線材における各元素の含有量を前記の
ように定めた理由を以下に述べる。The reason why the content of each element in the low alloy steel wire of the present invention is determined as described above will be described below.
Cは本発明を特徴づける元素で、51−M!1鋼では0
.02%以下であれば、またSi −Kn −Ti#l
テは0.01%以下であれば通常の圧延時の冷却速度で
も、島状マルテンサイトの含有率を1%以下に抑えるこ
とが可能となる。C is an element that characterizes the present invention, and is 51-M! 0 for 1 steel
.. 02% or less, Si -Kn -Ti#l
If Te is 0.01% or less, the content of island martensite can be suppressed to 1% or less even at a normal cooling rate during rolling.
Siは、強力な脱酸元素であり、不純物介在物量を減じ
て溶接金属の強度を高める為には0.50%以上必要で
あるが、多すぎるとフェライトを形成しσ脆化が起こり
易く溶接金属の靭性が低下するので1.20%以下に抑
える必要がある。Si is a strong deoxidizing element, and 0.50% or more is necessary to reduce the amount of impurity inclusions and increase the strength of weld metal, but if it is too large, ferrite will form and σ embrittlement will easily occur. Since the toughness of the metal decreases, it is necessary to suppress it to 1.20% or less.
M nは、Siと同様脱酸効果を有すると共に溶接金属
の強度向上と高温割れ感受性を抑制する作用があり、こ
の作用発揮のためには1.0%以上必要であるが、多す
ぎると溶接金属の延びが劣化する傾向があるので2.0
%以下に抑える必要がある。Like Si, Mn has a deoxidizing effect and also has the effect of improving the strength of the weld metal and suppressing hot cracking susceptibility, and in order to exert this effect, 1.0% or more is required, but if it is too large, welding 2.0 because the elongation of metal tends to deteriorate.
It is necessary to keep it below %.
Tiは、溶接時の入熱増加にともなう溶接金属の強度、
靭性低下の防止および高電流域における溶接アークの軟
質化などのために選択的に必要であり、このために微細
な炭化物を形成して析出硬化を図る作用を得るには0,
01%以上に好ましくは0.05%以上必要であるが、
0.25%を越えると前記した析出硬化による強度レベ
ルが増加してワイヤの製造に伸線性の劣化を招くととも
に、溶接金属のクリープ破断強さを逆に低下させてしま
う。Ti increases the strength of weld metal due to increase in heat input during welding,
It is selectively necessary to prevent a decrease in toughness and to soften the welding arc in a high current range, and for this purpose, 0,
0.01% or more, preferably 0.05% or more is required,
If it exceeds 0.25%, the strength level due to the precipitation hardening described above will increase, leading to deterioration in wire drawability in the manufacture of wire, and conversely decreasing the creep rupture strength of the weld metal.
Nは、51−Mn−Ti鋼において0.005%を越え
るとTiNまたはTiCNの型で析出硬化し、線材の強
度上昇につながるので0.005%以下とした。N was set to 0.005% or less in 51-Mn-Ti steel because if it exceeds 0.005%, precipitation hardening occurs in the TiN or TiCN mold, leading to an increase in the strength of the wire rod.
本発明は、従来技術とは異なり、全く圧延上の負荷の増
大なしに、完全に熱処理を省略できる低合金鋼線材の提
供を可能としたものである。The present invention, unlike the prior art, makes it possible to provide a low-alloy steel wire rod that can completely omit heat treatment without increasing the rolling load at all.
(実施例1)
Si−Mn系低合金鋼線材の熱間圧延後の、線材冷却速
度(900°Cと 500°との間の平均冷却速度)と
ビッカース硬さとの関係を調べた。その結果を第1図に
示す0曲線1は本実施例の場合で、Cが0.01%、S
iが0.87%、Mnが1.70%、Tiが0.002
%で残部が実質的にFeの組成を有するものである。比
較のため、従来の5i−11n系低合金鋼についても調
べ、曲線2,3に示した。(Example 1) The relationship between the wire cooling rate (average cooling rate between 900°C and 500°C) and Vickers hardness after hot rolling of Si-Mn based low alloy steel wire was investigated. The 0 curve 1 shown in FIG. 1 is the case of this example, where C is 0.01% and S
i is 0.87%, Mn is 1.70%, Ti is 0.002
%, and the remainder has a composition of substantially Fe. For comparison, conventional 5i-11n low alloy steel was also investigated and shown in curves 2 and 3.
曲線2はCが0.03%、Siが0.77%、Mnが1
.58%、Tiが0.002%の場合、曲線3はCが0
.08%、Siが 0.77%、にnが 1.64%、
Tiが 0.002%の場合で、いずれも従来例である
。Curve 2 is C 0.03%, Si 0.77%, Mn 1
.. 58% and Ti is 0.002%, curve 3 shows C as 0.
.. 08%, Si 0.77%, Ni 1.64%,
The case where Ti is 0.002% is a conventional example.
曲線1に示される本実施例の51−Mn系低合金鋼は冷
却速度に関係なく低い硬さを示しているが、曲線2,3
に示される従来の材料では冷却速度の上昇に従って硬さ
が増加している。したがって、本実施例の線材は従来の
ものよりも伸線加工性がすぐれていると言える。The 51-Mn-based low alloy steel of this example shown in curve 1 shows low hardness regardless of the cooling rate, but curves 2 and 3 show low hardness regardless of the cooling rate.
In the conventional material shown in , the hardness increases as the cooling rate increases. Therefore, it can be said that the wire rod of this example has better wire drawability than the conventional wire rod.
(実施例2)
実施例1と同様の実験を5i−14n−Ti系低合金w
4線材について行なった。その結果を第2図に示す0曲
線4は本実施例の場合で、Cが0.01%、Siが0.
84%、Mnが1.73%、Tiが0.17%、Nが0
.004%で残部が実質的にFeの組成を有するもので
ある。比較のため、従来のSi−にn−Ti系低合金鋼
についても調べ1曲線5に示した1曲線5はCが0.0
6%、Siが 0.84%、Mnが 1.64%、Ti
が0.18%、Nが0.007%の場合である。また、
曲線6は本発明の 51−Mn−Ti系低合金鋼線材よ
りもCMかや−多く 0.02%の場合で、Siは 0
.83%、Mnは 1.80%、Tiは 0.13%、
Nは0.005%である。(Example 2) The same experiment as in Example 1 was conducted using a 5i-14n-Ti based low alloy w.
The test was conducted on 4 wire rods. The zero curve 4 shown in FIG. 2 is the case of this example, where C is 0.01% and Si is 0.01%.
84%, Mn 1.73%, Ti 0.17%, N 0
.. 0.004%, with the remainder being substantially Fe. For comparison, we also investigated conventional Si- and n-Ti based low alloy steels, and curve 1 shown in curve 5 shows that C is 0.0.
6%, Si 0.84%, Mn 1.64%, Ti
is 0.18% and N is 0.007%. Also,
Curve 6 is the case where the CM is slightly more than the 51-Mn-Ti low alloy steel wire of the present invention by 0.02%, and the Si is 0.
.. 83%, Mn 1.80%, Ti 0.13%,
N is 0.005%.
実施例1の場合と同様に、曲a4に示される本実施例の
51−Mn−Ti系低合金鋼線材は冷却速度に関係なく
低い硬さを示しているが、曲線5に示される従来の材料
ならびに曲線6に示されるC量が0.02%の材料では
冷却速度の上昇に従って、硬さが増加している。したが
って、本実施例の線材は他のものよりも伸線加工性がす
ぐれていると言える。As in the case of Example 1, the 51-Mn-Ti low alloy steel wire of this example shown by curve a4 shows low hardness regardless of the cooling rate, but the conventional 51-Mn-Ti low alloy steel wire shown by curve In the material and the material with a C content of 0.02% shown in curve 6, the hardness increases as the cooling rate increases. Therefore, it can be said that the wire rod of this example has better wire drawability than other wire rods.
(実施例3)
第1表に示す組成の低合金鋼線材を同表に示すl040
°C前後の温度からlO°O/sの冷却速度で冷却し、
引張り強さ、絞り、島状マルテンサイト面積率を測定す
るとともに、どの位細い線径にまで伸線できるか調べた
。(Example 3) A low alloy steel wire rod having a composition shown in Table 1 was used as l040 shown in the same table.
Cooling from a temperature around °C at a cooling rate of 1O °O/s,
In addition to measuring the tensile strength, area of area, and island martensite area, we investigated how thin the wire diameter could be.
その結果を組成とともに第1表に示した。χは測定値の
平均値、σCはバラツキを示す、伸線限界は12°のダ
イスと25°のダイスを用いて調べた。鋼A、Bは従来
の低合金鋼、鋼Cは炭素量が0.02%のSi −Mn
−Ti系低合金鋼、鋼りは本実施例の51−Mn系低合
金鋼、鋼Eは本実施例の51−Mn−Ti系低合金鋼で
ある。The results are shown in Table 1 along with the composition. χ indicates the average value of the measured values, σC indicates the variation, and the wire drawing limit was investigated using a 12° die and a 25° die. Steels A and B are conventional low alloy steels, and steel C is Si-Mn with a carbon content of 0.02%.
-Ti-based low-alloy steel, steel is the 51-Mn-based low-alloy steel of this example, and steel E is the 51-Mn-Ti-based low-alloy steel of this example.
第1表から明らかなように1本実施例の線材は、従来の
材料ならびClが0.02%の51−Mn−Ti系低合
金鋼線材に比較して、引張強さが低くそのバラツキも小
さい上に、絞り値も高い値を示している。さらに、本実
施例の線材のみが、金属組織における島状マルテンサイ
トの面積率が1%以下であり、その結果、伸線限界の線
径も他よりも細く良好である。したがって、第1表のデ
ータからも、本発明の線材は、他に比較して機械的性質
の均一性ならびに伸線性のすぐれていることが明らかで
ある。As is clear from Table 1, the wire rod of this example has lower tensile strength and less variation than conventional materials and 51-Mn-Ti low alloy steel wire rods with a Cl content of 0.02%. Not only is it small, but it also has a high aperture value. Furthermore, only the wire of this example has an area ratio of island-like martensite in the metal structure of 1% or less, and as a result, the wire diameter at the drawing limit is smaller and better than the others. Therefore, it is clear from the data in Table 1 that the wire rod of the present invention has excellent uniformity of mechanical properties and wire drawability compared to other wire rods.
(実施例4)
Si−)ln系低合金鋼ならびに5i−Ln−Ti系低
合金鋼について、径が5.5 m+aの圧延材の金属組
織を調べた。実験は本発明の線材および従来の線材を用
いて行なった。400倍の倍率の全屈組織顕微鏡写真を
第3図に示す。第3図から明らかなように、本実施例に
おける低合金鋼線材はフェライト相のみであり、従来の
低合金鋼線材はアシュギラーフエライト、島状マルテン
サイトが認められる。したがって、金属組織的見地から
も、本発明の低合金鋼線材は優れた伸線加工性と機械的
性質の均一性を期待できる。(Example 4) The metallographic structures of rolled materials having a diameter of 5.5 m+a were investigated for Si-)ln-based low alloy steel and 5i-Ln-Ti-based low alloy steel. Experiments were conducted using the wire of the present invention and a conventional wire. A full flexural tissue micrograph at 400x magnification is shown in Figure 3. As is clear from FIG. 3, the low alloy steel wire in this example has only a ferrite phase, whereas the conventional low alloy steel wire has Ashgiller ferrite and island martensite. Therefore, also from the viewpoint of metallographic structure, the low alloy steel wire rod of the present invention can be expected to have excellent wire drawability and uniformity of mechanical properties.
本発明の低合金鋼線材は、改善された全屈組織を有し、
通常圧延のみで容易に優れた伸線加工性が得られ、熱処
理を省略できる。The low alloy steel wire rod of the present invention has an improved total bending structure,
Excellent wire drawability can be easily obtained just by ordinary rolling, and heat treatment can be omitted.
第1図は51−Mn系低合金鋼線材の冷却速度と硬さと
の関係を示すグラフ、第2図は5i−11n−Ti系低
合金鋼線材の冷却速度と硬さとの関係を示すグラフ、第
3図は51−Mn系および51−Mn−Ti系低合金鋼
線材の金属組織を示す顕微鏡写真である。
■・・・・・・・・本発明の一実施例における線材の場
合、2,3・・・・・・・・従来の線材の場合、4・・
・・・・・・本発明の他の実施例における線材の場合、
5・・・・・・・・従来の線材の場合、6・・・・・・
・・本発明における組成と異なる組成の線材の場合。FIG. 1 is a graph showing the relationship between the cooling rate and hardness of a 51-Mn-based low alloy steel wire, and FIG. 2 is a graph showing the relationship between the cooling rate and hardness of a 5i-11n-Ti-based low alloy steel wire. FIG. 3 is a micrograph showing the metal structure of 51-Mn-based and 51-Mn-Ti-based low alloy steel wire rods. ■...In the case of the wire rod according to one embodiment of the present invention, 2, 3......In the case of the conventional wire rod, 4...
......In the case of the wire rod in other embodiments of the present invention,
5... In the case of conventional wire rods, 6...
...In the case of a wire rod having a composition different from that in the present invention.
Claims (2)
〜2.00重量%のMnを含有し且つC量が0.02重
量%以下で残部が実質的にFeであり、島状マルテンサ
イトの含有率が1.0%以下であることを特徴とする伸
線加工性の優れた低合金鋼線材。(1) 0.50-1.20% by weight of Si and 1.00% by weight
It is characterized by containing ~2.00% by weight of Mn, the amount of C being 0.02% by weight or less, the balance being substantially Fe, and the content of island martensite being 1.0% or less. A low alloy steel wire rod with excellent wire drawability.
.00重量%のMnおよび0.01〜0.25重量%の
Tiを含有し且つC量が0.01重量%以下、N量が0
.005重量%以下で残部が実質的にFeであり、島状
マルテンサイトの含有率が1.0%以下であることを特
徴とする伸線加工性の優れた低合金鋼線材。(2) 0.50-1.20 wt% Si, 1.00-2
.. 00% by weight of Mn and 0.01 to 0.25% by weight of Ti, the amount of C is 0.01% by weight or less, and the amount of N is 0
.. A low alloy steel wire rod with excellent wire drawability, characterized in that the balance is substantially Fe at 0.05% by weight or less, and the content of island martensite is 1.0% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP518686A JPS62166093A (en) | 1986-01-14 | 1986-01-14 | Low alloy steel wire having excellent drawability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP518686A JPS62166093A (en) | 1986-01-14 | 1986-01-14 | Low alloy steel wire having excellent drawability |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62166093A true JPS62166093A (en) | 1987-07-22 |
Family
ID=11604196
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP518686A Pending JPS62166093A (en) | 1986-01-14 | 1986-01-14 | Low alloy steel wire having excellent drawability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62166093A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS589792A (en) * | 1981-07-10 | 1983-01-20 | Kobe Steel Ltd | Low fume wire for gas shielded arc welding |
-
1986
- 1986-01-14 JP JP518686A patent/JPS62166093A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS589792A (en) * | 1981-07-10 | 1983-01-20 | Kobe Steel Ltd | Low fume wire for gas shielded arc welding |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3440937B2 (en) | Method of manufacturing steel wire and steel for steel wire | |
JP6811854B2 (en) | Cold-rolled steel sheet for flux-cored wire and its manufacturing method | |
JPH04371549A (en) | Wire rod extra fine steel wire with high strength and high toughness, extra fine steel wire with high strength and high toughness, stranded product using the extra fine steel wire, and production of the extra fine steel wire | |
JPH07188834A (en) | High strength steel sheet having high ductility and its production | |
JP2004211199A (en) | High strength hot rolled steel sheet having excellent fatigue resistance and excellent strength-ductility balance, and method of producing the same | |
US11674194B2 (en) | Cold rolled steel sheet for flux-cored wire, and manufacturing method therefor | |
JP2001316760A (en) | Steel sheet for enameling excellent in fish-scale resistance, adhesion and workability and its producing method | |
JP3757027B2 (en) | High strength hot rolled steel with excellent weldability, high strength steel wire and high strength steel bar using the same | |
JP3400071B2 (en) | High strength steel wire and high strength steel wire with excellent fatigue properties | |
JPH07179994A (en) | Hyper-eutectoid steel wire having high strength and high toughness and ductility and its production | |
JPS62166093A (en) | Low alloy steel wire having excellent drawability | |
KR102112172B1 (en) | Cold-rolled steel sheet for flux cored wire and manufacturing the same | |
KR102134310B1 (en) | Cold-rolled steel sheet for flux cored wire and manufacturing the same | |
JPH07216451A (en) | Production of stainless steel material having high welding softening resistance, high strength, and high ductility | |
JP3779811B2 (en) | ERW steel pipe with excellent workability and its manufacturing method | |
CN115053007B (en) | Cold-rolled steel sheet for flux-cored wire and method for producing same | |
JPH09256065A (en) | Production of ferritic stainless steel thin sheet excellent in surface property | |
JPS6213415B2 (en) | ||
JP2971192B2 (en) | Manufacturing method of cold-rolled steel sheet for deep drawing | |
JPS62164821A (en) | Manufacture of low-alloy steel wire having superior drawability | |
JPS633930B2 (en) | ||
JPH10110245A (en) | Steel wire for acsr, produced in iron loss | |
JPH01205032A (en) | Manufacture of high-strength electric resistance welded tube for automobile use | |
JP3289506B2 (en) | Method for producing low alloy steel with excellent wire drawing workability | |
JPH07138638A (en) | Production of high-strength hot rolled steel sheet having good workability and weldability |